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Abstract

An improvcm of uni-directional wave model so called AB equation
was proposed to study wave groups that appeared in the wave teﬂs of
hydrodynamic laboratory [2]. The model was revised version of the
KdV equation and could be interpreted as a higher order KdV equation
for wave abovca)itc depth and in certain approximation it became the
KdV equation. In this paper, we will focus to investigate the evolution
of the envelop of modulated wavegghich is described by the nonlinear
Schrodinger equation (NLS). We derive the NLS-type equation from
the AB equation. The asymptotic method is used to find thta:luation,
The signs of the coefficients of the NLS-type equation that determine
whether experimentally relevant wave groups are possible exist or not
will be compared by the other NLS-type equations. The effect of the
dispersion relation and the nonlinearity terms of the model to existence
of expergmentally relevant wave groups will be presented.
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1. Introduction

Many theoretical investigations that deal with evolution of wave groups
have been discussed. One of them was the theoretical investigation ﬁwave
groups evolution discussed by van Groesen in [1]; in the literature a KdV-
type equation was used for unigdirectional wave model and an NLS-type
derived from thg(d\/ equation as amplitude equation for modulated waves
in water waves. In this paper, we will use a new KdV-type equation so called
ﬁ equation as a uni-directional surface wave model. The modeh’vas already
proposed by van Groesen and Andonowati [2]. The model was improvement
of the KdV equation and can be interpreted as a higher order KdV equation
for wave abovﬁnite depth and in certain approximation it becomes the KdV
equation. The nonlinear terms of the model were also improved to include
the effects of short wave interactions. The mcﬁl can be used for all wave

lengths and correct for any depths (see [3]) and given by

om = -JEA[T] | %A(nAn) —%(An)2 + %B(an) + %(Bﬂ)z} M

where 1 represents elevation, 4 = axC/\/E and B = \/EC_I are pseudo
differential operatﬁrs with symbol é(k) = Q(k)/k (in the form of Fourier
1

transform) with Q(k) = ¢pk %}1“1), g =~/gh, g and h are gravity
acceleration and water depth, respectively.

Equation (1) will be solved by using third order asymptotic expansions

where the elevation n(x, t) is expanded by power series in a small parameter

€. The expansions then obtain three linear partial differential equations up to

the third order expansion and can be written as
3
om® # Jgan® = o, 2)

o # Jgan? = —JEAB AmWan®) - % (AnM)?

+ %B(n{”Bn{”) + % (Bn{”)z} 3)
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+= BBn® + @) + 2 (2Bn“)3n{2))} @)

Notation T]m denotes the ith order approximation of 1. Equations (2)-(4)

relate to the first, second and third order equations, respectively.
In equation (2), the dispersion relation of AB equation can be obtained

by taking T]“) = a0 it amplitude constant a. Then we find
dispersion relation ® = Q(ky). The dispersion relation is the same as the

dispersion relation for modified KdV equation in [1].

The paper is organized as follows. Irﬁection 2, we will derive the NLS-
type equation for the AB equation. The NLS-type is well-known as
amplitude equation for modulated wave in water waves, see Dingemans [4].
By choosing the solution of AB equation as monochromatic with modulated
amplitude and applying third order asymptotic method, we found the NLS-
type equation. The coefficient of the NLS-type will be compared with other
NLS-type.

In Section 3, the characteristic of wave groups for AB equation will be
discussed. The characteristics of wave groups are determined by looking
coefficients of NLS-type equation that are found in Section 2. Section 4 will
be focussed on comparison of the coefficients of NLS-type of AB and the

other NLS-type. Conclusions are written in Section 5.
2. Standard NLS-type Equation

Here we look for an envelop equation derived from the AB equation. The
equation is based on investigating wave groups propagation. To the end, the
solution of (2) will be chosen in the form of a monochromatic wave with

modulated amplitude a(x, 1),
T](”(x, t) = a(x, t)e'kox—ot) . oo (5)

Here k; and o represent wave number and frequency of the monochromatic,
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respectively; ¢.c means complex conjugates. Expression (5) is called first
order harmonic mode.

Substitution of (5) in (2) yields
(ara)ei(ﬂ'nx—mr} _ imaei(ﬂ'{}r—mr}
| P i(kox—
+ ‘\/EZE(_*)”A”(kl))(aﬁa)e{unx wt) _ 0, (6)
n=0

where 4 is symbol of pseudo differential operator 4 in the form of Fourier

transform and 4" represents nth degvative of 4 with respect to k.
2
For an envelop which has a laﬁe spatial extension, we introduce a

scaling in the spatial variable. Along spatial variable & is introduced a frame

moving with velocity V,. Thus we write a = A(E, 1), & =¢(x— Vgr) and

t=¢’t with group velocity V,. Applying these expressions into (6), we

obtain

(—eVy0eA + 20, A)e” — inAe®
1 _an gn nyan i _
“/E”;JE( i)' 4" (ko )e" (82A)e" = 0, 7
with 6 = kpx — ot
Since © = Q(kg) and V, = Q'(kp), from (7) we obtain
Ly 2
0. A - EQ (ko)zA = O(e). (8)

For the second order solution, the right hand side (RHS) of equation (3)

is obtained as interaction between solution of the first order with itself,

RHS = —«/Efl(?ko)B(éz(ko) - 4 (ko))

; %(21(}(0)21(2&0) ; é(kO)E(ZkD))} Ae*® 4 e,
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The solution ofth.esecond order equation can be chosen as
11

B, 1) = b(x, e + elx, 1) + ce. ©)
p)
This solution is superposition of the second order double harmonic mode and

second order nonharmonic long wave.

Substituting (9) into the second order equation, we find

(0,6)e*® — 2iwbe®® + 0,c + 2 Z}—L(—i)” A" (2K, ) (87D)X®
n=0 "

v e YL iy A (0)@le)e™ < RES. (10)

n=0
For solution of » and ¢, we will follow the same line as in solution for a.
We then introduce b = B(E, 1), ¢ = C(§, 1), § = &(x — Vyt) and T = g2t for

equation (9). Then we get in the second order equation
~2ioBe®™® + \[g A(2ky)Be*™ = RHS. (11)
Collecting term e*® in (11), we get

2

e ) Co 2
B ) = 3000 - ar2kg) (12)

with

Cy = s'z(zko)[%?[%n(ko)— s'z(zko)j " giii)[ s‘z(z}ko) o szo)ﬂ

In the third order equation, a resonance term and a constant term will

appear due to interactions between first and second order solution in the
nonlinear terms of AB equation. The constant term can be written as

2, (13)

o QO g  kCk), 28 |,
(V= Q(0)2C == [(}2(&0) g +C‘(k0)6'(u)}ﬁé|“4

while the resonance term can be written by
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- @[{232(&0)&(2&0) +2B(ky) B(2ko) A(ky)
+ Alko) (B (ko) = 4%(ko ))AB
+[2B(ko) A(ky ) B(0) + (B2 (ko) + A% (ky)) A(ky)).AC]e™
- [aIA - %fgz'(ko)af,a.je*" (14)

These terms have to be vanished to satisfy solvability condition for

asymptotic valid solution. Therefore from (13) we get

s‘z'w){ 8 _kClk), 2¢
2 [ CPkg) & Clko)C(0)
Q'kg) - 2'(0)

C= | A% (15)

By substituting (15) into resonance term (14) and using solvability

condition, we obtain an equation for the amplitude .4 given by
0. A +iBoZA +iy] AP A =0, (16)

where the coefficients of equation (16) are given by

p —%Q"(ko) and vy =y, + 72,

with y; = Djf and y, = D5 F,, where

2%3 r2,, | ke 1 ¢  KClky)), A
Dy = =0 (ko) C(2kg ) + — + = + koC (ko).
1= (ko)C(2ko) car T2\ E oC(ko)

e 3

D2 == Al = -
C0)  2{C%*(ky) g

O(2ky) (ko)
L 251(&0)—51(2;;0){ 2g

]ko(j'(ko ),

[% Olky) - sz(zko)]

ng 1 1
* Q(k?)) [fl(zkg) ’ 451(’(0)]}
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. Q(0) 2 _k%é‘z(k0)+ 2g
2720k - Q0)| k) ¢ Clko)C(0) |

Equation (16) was known as standard NLS-type equation and we denote
this as NLS ;p.

3. Characteristic of Wave Groups

The paramegs B and v are the important parameters in the NLS
equation. They determine the kind of wave groups that described by the
model [4, 1], so this will be looked first. We will demonstrate this by looking
for ‘steady’ solution. Next, we try to compare with other NLS-type
equations. One of them is NLS-type that derived from the KdV equation, we
called it by NLSg,. The solution of equation (16) will be solved by

choosing the ansatz as

A(g, 1) = f(E)e ), (17)
Substitution of (17) in (16) yields
~i(£) £(&) + iBf (&) + iyf (&) = 0. (18)

Here f' and f” denote the derivative of f with respect to &. Equation (18)

can be rewritten as
Br'(E) = £/ (&) - v ). (19)

Considering (19), we observe that the solution very much depends on

coefficients B and y. Multiplying each side by /(&) then integrating them

with respect to &, we find

g S E= V() E, 20)
where

v =525 0t @

for someaanstant E. The constant £ can be regarded as energy when we

consider this by interpreting the equation f as a mechanical system (i.e.
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Newton’s equation of motion for a particle with mass § under the influence

of a conservative force with potential energy V(f')).

In the sequel, we denote V. corresponding to the sign * in (21) and =y,
with y > 0. The graph of this function can be seen in Figure 1. The

continuous line shows the V,, while the dot line shows the graph of V_.

The function ¥ has minimum and maximum values at [ = il/-\/'y_ with

. 1 .. 1
the maximum value ™ and the minimum value — yme
W

0.25 -

015}

—_15 -1 -0.5

-0

Figure 1. Graph of the function of V, (solid line) and V_ (dashed line) with

y=1L
Let us consider the case for V_, by using the initial condition of V, where

. |
the maximum of Vis 3y Ve get

Lo Lpa Lpa g (Lo el ), 1
LR VAR T YART R CF VAR S YAl s

where ¥~ = |y |. Equation (22) can be rewritten as

Ay
f—ﬁ[ﬁ N4 J (23)
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The solution of (23) is given by

. 1 |
f&)= Ftanh[F G]A (24)

Thus, the solution of (16) is given by

-

1 1 ;
A, 1) = — tanh[— r:;] e’ (25)
W W
0.8
0,64
1Al
0,4
0,24
il
S Erns

Figure 2. Dark soliton for v = =1 and p = 1.

As an illustration we choose v = —1, B =1, the wave amplitude is the
modulus of 4. The wave amplitude with respect to & can be seen in Figure 2.
The solution is not suitable for surface water wave equation. Therefore for y
negative, the AB equation was not describing solitary wave. The solution
(25) is called dark soliton.

While for the case of },, it is required that the water is in rest at infinity,
then f'and f' are zero for & tends to infinity, therefore it gives £ = 0, and

we get

e S YAR Y CYAETE Vo) SENCY
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Choosing g = Jgf and doing some modification, we can rewrite (26) as
LA YS l s s
() =g -¢%)g’. @7

From the expression (27), we get

g(E) = sech[ \}% ] (28)

So, the solution of (16) for y positive is given by

A(E, 1) = \/% sech[\%]ei? (29)

0.6
17|

0.6 4

0,4 4

T r T T T T T T
8 6 4 2 g 2 4 [ ]

Figure 3. Bright soliton for y =1 and B = 1.

By the same way as for the solution (25) but here y = 1, the solution

(29) is called “bright soliton” or soliton (see Figure 3).

4. Comparison of the NLS-type Equation
For the modified KdV (mKdV), the equation with exact dispersion

relation (see [1, 5]) is

om + iQ(—id )n + %axqz =0. (30)
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The coefficients 5 and v of its NLS-type equation are given by

p= %Q’(’fo) and y = %ko(co +03)

with

1 ko

%0 = Qi) =000 ™™ 2 = 300k ) - 0kg)

Equation (30) is in non-dimension form. The relation between the normalize

variables and the physical variables is given by my,, = hn, X, = hx,

h k /
ligp =1 [Ejv k{ab = Ev Wpp = @ [}‘Z_Ij

By using the above relation for the AB equation, comparison between
coefficient of NLS-type of AB and KdV can be seen in Figure 4. The
coefficient § of NLS ;5 is the same as of NLSg ;- (see Figure 4) since their

dispersion relations are the same. The coefficient [3 is always positive.
Next let us consider the value of y. For long wave case (small k), the
coefficients y of NLS,p and NLSg, are really closed. However, for the

short wave case, the coefficient y of NLS ;p is larger than y of NLSg ;). The

order of coefficient y for NLS ;5 and NLSg, are O(ksﬁ) and O(kB"Q),

respectively, such that the order O NS 45 = k.
YNLSgqy

Since the solution is occurred for Py > 0, and we know that > 0, so
there is critical wave number k.., such that for k& > k..., By > 0. For

NLS 45, k. =1.47 while for NLSg -, ki = 1.15 and 146 < k., <

-1
4.24 for BBM (see [1]), which has dispersion relation ® = k[l + %kzj .

Observe that although the dispersion relations of mKdV and AB equation

are the same, but their k., are different. This is caused by the effect of

nonlinearity term of each other, as we know that their nonlinearity are
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different. k,;; of NLS ,p is closer to the value = 1.36 which is found when
the wave groups are considered for the full set of equations describing

surface waves on a layer fluid [4] than of NLSg;;-.
According to sign f and y where wave groups that are relevant for

laboratory experiment only exist when their sign are positive, Table 1 shows

summarize of sign of § and y for each equation.

Oty
0

o T T T e
3 1 2 3 4 g irasees
k

Figure 4. Parameters 3 (left) and y (right) for NLS ,z (line) and NLSg
(dot) at the top, and for NLS,p (line) and NLSgp;, (dot) in normalize

parameter.
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Table 1. The table of k., for various models with their dispersion relation

Model DiSﬁsion relation Laboratory wave groups
) . .
Kdv k(l = gk j impossible
-1
BBM k(l ‘%kzj for 1.46 < k < 4.24

mKdV k+/(tanh(k)/k) k= ke =115

AB k/(tanh(k)/k) k= k. ~ 1.47

5. Conclusion

In this paper, we studied the derivation of envelop equation which is
called NL& equation. By using the AB equation as a uni-directional wave
equation, it was shown that the amplitude equation for wave groups not only
depends on the dispersive properties, but also depends on nonlinearity of the
models. Although the dispersive property of AB equation is really the same
as the modified KdV equation in [1], the critical k for each equat'a] is
different. The critical k for AB equation is closer to the value that found
when wave groups are considered for the full set of equations describing
surface waves on a layer fluid [4]. It is caused by the nonlinearity of the AB
equation which is different from the KdV equation.
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