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Abstract

A bi-chromatic signal that is subject to the Benjamin-Feir instability will
show large deformations while propagates away from its source. For
applications in hydrodynamic laboratories to generate large waves to test
ships in extreme conditions, it is desired to know the location and height
of the maximal waves with respect to the properties at the wave maker. In
this paper we will show two different ways how to calculate both the
location as well as the maximal wave high. First we show the AB-
equation, an improved KdV-type of equation, can simulate numerically
the experiments very accurately. Using a third-order expansion method for
the AB solutions, we then show that the location of the largest
deformation and the amplitude amplification due to nonlinear effects can
well be calculated rather explicitly. This improves previous results using
the third order approximation with a KdV equation, since the AB equation
includes accurately second order non-linear terms that account also for the
important third order nonlinear resonant wave interactions.

1. Introduction

At the current state much research related to accurately generating waves in
hydrodynamic laboratories is being done. Studying wave propagation in well-
controlled hydrodynamic laboratories is an interesting subject for pl"dC“ll purposes
as well as for understanding properties of wave propagation itself. The motivation of
this paper arises from the requirement of hydrodynamic laboratories to generate
‘extreme waves’ that do not break while running downward in the wave tank. Of
particular interest is the accurate description of the non-linear wave deformations
when traveling away from its generation point (the wavetflap in laboratories). Large
deformations were observed experimentally for bi-chromatic signals experiencing
the Benjamin-Feir instability [6, 7]. Previous research showed that by using the
mmproved KdV equation-the classical KdV but with exact linear dispersion-the
position of the largest deformation can be predicted rather accurately with 3rd-order
expansions. This model, however, fails to determine the correct amplitude

amplification [5].
In this paper we will use a new KdV- type of equation, called the AB equation,

to study the wave propagation. The equation is exact up to 2nd-order, i.e. it has exact
linear dispersive properties and quadratic terms that include correct dispersion; see
[3, 4]. This equation, unlike other KdV equations, can describe waves in infinitely

deep water, but in this paper we only consider waves on finite depth.
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We use this AB equation to simulate numerically the deformations and show
that the results are remarkably good agreement with experiments. Besides that,
analytical solutions will be constructed by using 3th-order asymptotic expansion.
These approximations for AB will be compared to the approximates using the KdV
eqon as in [5]. To predict the position of maximal amplitude we use the concept
of Maximal Temporal Amplitude (MTA), which measures the maximal height of the

wave at all downstream positions. @
24
The content of the rest of the paper is as follows. In section 2 we briefly de-

scribe the model equations mentioned above. In section 3 we describe concisely the
3th-order asymptotic method for the AB equation and compare the coefficients of
the solution when using AB with those when using the KdV. In Section 4 we discuss
the comparison between the bi-chromatic evolution of AB and KdV equation.
Initially, the numerical simulation of AB is verified with experiment using MARIN
data. Base on the numerical simulation, comparison between the bi-chromatic
evolution using 3th-order asymptotic method for the AB and KdV and also MTA of

AB and KdV will be presented. In Section 5 we give some concluding remarks.

2. Mathematical Model Equations
The wave equation used in [Sax determine the position of maximal amplitude
and amplitude amplification factor is KdV-equation with exact linear dispersion but
with classical nonlinearity. In physical variables it is given for the wave elevation 1

by

am +iQ(—id, In+ ¢y % oam> =0 (1)
)

here Q is@he pseudo-differential operator with Q(k) = k+/g tanh (kh)/k,
g = v gh. g is the gravitational acceleration and / is the depth of the layer. The

AB-equation as derived in [3] reads

1

1 2 1 1 2
om= —\/EA|:'1 +5A(n»4n) 1 (An)” +53(n3n)+ ;(Bn)‘], (2)

where 1 represents the elevation and 4 = (?IC;’\/E and B = JEC_I are pseudo-

differential operators with the symbol of C given by C(k) = Q(k)/k. The AB
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equation can be interpreted as a higher order KdV equation for wave above finite

depth and in certain approximation it becomes the KdV equation, see [3].
3. Third Order Asymptotic Approximations

In this section we present in some detail the results for the 3rd-order asymptotic
solutions of the AB-equation, and we show for a few essential coefficients the

difference in the coefticients when using the KdV equation.

3.1. Third order AB approximations
16
The solution of AB equation will be found by using a 3rd-order asymptotic

method. For that aim the elevation n is expanded as power series; since we will

restrict to 3rd-order, it is given by
n=en + e 4 ein®), (3)
where nm, n(zj, nm represent the 1st-, 2nd- and 3rd-order solution. Inserting this

expansion in the AB equation, will give the following three linear partial differential

equations that determine successively the three order contributions:

am" + JganV =0 (@)

om® + Jgan® ——J_A|: A0 an®) 1 Ly
(32
« 5B Y)+ LB | 8
2 4

)+ Jgan® = —.\/_A|: AW an@ 5 1@ a0y

1 1
_ I(ZAH(UA”(:J] + Z(ZBH(UB”QJ)

1
+ 5808 40l Bn“’)] (6)
In this paper we choose for the solut'a of the first order equation (4) a bi-chromatic
wave. This is defined as the sum of two monochromatic waves with the same

amplitudes but different frequencies, w, and wave numbers 4. Then
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[ (1]

n D ae'+ +aem‘ +cc, (7)

where a is the amplitude, 0. = kex — @4t are the phases, [ = V=1 is the complex
unit and c.c means conjugate complex. The dispersion relation s = Q(ks) is
obtained by substituting this Ansatz to the first order equation. The 2nd-order
contribution n(z’] is obtained by solving (5). As a consequence of the quadratic
nonlinearity, a resonance term will appear in the 3rd-order solution. This resonant
contribution has to be made to vanish in order to satisfy the solvability condition for
an asymptotically valid solution. To achieve this, we need to correct the wave
number according to the Linstead Poincare method (6). Hence the wave number k is

expanded in a power series like

ke = k9 ek + azkEJ + o

Using Taylor expansion of the symbols 4, B and C of the pseudo-differential

operators A, B and C around ;\.(UJ to 2nd-order, we get ;\.(U =0, and the 2nd-order

equation (5) becomes
o + Jgan'? = RHS;,.
Here RHS, is the interaction of the first order solution with itself given by

o . o i
RHS| = (1219"n+ + (xgge"n— + (1239'm+ o), (1249'm+ )y ce

The solution of the 2nd-order is chosen to be of the form

(2) i0

n =ﬂ‘3182 (ﬂ+—ﬂ_] (ﬂ+—ﬂ )

2i0 ) )
ot ae” T +anse + arye’ " +ee. (8)

(2)

Substituting """ into the 2nd-order equation, we find the coefficients of the 2nd-

order solution as given below

[1.'31 (PR
(2531 - 2y =

O JgAkY Z2ie, T 7 J2ak9) — 2ie_

(¥ (¥
23 an 24

a = = M = =
2 gatk? 19 Cie, o) T Jgat@ + kN (o, — o)

M

the expressions for dsq, ..., 0y4 are given in the Annex.




(2)

The wave number correction k: is found from the 3rd-order equation when

removing the resonance terms. These wave numbers result from the interaction of

the 1st- and 2nd-order terms and are ifiven by

;2 037 2 O3y
WkOCUD) + kD)’ T T kOCR) + @)

The 3rd-order equation then becomes
om® +Jgan® = rHS,,
where RHS> is given by

20_+0

. . o .
RHS, = a3,6"% + 0i3pe™- + (1339'(‘[]* )4+ (1349'(‘ -+0.)

if2 — Tihel —
+ (1359'(‘0‘“ 0-) 4 (1369'(‘0‘ %) 4 ce,

and oy, ..., 03g are detailed in the Annex. The 3rd-order contribution to the

solution is taken as

nm = (13193'0‘“ + (13393 8- + Uy3e 120, +0-) + (1349( 8_+8,)

+ ase’ 120,-0-) ayge 420--04) 4 cp. (9
Substituted into the 3rd-order equation, we find the coefficients as given below:

a _ (P53 (855
3=
—3io, + /g Al 3A‘” " e, +J_A3A‘”

[1.33
e =
BT T e, + 0 )+ g a2k £ ()

ayy = i
2o+ o.)+ gk’ +A“J)
a _ Gas
35 -
—i(20, + o )+ g A2k ‘”+A(‘”)
oL
36 = 7

—i(20_ -, )+ JE;!(ZI\'EOJ - kg}‘]]‘
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The second and 3rd-order contributions are called bound waves because these
are intimately connected to the lst-order solution since they have same velocity.
Particularly in the 3rd-order solution, the bound waves contain side-band waves and
non side-band waves. The side-band waves have frequencies determined by the
signal input given by 2m, —w_ and 2o_ — .. The non side-band waves have
larger frequencies. Cahyono in [2], has shown that the side-band waves of 3rd-order
are of large influence since they can be of the same order as the 1st-order solution.

2
. . ~ . . . a
This can be understood since the order of the side band waves is given by a(—] ;
K
hence for sufficiently small i, ie., sufficiently large modulation length of the bi-
chromatic, a/ik will be of order unity. The other 3rd-order terms are much smaller
than the 2nd-order terms and will be neglected in the following.

The bound waves of the 2nd- and 3rd-order solution will give a contribution to
the signal at the wave maker. Hence, if we want to prescribe the bi-chromatic wave
as input signal, the bound waves should be compensatedan- and 3rd- order free

. 2 . .
waves, written as ngglf and n?ﬂl respectively. These free waves have the same
frequencies as the bound waves but satisfy the exact dispersion relation.

Summarizing the result, we write the approximate solution of the AB equation

from 3rd-order asymptotic method as

_ (2) _ (2) (3) _ (3)
n= n( : T Mgy — nﬁl-‘ + My — nﬁ\-“

In Figure 1 we illustrate the nonlinear 2nd- and 3rd-order mode generation.

[y ks b b+ Bk W bevke kv TR

Figure 1. Nonlinear mode generation in second and third order from the two basic

wave numbers in the bi-chromatic wave.
3.2. Comparison with KdV approximations

Using the KdV-equation instead of the AB-equation, a similar 3rd-order

approximation can be derived. The difference of the 3rd-order AB- and KdV-
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approximations can be illustrated by giving the differences in some of the main

coefficients. Using obvious notation, we have in 2nd-order

(@) 45 = P’U\'Em] (a3 ) gay (10)

with

k"))

cey 2 ced”)
3 C() (240

For 3rd-order, we get for instance
o)
(‘131)‘43 = WU"E J](ﬂ‘n]‘m”z, (11)
with

9a 0‘211\'9}1

(@31)ggp = 2030, - (k"))

E

(D) = S0 CW) k) EER) - (OPE)

1 1 1
N 5{&(&&‘”) N (3(2!\{0))}

Graphically, the coefficients are plotted as function of wave number in Figures
2 and 3. Although the asymptotic values for long waves coincide, as expected, the
difference in these coefficients will lead to noticeable effects in the approximations

as will be shown in the next section.
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0,0015-

-

Figure 2. The coefficients of second order a5 for AB (line) and KdV (point).

4. Comparisons of Bi-chromatic Evolutions

In this section we compare numerical simulations of the AB-equation with
measurements of experiments in a wave tank of 200m long of MARIN
hydrodynamic laboratory. The good agreement makes it possible to consider the AB-
simulations as producing the correct waves for which then the maximal position and
amplitudes can be detected. Time signals at certain locations in the wave tank will be
determined by the AB-simulations and by the 3rd-order approximations using the
AB- and the KdV-equation. The numerically computed MTA will be compared with
the MTA as calculated with the two 3rd-order approximations. In the final

subsection we will give explicit expressions for the maximal position and amplitude

amplification.
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0,00006 // 000 e
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Figure 3. The coefficients of third order ay; of AB (line) and KdV (point).
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4.1. Numerical simulations compared with experiments

Numerical simulation with the AB-equation were reported in [4] using a high
order pseudo-spectral implementation, using 1024*3 modes for calculations over
more than 150 wave lengths, in a time period of 400s and over a spatial interval of
800m length. Here we will show some results. As input at x = 10m (downstream of
the waveflap) is taken the signal from the bi-chromatic wave experiment at the
laboratory. In Figure 4 show the comparison between the numerical calculation
and the MARIN data: at the left the measured time signals and at the right the
corresponding signals calculated with the AB equation, for various locations.
Observe the good agreement, illustrating that the AB-simulation captures well the

substantial envelope deformations.

4.2, Third order approximations
In this subsection we discuss the evolution of bi-chromatic wave using the 3rd-

order asymptotic approximation for the AB- and KdV-equation. We will compare
the results with each other and with numerical AB-simulations. We take as input

signal at x = Om the expression

n(0, ¢) = 4a cos(wr) cos(ve), (12)

(w, —w,) are the

where a is the amplitude, and ® = %(mﬁ +®,) and v =% L

carrier frequency and the modulation frequency respectively.

The details of the approximation of the AB- and the KdV-equation for
parameter of a =0.5m, @ =3.1495[1/s] and v =0.1575[1/s] at position of
x = 40m can be seen in Figures 5 and 6. The contributions of the 2nd-order terms
are almost identical, but in 3rd-order the AB-contribution differs substantially from
KdV, being roughly twice as large. This is a consequence of the difference of the
nonlinear terms in the equations. The wave signals for the parameters at several
positions are shown in Figure 7, with the 3rd-order KdV- and AB-approximation at

the left and at the right respectively, and the numerical AB-calculation in the middle.
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x=120m

w=180m

Figure 4. The bi-chromatic wave signal which is captured as time signals at
positions x = 60m, 120m, 180m, at the left for the MARIN experiment and at the

right as simulated with the AB-equation.

Qualitatively it seems that the performance of the 3rd-order asymptotic
approximation with AB resembles the numerical simulation closer than the 3rd-order
KdV-approximation. However, for larger distances from the input position, the
shape of the signal of both approximations deviates more from the actual evolution
represented by the numerical solution. This is mainly caused by the fact that both
AB- and KdV -approximations retain the initial symmetry in each beat pattern that is
lost in the actual evolution. Except this, the AB-approximation has higher and more
accurate amplitude than the KdV-approximation. Observe also that both
approximations are quite well capable to predict the propagation speed, as is seen
from the positioning of the beats; this is a consequence of the exact linear dispersion
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(for both approximations) and the limited influence of the difference in the 2nd-
order wave number corrections.

02 w !” W uﬂ ‘ 02|
-0.2 -02!

250 300 350
0.02 0.02
& o ﬂ‘:é 0
-0.02 -0.02
250 300 350 250 300 350
0.05 05

-u.og
250 300 350 50 350
tis] 1[s]

Figure 5. The solution of AB equation, m, 11(”, 11(2}, nEf“!, 11(3), n?) represent the

v
total, first order, second order, second order free wave, third order and third order
free wave solution respectively.

0.2 02 : {
-0.2 -0.2 ]'
50 300 350 250 300

2 350
1
0_02 x . o
ﬁc 0

-0.02

250 300
0.05

250 300 350 250 300 350
1[s] t[s]

Figure 6. The solution of KdV equation, 1, 11(”, 11(2), nEf“!, 11(3), 1152“) represent the

total, first order, second order, second order free wave, third order and third order
free wave solution respectively.
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Figure 7. The bi-chromatic signals computed with third order asymptotic of KdV
(left) and numerical simulation of AB (mid) and third order asymptotic of AB(right)
at x =10, 60, 100m.

4.3. MTA calculations

The profiles approximated with the 3rd-order calculations do not yet given an
indication about the quality to predict the global evolution, such as the location of

the largest wave height in the tank (x., ) and how large the amplitude

lification is. In order to investigate this further, we will consider the graph of the

so-called maximal temporal amp]iﬁe (MTA), which is defined as

rel0,

M(x) = maﬁ;ln(x, t),

where n(x, ¢) is the elevation and [0, T] is the observation time interval. The MTA
will give an abstracted view of the global evolution and can be used to determine the
position xp,, of maximal wave height in the tank and the ratio of this maximal
height with the initial amplitude, the so-called Amplitude Amplification (AA). For
experimental data, that are captured in a few positions only, the MTA cannot be
determined. We will use the MTA to compare the three model results: the MTA as

found from the numerical AB-simulation, and from the 3rd-order approximations
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with AB and KdV. As example we present these results in Figure & for the bi-
chromatic wave group with parameters a = 0.05m, ® = 3.1495[l/s] and v =

0.1575[1/s].

First we comment on the general shape of the displayed MTA’s. These plots are
obtained for a simulation time interval with T = 400[s]. From the 3rd-order solution
it is clear that the short oscillation is due to the 2nd-order contribution. However, the
oscillation period is different than the period of the 2nd-order solution, because in
the numerics the contribution of many higher order waves is included. In Figure 9
we plotted for some cases the MTA of the 3rd-order approximation with and without

the 2nd-order contributions, in the left and right plot respectively.

(a)
Jr'“;'l“.ll'?'ﬂi
J"'r ”""ﬂﬁ,
N !

- M&"w
i
. rﬁ[rﬂw

y Ml I i

::{hv Mlﬁh%wwﬁ Wi - _,M /mﬁf"

% . X

Figure 8. MTA curve using numerical calculation of AB (a), third order asymptotic
of KdV (b) and third order asymptotic of AB (c).

This leads to the conclusion that if we want to obtain the MTA with 3rd-order
approximation, we will have
30

M(3J[_r] = max n(x, ¢) (13)
1e[0,7T)

= n[]ax |[l’| (x, 1) — 2™ — order(r)] + 2" -order wave height. (14)
1[0, T
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This has to be taken into account when we want to calculate the MTA with the 3rd-

order approximation in the next subsection.

We will now comment on the differences between the MTA’s obtained from the
different approximations. The MTA of 3rd-order approximation with the AB-
equation is closer to the MTA of the numerical calculation than the MTA of 3rd-
order approximation with the KdV-equation. The maximum amplitude for these
cases are 0.347m, 0.335m, 0.28m for the numerical AB-simulation, the 3rd-order AB
and 3rd-order KdV approximation respectively; the maximal position is in the range
of 120m — 130m.

4.4. MTA dependence on wave parameters

The MTA shows the maximal wave heights over the spatial interval of interest.
Hence we can find the maximal position and the amplification factor. To get the
results, we use the MTA(3) for the 3rd order approximations. The 3rd-order
approximation makes it possible to give an explicit formula for the position of
maximal wave height (in a given spatial interval). This has been done for the KdV-

approximation in [5].

N

— Ta

Figure 9. MTA curve for different parameter v, (a) v =0.1575[/s] (c)
v = 0.2[1/s] with second order solution and (b) v = 0.1575[l/s] (d) v = 0.2[1/s]
without second order solution for AB (continues line) and KdV (dot line), for

amplitude a = 0.05[m] and frequency @ = 3.1495[1/s].
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Using the AB 3th-order approximation, these quantities are given explicitly by

(15)

Q'@+ +Q@-3v) - k. +k

/ i _:
Where K > 3

Note that for x,,, we only have to consider the 1st- and 3th-order terms, while

for the amplitude amplification we added the 2nd-order contribution to the 1st-and
3th-order terms. From the expressions it is clear that both quantities depend in a
complicated way on the parameters of the Bi-chromatic, i.e. on the initial amplitude

a, the carrier frequency ® and the modulation frequency v.

We will now present in a graphical way the dependence of x.,,, and the
amplitude amplification (AA) on the parameters, and compare the analytic results of
the 3th-order approximation of AB with of the 3th-order approximation of KdV.
These results are given in Figure 10. The results show that an increase of amplitude,
carrier-frequency or envelope-frequency decreases the distance of x,,,, to the wave
maker. An increase of amplitude and carrier-frequency or a decrease of envelope-
frequency increases the AA. The effect of the envelope-frequency on the

amplification is mostly caused by the 3th-order contribution that is of the order

o4}
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Figure 10. The dependence of the position of maximal amplitude (left) and
Amplitude Amplification (right) on amplitude, frequency of carrier and frequency of
envelope, for some a = 04m, @ = 3.1451/s] and v = 0.155[1/s] for AB (line) and
KdV (dash line)

5. Conclusions and Remarks

In this paper we studied the nonlinear deformation of bi-chromatic wave groups.
The propagation of the wave groups was shown to be well captured by numerical
simulations with the AB-equation, and we used these simulations to compare with
results of explicit 3th-order approximations. For these 3th-order approximations we

used two model equations: the AB-equation that was used for the numerical
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simulations and a KdV-equation whiclai exact linear dispersion (just like AB) but
has as nonlinear terms those of the classical KdV equation. Note that the AB-
equation includes dispersion in the nonlinear terms so that it is exact in second order.

We argued and showed that the details of the wave group distortion are dominated
2
by the resonant 3th-order terms, which are actually of the order O[a(%] ], where

v 1s the modulation frequency. Since the 3th-order terms in the 3th-order
approximation are determined by the 1st- and 2nd-order terms, the better nonlinear
quality of the AB-equation will lead to better results in 2nd, and therefore also in
3th-order terms when compared to the corresponding KdV terms. This could clearly

be shown by comparison with the numerical AB-simulation.

The time-signal at observation positions in the down stream direction is some-
what better for AB 3th-order than the KdV 3th-order approximation. But the
prediction of the maximal position and amplitude amplification is remarkably well
predicted by the explicit formulas from the AB 3th-order approximation, as was
shown in Figure. 8. The somewhat lower values of AA can be understood since
higher than 3rd-order contributions are needed to achieve a larger wave height. The
explicit formulas give a simple tool for applications in hydrodynamic laboratories
where high waves are dggired at a pre-determined position in the tank. In this way
the nonlinear effects in the bi-chromatic wave group can be exploited in a
deterministic way to produce waves of much higher amplitude than could be

generated by the wave flap in the absence of nonlinear effects.
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Annex
I. The coefficients in the 2™ -order solution of AB
1 - - 1 - . 1 5 .
o = - gaz[— 7 A2 Ak + 5 22 (|0) 2 k) + 7 B2 k) AK)
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