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Abstract

In this paper, we study two parameter estimation methods, maximum
likelihood estimation (MLE) and two-stage least squares (TSLS) for
fitting spatial lag model (SLM). We use Monte Carlo simulation to
generate the data used and evaluate the methods by the root of mean
squared error (RMSE) criterion. Statistical analysis of real data sets is
presented to demonstrate the conclusion of the results. In this data, we
use poverty data and factors affecting poverty which consist of the
number of people who graduated from junior high school, shares of
industry GDP, agricultural GDP, trading GDP and services GDP. The
result shows that the best choice in fitting SLM is MLE. Analysis
results based on MLE method conclude that increase in share of
agriculture GDP causes significant increase in the number of poor
people. Copyersely, the increase in share of services GDP causes
signiﬁcamEcrcasc in the number of poor people. The increase in the
number of people who graduated from junior high school, share of
industry GDP, share of trading GDP causes decrease in the number of

poor people, but they are not significant.
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1. Introduction

In recent years, spatial regression model has been developed to take
spatial dependence. The mgdels that involve statistical dependence are
often more realistic [7, 8]. A fundamental concemn of spatial analysts is
to find patterns in spatial data that lead to the identification of spatial
autocorrelation or association [15]. Taking spatial dependences into account
when dealing with spatial data is very important, and neglecting them can
cause problems. For example, ignoring spatial lag structures causes ordinary
least squares (OLS) estimators to become bias and inconsistent. The spatial
weights matrix is one of the most convenient ways to summarize spatial
relationship in the data. Spatial weights matrix is a nonnegative matrix
that specifies the neighborhood set for each observation. Here, the data
are collected from different spatial locations. Spatial weights matrix
characterizes cross-section dependence in useful ways. Their measurement
has an important effect on the estimation of a spatial dependence
model [1, 9, 14]. The prediction result becomes accurate if we found a
representative spatial weight matrix and parameter estimation method. There
are many to create spatial weights matrix [10]. However, the most commonly
used spatial weights matrix is a binary matrix based on geographic distance

and contiguity.

In the spatial model, we found endogenous problem in the model.
Therefore, classic method such as ordinary least squares (OLS) is not
relevant to solve the problem. The OLS estimator will be biased as well
as inconsistent for the parameters of the spatial model [2]. The
inappropriateness of the least squares estimator for models that incorporate
spatial dependence has focused attention on the maximum likelihood
estimation (MLE), generalized method of moment (GMM) and two-stage
least squares (TSLS) methods approach as an alternative [11, 12]. In this
paper, we characterize and compare MLE and TSLS methods to estimate the
parameters of SLM model.

ﬁe rest of the paper is organized as follows: Section 2 presents spatial
lag model and parameter estimation methods. Monte Carlo simulation is
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given in Section 3. Statistical analysis of real case sets is presented in
Section 4. Concluding remarks are provided in Section 5.

2. Spatial Lag Model and Parameter Estimation Method

2.1. Spatial lag model
Spatial lag dependence or spatial lag model in a regression model is
similar to the inclusion of serially autoregressive term for dependent variable
in a time-series context. Spatial lag model (SLM) is specified as [2, 3]
y =pWy + Xp +¢, (D

where y is the nx 1 of the response variable, X is the n x| matrix of the
non-stochastic explanatory variables, W is the n x 1 non-stochastic weights

matrix, p is a spatial autoregressive parameter, [} is a parameter vector, and

€=(g,€9,...,&,..., €,) isan nx 1 vector of innovations.

2.2. Maximum likelihood estimation

Maximum likelihood estimation of the SLM models described involves

aaximizing the log-likelihood function with respect to the parameters. The
method of maximum likelihood selects the set of values-values of the model
parameters that maximize the likelihood function. The model (1) represents

an equilibrium, so (7 — pW) is assumed to be invertible. The equilibrium
vector y is given by y = (I- pW)_I(X[} +¢g). It follows that Wy =
W(I - pW)_I(X[} +€). We assume that the errors are normally distributed
(e ~ N(0,TI0%))sup;| @; | <1 and the matrices (I —pW) are nonsingular.
For errors are normally distributed, it can be expressed by
fle)= mexp{— ;—82} (2)
Based on nonsingularity condition of the matrix (I - pW), we can
rewrite equation in (1) as y = (I - pW)_I(X[} +e)ore=(I-pW)y - Xp.

Furthermore, from (2), we can find pdf of y by Jacobi transformation method
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[4, 6]. Let J = j—: =|I— pW | be the Jacobi transformation from ¢ to y.
By using the Jacobi method, we can denote pdf y as

fy)=f(&J]. 3)
Hereinafter, substituting J = |I - pW | and &€ = (I - pW)y — Xp into f(g)

in equation (2) results in

1= (2::);11;26;1 ex[{((l - _Xl;)o(z(l PV XD rw). @)

We can see that equation (4) has p, o7 and . Furthermore, we use
Iy ps 0'2,,[3) instead of f(y) for expression of the pdf. Thus, with

reference to (4), the likelihood function is

L(p, o> By)

1 (= pW)y —XB) (- pW)y - XB) | |
(21‘:)”’#’20’” [J|: 202 |I 9W|' )

The expression in (5) is actually quite a pain to differentiate, so it is almost
always simplified by taking the natural logarithm of the expression. This is
absolutelytine because the natural logarithm is a monotonically increasing
function. This is important because it ensures that the maximum value of
the log of the probability occurs at the same point as the original probability
function. Therefore, we can work with the simpler log-likelihood instead
of the original likelihood. The logarithm of likelihood function of (5) can be
denoted as

In(L(p, o>, Py)) = In|I—pW |- %]n(Zn)

g2 (A=pW)y - XB) (1-pW)y -Xp)
2 2 '
20
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There are the following requirements: the existence of the log-
likelihood function for the parameter values under consideration, continuous
differentiability of the log-likelihood, boundedness of various partial
derivatives; the existence, nonsingularity of covariance matrices; and the
finiteness of various quadratic forms. Here, there are the conditions to ensure
that these assumptions hold. These conditions are all diagonal elements

of W are zero, sup;|w; | < 1. the matrices (I —pW) are nonsingular for
-1 <w; <1, i=1,2,...n. The innovations g; are independent identically
distribution, E(g;) =0, E(e?) = o> > 0, and E(/g; [**) < oo, for some .
To avoid ca]cu]atir;ﬂ[ —pW| in (6), Ward and Kristiani [17] proposed

that In|I-pW |= > In(l - poy;),

In(£(p, o* B; ¥)) = 2 In(l = poy;) - 5 In(2r)

o2 - (=pW)y — XB) (- pW)y -Xp)

2 2(:;2

where ®;,i=1,2,...,n are eigenvalues of the matrix W. The resulting

vector of first partial derivatives of equation (7) is a set equal to zero and

needs to be solved for the parameter values.

Let 0= (p.c>.p) and 0 =(p, 5%, B). The values p, 5> and f§ are
estimators for p, o, respectively. The maximum value of In(ZL(p, o2, By))
is obtained when we consider p, &> and ﬁ

To obtain maximum of the function in (7), we have to find critical points

.
by partial differential [16], %]n(ﬁ(e; y))|9=é =0,

0

6ﬁ]n(£(p,02,ﬁ; ¥) =0 (I-pW)y - XB) X = 0. ®)
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é 2
—In(L(p, 5°, P;
5o (L. 7. B y))

=0 —tr(I-pW) "W + (I - pW)y — XB) Wy = 0. ©)

Under the usual regularity conditions, the maximal likelihood estimates
that are fgund as solutions to the system (8)-(9) will be asymptotically
efficient [2]. Clearly, this system of highly nonlinear equations does not
have an analytic solution and needs to be solved by numerical methods. Part
of the first order conditions has solution which can be used to construct a
concentrated likelihood function. There are some methods/algorithm can be
used to solve this nonlinear equation, such as Newton-Raphson, gradient
descent and Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. In this

paper, we use BFGS algorithm in optimization problem in equation (7).

Let H and V be Hessian matrices and gradients operator, respectively.
A starting point 09 and estimate of Vzln(em)) must be given. The

iteration is then &k =1, 2,3, ...
(1) 00+ — k) _ g1y 1n(o(8))
2 s) = glk+1) _ g(k)
3) y¥) = vin(e* D) - v in(e™*))

Hk'q(k}(.i'(k})'Hk N }:(k}(};(k})'
s® g 5% Y0

(4) Hyyy = Hy —

2.3. Two-stage least squares

Two-stage least squares (TSLS) method is one of the methods that can
be used to solve the endogenous problem. In the TSLS method is used the
instrument variable. The instrument variable is a new variable correlated

to the response variable, but uncorrelated with residual. From equation (1),

we can express y = (I - pW)_I(X[} + €), so we can show that E(Wye') =
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E(W(I - pW)_I eg') # 0. Therefore, we cannot use OLS method to estimate

the parameters of the SLM model. As an alternative, we can solve this

problem by using TSLS method. Let Z = (WyX) and 0 = [p] Then the

B

model in equation (1) can be written as
y=170 +¢ (10)
Due to E(Wye') # 0, Kelejian and Prucha [11] suggested a TSLS based
on instruments H = (X, WX, W2X, W3X, ...). Therefore, the estimator of
0 is given by
0 = (ZHHH) 'H'Z) 'ZH(HH) 'HYy. (11)
The TSLS method can be produced in three steps [13]:
1. Obtain the consistent estimates of [ by instrument variables, where

X, WX, W2X are instruments in SLM.

2. Estimate p and o by GMM using samples constructed from the

functions of model errors.

3. Use estimate of p and o to perform a spatial Cochrane-Orcutt

transformation of the data and obtain more efficient estimate of [3.
3. Monte Carlo Simulation

In this study, we simulated data of the SLM model used by Monte

Carlo simulation method. Here, we set intercept By = 2, slope By = 2 for
different coefficients of spatial lag(p) and sample size (n)...p =0.3,04,
0.5,0.6,0.7 and 0.8. Furthermore, the process of data generation that is

used to evaluate the estimation methods is conducted as follows:

(1) Given W as a contiguity matrix.
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(2) Fix the parameters By =2, Bf; =2 and p =0.3,04,0.5,0.6,0.7
and 0.8.

(3) Generate X explanatory variables: uniform, U(20, 50).

(4) Generate gy (1) ~ iid N(0, ).

(5) Generate yy () from equation (1).

(6) Estimate the parameters f, p; and p by MLE and TSLS.

(7) Repeat stage (1) until (6) B time (B = 500).

(8) Determine average of RMSE of MLE’s and RMSE of TSLS’s.

The RMSE’s MLE and RMSE’s TSLS yielded from Monte Carlo
simulation for various sample sizes (n) and coefficients of spatial lag(p) are

listed in Table 1.

Table 1. The RMSE’s MLE and RMSE’s TSLS for variations n and p

p=03 p=04 p=05 p=06 p=07 p=08

n  MLE TSLS MLE TSLS MLE TSLS MLE TSLS MLE TSLS MLE TSLS

20 1024 L1111 L.175 1274 1436 1558 1.899 2058 2728 2950 4412 4728

40 0984 1023 1.025 1066 1.1

2 L157 1.278 1329 1621 1685 2445 2536

60 1.008 1035 1071 1.098 1.186 12

6 1403 1439 1.833 1880 2.853 2920

80 1.047 1068 1.143 1.165 1315 1340 1.649 1.681 2297 2340 3.684 3747

100 1.095 L112 1.240 1.259 1.500 1.523 1965 1.995 2.824 2866 4.674 4.736

200 1.202 1211 1455 1466 1876 1890 2583 2.602 3837 3864 6414 6455

300 1.005 1010 1.023 1028 1.058 1064 1.134 1.139 1310 1317 1.772 1.780

400 1012 1016 1.045 1049 1.099 L1103 1220 1.224 1482 1488 2135 2.142

500 1.030 1033 1071 1074 1.158 1161 1.335 1339 1.703 L1708 2.555 2.562

Based on Table 1, we can see that RMSE’s MLE methods are smaller
than RMSE’s TSLS, e.g., for p=0.3 and n =100, the RMSE’s MLE =
1.095 is smaller than the RMSE’s TSLS =1.112. Further, all of RMSE’s
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MLE are smaller than RMSE’s TSLS for various n and p. However,
the differences between RMSE’s MLE and RMSE’s TSLS are small,

especially for n large. These results are consistent with the properties of

MLE estimation method. In this data simulation, the errors are normally

distributed, so we can say that in that case, MLE is most efficient.

n=20 n=40 n=&il
o0 e VILE 200 e o MLE
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Figure 1. RMSE’s MLE and RMSE’s TSLS of the SLM model from various

sample sizes (n) and coefficients of spatial lag(p).

Figure 1 shows the RMSE from different parameter estimation methods
for n =20 to 500 and p = 0.2 to 0.8. For n = 20, we see that RMSE’s
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MLE is smaller than RMSE’s TSLS, whereas for n > 20, the differences of
RMSE’s MLE and RMSE’s TSLS are very small. Further, all of the plots
RMSE vs coefficients of spatial lag(p) have trend positive, so we can say

that the increase in coefficients of spatial lag causes increase in RMSEs.
4. Implementation of Estimation Methods

4.1. Data

The data used in this study were taken from BPS statistics of
Central Java province [5]. The estimation method of spatial lag model is
implemented to poverty data in Central Java province. The poverty data
consisted of one response variable and five predictor variables. The response
variable is the number of poor people, whereas five predictor variables are
percentage of the number of people who graduated from junior high school
(EDU), share of industry GDP (industry), share of agricultural GDP (AGRI),
share of trading GDP (trading), and share of services GDP (services). Firstly,
we describe distribution of the number of poor people in Central Java
province using quantile map analysis. Here, we use GeoDa software version
1.8 to create quantile map. Figure 2 shows the distribution of the number
of poor people for 35 districts. First class is described by the white color
which represents the number of poor less than 9.87%. The second class is
described by light orange color which represents the number of poor people
between 10.9%-12.6%. The third class is described by the orange color
which represents the number of poor people between 13%-14.9%. Finally,
the fourth class is described by the dark orange color which represents the

number of poor more than 14.9 percent (Figure 2).
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Figure 2. Quantile map of poverty data in Central Java province.

4.2. Model fitting

After a descriptive analysis, the next analysis is to find a relevant model
for poverty and its factors. Here, we specitied spatial lag model (SLM) and
spatial error model (SEM). The SLM and SEM models for this poverty data

are expressed in equations (12) and (13):
n
Vi = szﬂ. wi;yj +Bo + BEDU; + B2IND; + B3TRD;

-+ BJ,AGRx + BSSER( +E;, i=1, 2,..., n (12)
and

w= BO + BIEDUK + BZIND( + [33]”RDl + B4AGR1 + BSSER( + &,

n .
g =7\.Z#iw‘jsj+v, i=12,...,n (13)
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To choose the best model between SLM (12) and SEM (13), we use
the statistics LMy, and LMeq, . The statistics LMy, and LM, are

expressed in equations (14) and (15):

LM, = ' [s"d/s/(s’s)/n]2 (14)
O WXB) (- X (XX ) X )YWXB) + tr(W2 + WW)
and
LMy = V[0 ] 1s)
tr(We +WW)

The distributions of LMy, and LM,y are Chi-square distribution

with degree of freedom 1. We use minimum p value to choose the model.

The values of statistic, parameter and p value of LMy, and LMy, are

listed in Table 2.

Table 2. Statistic test of SLM and SEM models

Statistic | Parameter | p value

LMy, 40388 0.045

LMepror 6.1162 0013

We can see that the p value of LMy, is less than LM, . Therefore,

we use SLM for modeling poverty data. After choosing SLM model, we
estimate parameter of SLM. Here, we again use MLE and TSLS parameter
estimation methods. Figure 3 shows RMSE’s MLE and RMSE’s TSLS of
the SLM model. There are two graphs in the chart. The orange graph shows
the RMSE of MLE method and the blue graph shows RMSE of TSLS
method. We can see that RMSE of MLE is less than RMSE of TSLS
method. Therefore, we can say that the MLE is better than TSLS for
modeling the poverty data.
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Figure 3. RMSE of MLE and TSLS methods of poverty modeling in Central

Java province.

Based on Figure 3, we then use ANOVA’s MLE for modeling and
analysis. Table 3 shows ANOVA’s MLE of SLM model.

Table 3. Analysis of variance of poverty model

Variable Coefficient Std. error z-value Probability
W. poverty 0.4591 0.1560 2.9429 0.00160
Constant 2423953 10.3837 23344 0.01958
EDU -0.25014 0.13428 —1.8628 0.06248
IND -0.04021 0.04915 -0.8181 0.41329
AGR 0.30412 0.07407 4.1056 0.00004
TRD -0.02310 0.13740 -0.1681 0.86651
SER —8.64677 4.05475 =2.1325 0.03297

Based on Table 3, the coefficient of W. poverty is significant, so we can
say that adjacent districts influence each other. Further, from Table 3, we see
that there are two significant predictors, namely, shares of GDP agriculture
and GDP services. The coefficient of share of agriculture GDP is positive.
This means that when share of the agriculture GDP increases, the number

of poor people increases. The coefficient of services GDP is negative. This
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means that when the share of services GDP value increases, the number
of poor people decreases. The relationship between education, share of
GDP industry and GDP trading is negative. This means that when all of them

decrease, the number of poor people decreases, but they are not significant.
5. Conclusion

Estimation methods are influenced by the error distribution
characteristic. In the SLM model, we simulate normal distributed errors for
sample size (n) from 20 to 500. Based on data simulation, all of RMSE’s
MLE are smaller than RMSE’s TSLS, so we can conclude that the MLE’s
method is more efficient than TSLS’s method when the errors are normally

distributed.

Analysis of the estimation methods MLE and TSLS on SLM for
modeling real data shows that the best choice in fitting SLM is MLE. Based
on ANOVA’s MLE, the coefficients of spatial lag and two predictors are
significant, whereas the others are not significant. The increase in share of
agriculture GDP causes significant increase In the number gf poor people.
The increase in share of services GDP causes significant decrease in the
number of poor people. The increase in the number of people who graduated
from junior high school, share of industry GDP and share of trading GDP

causes decrease in the number of poor people, but they are not significant.
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