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ABSTRACT

Traditionally, partial differential equation (PDE) problems are solved numerically through a
discretization process. Iterative methods are then used to determine the algebraic system
generated by this process. Recently, scientists have emerged artificial neural networks
(ANNs), which solve PDE problems without a discretization process. Therefore, in view of the
interest in developing ANN in solving PDEs, scientists investigated the variations of ANN
which perform better than the classical discretization approaches. In this study, we discussed
three methods for solving PDEs effectively, namely Pydens, NeuroDiffEq and Nangs methods.
Pydens is the modified Deep Galerkin method (DGM) on the part of the approximate func-
tions of PDEs. Then, NeuroDiffEq is the ANN model based on the trial analytical solution
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(TAS). Lastly, Nangs is the ANN-based method which uses the grid points for the training

data. We compared the numerical results by solving the PDEs in terms of the accuracy and
efficiency of the three methods. The results showed that NeuroDiffeq and Nangs have better

2010 MsC:
68-XX; 68W25

performance in solving high-dimensional PDEs than the Pydens, while Pydens is only suit-

able for low-dimensional problems.

1. Introduction

Many physical phenomena in modern sciences have
been described by wusing Partial Differential
Equations (PDEs) (Evans, Blackledge, & Yardley,
2012). Hence, the accuracy of PDE solutions is chal-
lenging among the scientists and becomes an inter-
est field of research (LeVeque & Leveque, 1992).
Traditionally, the PDEs are solved numerically
through discretization process (Burden, Faires, &
Burden, 2015),. For instance, the well-known finite
difference method (FDM) and finite element method
were utilized to solve many PDE linear and non-lin-
ear. Other methods, such as the variational iteration
method (VIM) and its variations were used to solve
the nonlinear PDE (He & Latifizadeh, 2020), and the
finite difference-spectral method was investigated to
solve the fractal mobile and immobile transport
(Fardi & Khan, 2021). These methods typically end
up with the algebraic systems that can be solved by
using iterative methods (Hayati & Karami, 2007). The
big issue in using the iterative solvers for solving the
large scale of linear system of equations is that they
potentially breakdown before getting a good
approximate solution (Maharani & Salhi, 2015). In
fact, their accuracy is not promising. To get rid of

the breakdown problem, one has been done by
using interpolation and extrapolation model (Bakar &
Salhi, 2019; Maharani et al., 2018; Maharani, Larasati,
Salhi, & Khan, 2019), and using prediction with sup-
port vector machine (Thalib, Bakar, & Ibrahim, 2021).
However, the problem is still not fully addressed
since computationally, they quite expensive. With no
discretization process, artificial neural networks
(ANNs) can be an alternative way.

ANN is well-known as one method under machine
learning (ML) which is typically used for regressions
and classification problems. The development of ANN
for solving PDE problems has been investigated at the
beginning of the 21st century. For instance (Malek &
Beidokhti, 2006), combined ANMN and Nelder-Mead
simplex method to find the numerical solutions of the
high-order of PDE. This hybrid method improved the
ANN performances by approximating initial and
boundary conditions. Moreover (Sirignano &
Spiliopoulos, 2018), used the Deep-Galerkin method
(DGM) embedded with ANN, for solving the high
dimensional of PDE problems. While, modified DGM
by introducing ansatz method for binding the initial
and boundary conditions. This modification simplifies
the DGM original algorithm. Furthemmore, another
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Figure 1. ANN Perceptron 1 (a) and multi-layered perceptron (MLF) 1 (b) architectures.

ANN-based method for solving PDE, called Physics
Informed Neural Network (PINN), was introduced by
Raissi, Perdikaris, & Karniadakis (2017b), Raissi,
Perdikaris, and Karniadakis (2019) and Raissi et al.
(2017b). PINN considers the physical laws of PDE to be
embedded in loss function as a regularization term.
This method was improved by Guo, Cao, Liu, and Gao
(2020), in terms of the training effect by using the
residual-based adaptive refinement (RAR) method.
This strategy will impact in increasing the number of
residual points with the large residuals of PDE until
the residuals are less than the threshold.

The ability of ANN in solving PDE problems gives
some advantages, including continuous and differen-
tiable of the approximate solutions, good interpol-
ation characteristics and less memory (Chen et al,
2020). Other advantages of ANN are that it can utilize
automatic differentiation tools, such as Tensorflow
(Abadi et al, 2016) and PyTorch (Paszke et al., 2017;
Rahaman et al., 2019), allow researchers make more
simpler methods in solving PDE problems (Chen et al,
2020). In this study, we focus on three methods for
solving PDEs based on ANN model, namely PyDEns
which modifies the DGM, NeuroDiffEq which is the
ANN approximator with TAS applied (Chen et al,
2020), and Nangs which based on the grid points for
training data).

This article is structured by follows. Section 1
discusses introduction of ANN-based methods for
solving PDEs. Section 2 describes the review of
ANN to solve PDEs. In Section 3, the basic theory
behind the three methods is also discussed.
Section 4 illustrates the three methods solve the
heat equation. The numerical results of the three
methods in solving different types of PDEs are
explained in Section 5. Lastly, we conclude our
study in Section 6.

2. Artificial neural networks (ANN)

ANNs were introduced firstly in 1943 by McCulloch
and Pitts (1943). It is inspired by biological neurons

working to perform complex tasks (Schalkoff, 1997).
At the beginning, ANN has been successful handling
several data problems, which then becomes less
popular since left out behind another ML techniques.
In 1980s, with the tremendous increase in comput-
ing power and the amount of data used to training
ANNs, this technique became more popular and was
successfully applied in various practical applications
(Goodfellow, Bengio, & Courville, 2016; Goldberg,
2016; Helbing & Ritter, 2018; LeCun, Bengio, &
Hinton, 2015; Li et al., 2019; Mabbutt, Picton, Shaw,
& Black, 2012; Nielsen, 2015; Shanmuganathan,
2016), including the differential equation problems
discussed in this article.

One of the most popular ANN architecture called
Perceptron, as shown in Figures 1(a) (Haykin, 1999),
consists of multiple hidden layers as visualized in
Figure 1(b) (Khanna, 1990),. However, prior to the
invention of the backpropagation algorithm
(Rumelhart, Hinton, & Williams, 1985), it was not
easy for training perceptron to make a better predic-
tion. In short, backpropagation is a gradient descent
method, which enables the perceptron to give a bet-
ter approximation based on the gradient of the loss
function. Furthermore, the backpropagation algo-
rithm became the most popular ANN optimizer algo-
rithm (Li, Cheng, Shi, & Huang, 2012; Nielsen, 2015).

2.1. Ann model for solving PDEs: overview

ensider the second-order PDE of the form (McFall,
2010),

f(x, LU, :—l; ?Tl: 3271; ?)2_1*:’) =f(x,t), (x,t) €0,
(1)
over the domain Q C R?, with an initial condition
u(x, to) = ug(x), x € ald, (2)
and a boundary condition

u(x, t) = g(x,t), (x,t) € aQd. (3)




Generally, ANN to solve PDE (Equation (1)) is
started by generating the weights to form a linear
combination with the inputs x, t and the bias, b;
This form is then used to compute the hidden layer
as described in Equation (4) as follows

m
hy = Z(W’“X + wyt) + by, (4)
i=1
where h, is the first hidden layer, w,; and w, are the
weights and b, is bias. The second hidden layer, as
expressed in Equation (5), is computed by feeding h,
into it and thus is processed to yield the output
layer.

b= vif(hn) + ba, (5)
j=1 i=1
where v; are the weights, b is the bias, and f is the
activation function of the form

M _ g

e
e e’

flhi) (6)
The activation functions are commonly used to per-
form the diverse of computations between the
layers. Several activation function, such as sigmoid
or logistic, tanh, RelU and Leaky-RelU are often
used (Haykin, 1999; Jagtap, Kawaguchi, &
Karniadakis, 2020). Here, we take the hyperbolic
tangent function (tanh) as it has been proved to
provide the better results compared to other activa-
tion functions (Karlik & Olgac, 2011; Panghal &
Kumar, 2021).

Our aim here is to obtain the approximate solu-
tion Upe (X, t) which is written as follows,

unet(x; f) = Z P;‘f(hz), (?)
=

where p; are the weights of the output layers. To
control the accuracy of the approximate solution, we
compare it with the right-hand side of the PDE
(Equation (1)), and this can be only done by differen-
tiate partially unet(x, t) as follows

O Uper T Ffhy)

k0 ;p; e ®

t:}kuna _ n f}kf(hz)

T (x.t) = ;P;T, (9)
where k=1, 2.

3. Ann-based methods for solving PDEs

In this section, we discuss three methods and com-
pare them in terms of accuracy and efficiency. They
are Pyden, NeuroDiffeq and Nangs. They are differed
by the way generating the training points and the
loss functions.
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3.1. Pydens method

All of ANN-based methods to solve the PDE problem
used an optimizer in order to obtain the minimum
error. The most common optimization method used
is called Deep Galerkin Method (DGM), has been
introduced by Sirignano and Spiliopoulos (2018). The
name of Pydens was obtained from the python
module with the DGM optimizer. Basically, to
approximate u(t, x) in Equation (1) using upe(t, x),
Pydens is modified by applying ansatz in binding
the initial and boundary conditions. The procedure is
explained as follows.

1. Bind the initial and boundary conditions using
ansatz by setting up the equation

Apet(6,t) = mult(x,t) - Upee(x, t) + add(x, t). (10)

Thus, the solution of PDE is approximated by
transforming the ANN output rather than
Unet(X,t) itself. Equation (10) is to ensure the
concatenation of the initial and boundary condi-
tions in Equations (2) and (3), respectively,
whenever the following is verified:

mult(x,to) =0, add(x, ty) = uo(x), (11)
mult,(x,ty) =0, add(x,ty) = ugx, (12)
mult(x,t) =0, add(xt), .o =gx). (13)

xeall

2. Generate m points inside the batches of b, from
the domain (x,t) x Q by using the uniform dis-
tribution v4. Then, for each point (x, t), feed it to
ANN architecture until the optimum output
is obtained.

3. Build the loss function as follows

1 PAnet P Ane

i=1
2
—f(x,r)] (i, i) € b1, wn, (14)

where ¢ is a vector consists of the weights
and biases.

4. Update the trainable parameter ¢ to minimize
the loss function by using SGD optimizer.

3.2. Neurodiffeq method

NeuroDiffeq method applies the trial approximate
solution (TAS) (Chen et al, 2020), that satisfies the
initial and boundary conditions. Recall Equation (1).
The procedure of NeuroDiffeq method is explained
as follows:

1. Generate m x n input points of (x, ) x Q,
wherei=1,2,..,mandj=12..,n and divide
the set points into training and valid-
ation points.
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Figure 2. lllustration of the internal, boundary and initial
points of m =6 x n=17.

2. Build the TAS, uy, as the form of McFall (2010).
ur(xit;) = Alx, ) + F:unet(xir f;)], (15)

where A(x) is a function that satisfies the initial
and boundary conditions and Flune(x; ;)] is
chosen to be zero for any (x; t;) on the bound-
ary. This approach is similar to the trial func-
tion discussed by Lagaris, Likas, and
Fotiadis (1998).

3. Build the loss function (McFall, 2006).

1 m n ~
L) = — SN [L0)p +nL(0)],  (16)
=1 j=1

where @ is a vector consists of the weights and
biases. Noted that the first term is

o2 -
E“’))DE = []-_ (X;, tioUnet, ..o d Unet r?zunef )

oxz ' or?
2
—f(x,r)} (x,t) € Q, (17)

used as the approximate solutions of the PDE
itself, while the second term is

2
[EA S

L(0)ge = [ur(x::0) — g(x.1)]
+ lur(x. to: 0) — UD(X)]EX}@Q- (18)

used as the approximate for the boundary condition.
Here, a weighting factor 5 is used to improve the
performance of the loss function, as appeared in
Equation (16). In practice, it is arbitrary determined.

3.3. Nangs method

Different from both methods explained above,
Nangs method is not required to create trial solution
to minimize the loss functions, instead, it generates
mesh points for the training data. The details of how

Nangs method can approximate PDE are described
as follows.

1. Set mesh points of (x;, r),-) % Q for i=1,2,...m
and j=1,2,...,n inside the domain as visualized
in Figure 2).

2. For each internal point, once feeding process
has been done in ANN architecture, compare
the output with the right side of the PDE using
the following loss function:

Mim Ny

L(Dpe = (m;) ZZ }_(X;u B, Unet, ...,

int =1 j=1

f)zunef i}zum
axt ' o

2
) — f(x, t)} (xt) € Q. (19)

3. For all of the initial and boundary points, the
outputs are compared with Equations (2) and
(3), respectively, by using the following loss
functions respectively:

n

[Unet(x0.7.4:0) — g(x, )] (x,t)

(20)
1 m
L(0), = FZ [Uner(X; to: 6) — to(x)]*x € €.
=1

(21)

4, Simulation of the three ANN-based
methods for solving heat equation

As an illustration of using ANN-based methods to
solve PDEs, the following heat equation is consid-
ered (Burden et al., 2015),

?Tl:—ngl:Z , 0=x<1,t=0, (22)

with ge initial condition
u(x,0) = sin (nx), (23)

and boundary conditions
u(0,t) = u(1,t) = 0. (24)

The analytical solution for this PDE is given by
e '™ sin (nx). (25)

To compare the three methods, we used the
same architectures of ANN which are three hidden
layers consisting 32 neurons each. The loss function
is evaluated up to 100 x 100 points for the unit
inputs (x, t). We also used various number of itera-
tions because each method uses different python
modules. Pydens is run under Tensorflow (Abadi
et al, 2016), while NeuroDiffeq and Nangs are run
under Pytorch (Paszke et al, 2017).




4.1. Pydens in solving PDE heat equation

To solve PDE heat in Equation (22), firstly, we use
ansatz function to bind the boundary and initial con-
ditions. We then randomly generate up to 100 x 100
number of points inside the domain [0, 1]. Finally,
we compute the loss function as in Equation (11).
The complete algorithm for this method is described
in Algorithm 1.

Algorithm 1. Pydens algorithm for solving PDE heat
equation [14]

1. Approximate PDE (Equation (22)) by fitting u(x,
t) with the following function

Anet(x, ) = mult(x,t) - Upe(x,t) + add(x,t).

2. Generate up to m = 100 x 100 points inside of
the batches by, by, bz uniformly and inside of
the (x.t) € [0, 1].

3.  while iter = 0 < maxiteration do
4, for (x,t) € [0,1] do
5. Compute the output

Unet (X, t) Zp; (hs).

6. Substitute unpe(x,t) into Ape(x, t), then dif-
ferentiate using the automatic differentiation
to obtain the following functions

OA et Almult(x, t) - Upet(x, t) + add(x, t)]
——(xt) = . .
ot ot
FAnet A?[mult(x,t) - Unee(x,t) + add(x,t)]
- (x,t) = - .
M x?

7. Compute the loss function by comparing the
Aner with Equation (22), as follows

2

7A
hnet <t (x, 4; 0)

1 m
=33 (B

4 0) —

where 0 is a vector consists of the weights

and biases.
8. end for
9. Apply the SGD to optimize the trainable par-
ameter 0.
10. end while
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PDE heat
Algorithm 2.

in Equation (22) are described in

Algorithm 2. NeuroDiffeq algorithm for solving PDE
heat equation [19]

1. Generate m = 100 x 100 points uniformly in
the domain [0,1], and then divide them into
the training set and the validation set.

2. Construct a TAS which satisfies the initial and
boundary conditions based on Equations (23)
and (24) as follows

ur(x, t:0) = sin (mx) + xt(1=x){1—=1t)Une: (x, t; 0).

Noted here that we used @ to indicate that it
consists of the weights and the biases.

3.  while iter = 0 < maxiteration do

for each (x; t;) do

5. Calculate the output of ANN

Z pif(

6. Substitute u,. into ur and differentiate it to

&

Uper (%, t: 0)

obtain

dur d[sin (mx) + xt{1— x)(1 t) et (%, t: 6)]
S (xt:0) =

f}ur( £0) d[sin (mx) + xt(1— x)(1 t)Uner (X, t: )]
ox’ ax? '

7. Compute the loss function by comparing the
output between Equations (22)-(24) as follows

1 m
= —Z [Loe + nlac)
m i=1

with
u ou? :
oe = |5 (6t 0) = 5T (. 1:0)
and
Lgc = [ur(x, ti; 0) — 0]
+ [ur(x, 0;0) — sin (rrx,)]z.
8. end for

9. Apply SGD optimizer to minimize the
loss function.

10. end while

4.2. Neurodiffeq in solving heat equation

Different from the PyDens method, NeuroDiffeq
uses TAS (McFall, 2006), to approximate the initial
and boundary conditions. Basically, once we set up
the domain [0,1] into 100 100 data points, we
then construct TAS to satisfy the initial and bound-
ary conditions 23 and 24. The details of solving the

4.3. Nangs method in solving PDE heat equation

Nangs method adopts the grid points used in the
discretization process as the training data. It is done
by building mesh points from (x, t) in the entire
domain. Then, split the mesh points into internal, ini-
tial, and boundary points (see Figure 2). The com-
plete algorithm is shown in Algorithm 3.
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Algorithm 3. Nangs algorithm for solving PDE heat
equation [23]

1. Set up (xt)€[0,1] into m=100xn=100
mesh points. Then, split them into internal and
initial and boundary points.

2. while iter = 0 < maxiteration do

3. for each mesh point (x,t) € [0, 1] do
4, Calculate the output as follows
32
Unet(X,1;0) =)~ pif(hs).
i=1

5. Differentiate the output to obtain the fol-
lowing functions

Oinet X Opif(hs)
x t:0) = —_

at ( ) ; at
azuner = {}ijf(h3)
) = L

ax? (.8 0) ; ax?

6. Calculate each internal point, then compare
it with the original PDE of Equations (22) as
follows
L(0) v

DE™ (m—bc) x (n—ic)
m—bcn—ic [ ; 2
M et auz,
e l) — == (x,t:0)] .
2 2 [ ar S0 — 55 (e 0)
I; =1

7. Compute each initial and boundary points
and compare them with the original initial
and boundary condition of the PDE as in
Equations (23) and (24) as follows

1 m—bc_ 5

L(0)0 = e ; Unet (0.t 0) — 0],

1 m—bc_ 2

L(Opgne = -—pe ; [Unee(1,t0) — 0],
= - 2
LO) ptiar :m;[um(xp 0;0) — sin (nx)]".

8. end for

9. Apply the SGD to optimize the weight and

the biases.
10. end while

5. Results and discussion

In this section, the three methods, PyDens,
NeuroDiffeq and Nangs, are compared in terms of
the accuracy and efficiency by solving several three
types of PDE, namely elliptic, parabolic and hyper-
bolic (Burden et al., 2015). We also compared all
three methods performance with the classical
method which is FDM. All of the results are shown
in various tables and figures.

5.1. Simulation results in solving PDE
heat equation

The comparison methods for solving PDE heat equa-
tion as in Equations (22)-(24) are recorded in Table 1.

According to Table 1, Pydens was able to solve the
problems most accurate between the other ANN-
based methods. For instance, the loss values of
Pydens when using 25 x 25, 50 x 50 and 75 x 75 train-
ing data are, respectively, 2.6 x 107, 7.59 x 107® and
8.52 x 1075, or about 84, 87 and 72% more accurate
compared with NeuroDiffeq and Nangs. In contrast,
for 100 x 100 training data, the NeuroDiffeq gives the
most accurate value of loss than the other methods,
with the loss value 7.02 x 10°%, compared with
7.91 x 107° and 8.74 x 107%, or about 13 and 20%,
respectively. While in comparison with the classical
method, FDM give better loss value only in 75 x 75
and 100 x 100 training data, which is, respectively,
given by 2.31 x 10 and 5.56 % 10 2 (Figure 3).

In terms of the computational times, Pydens also
gives the shortest time compared with the other
two ANN-based methods, it spent 53seconds only
when using 25 x 25 training data, whereas 65 and
5785 needed for NeuroDiffeq and Nangs, respect-
ively, for using the same training data. The higher
training data of the PDE problem, such as 50 x 50,
75 x 75 and 100 x 100, need more times for the
three methods. However, Pydens is still the winner
between them. While in comparison with classical
method, FDM is still gives the shortest time com-
pared to ANN-based method with less than 10s in
all problems. The results are more clearly seen when
we visualized the analytical solution as in Figure 3
and the comparisons via Figures 4-6.

According to Figures 4(b)}-6(b), all three methods
almost give similar result from the analytical solution.
However, from the other perspective as can be seen
in Figures 4(a)-6(a) when all training data are shown,

Table 1. The performance of PyDens, NeuroDiffeq and Nangs methods for solving PDE heat equation.

. FDM Pydens NeuroDiffeq Nangs
Training data
Time (s) Loss Time (s) Loss Time (s) Loss Time (s) Loss
25% 25 287 3.04 % 107* 53 26x 1077 65 1.52 % 1072 578 241 %1073
50 % 50 6.81 267 x10°° 116 7.59 x10°° 231 297 x10°° 602 549 % 107"
75 %75 5.54 231 % 107° 203 8.52 % 10°° 480 2.25 x107° 726 461 x 10°°
100 % 100 5.49 5.56 % 10°% 386 7.91 x10°% 943 7.02 %107 956 874 x 107
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Figure 4. Comparison analytical and approximate solutions of PDE heat equation by using Pydens method.
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Figure 5. Comparison analytical and approximate solutions of PDE heat equation by using NeuroDiffeq method.
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Figure 6. Comparison analytical and approximate solutions of PDE heat equation by using Nangs method.
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Figure 7. Comparisons of the loss values and the computational times between the ANN-based methods for solving heat
equation at all training points.

all methods show a little bit different from the analyt-
ical solution. Especially in lower training data, different
results give in the 100 x 100 training data when all
methods are closer to the analytical solution.

The comparison of all ANN-based methods in
terms of the loss values and the computational times
are shown in Figure 7. As we can see here that the
higher numbers of training data used for solving the
PDE heat would affect the performance of the meth-
ods. It is appeared in NeuroDiffEq and Nangs meth-
ods. For Pydens method, however, it just occurred
when using the lower numbers of training data,
namely 25 x 25 and 50 x 50, whereas greater than
that, the Pydens performance slightly worse.

For further analysis of the performance of three
methods, it is also shown in Table 2, where it illus-
trates all of the results of loss values of the variation
number of hidden layers, and neurons per layer.

It can be seen from Table 2, in general, when the
number of layers and neurons increased, the predic-
tion accuracy also improved. However, more com-
plex ANN architecture causes the computational
time increased. Hence, determine the best ANN
architecture is crucial.

5.1.1.  Simulation results in solving PDE
wave equation

Wave equation is one of the hyperbolic PDE and
contains the second-order partial derivatives (Guo
et al., 2020). Wave equation has been applied in
many sciences fields, such as seismic wave propaga-
tion and acoustic wave propagations (Gu, Zhang, &
Dong, 2018; Kim, 2019; Li, Feng, & Schuster, 2017).
The wave equation is described as the following
equations [3]:




u r’)pu

R D <x < >
92 ‘o , 0<x<1,t=0, (26)
with initial conditions
u(x,0) = sin (mx), (27)
au
Bt (x,0)=0, (28)

and boundary conditions

u(0,t) = u(1,t) =0, (29)

Table 2. The loss values of PDE Heat simulation for differ-
ent number of layers and neurons.
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The analytical solution is given as follows
u(x,t) = sin (nx)cos (2xt)., (30)

The simulation results of the three methods to
solve the wave equation are shown in Table 3.

Similar to the previous results, in comparison with
other ANN-based method, Pydens provides better
performance in solving PDE wave for using 25 x 25
training data with a loss value of 2.80 x 1073, com-
pared with 4.33 x 1072 and 1.84 x 107" for, respect-
ively, NeuroDiffeq and NAngs methods. It is more
accurate about 94 and 98% than NeuroDiffEq and
Nangs, respectively. Furthermore, for the remaining
of using training data, NeuroDiffEq consistently per-

Methods Layers neurons 32 64 9 formed well, as can be seen in Table 3, the loss val-
Pydens 3 79x10% 98x107% 49x10° ; -5
p 1%10° 94x10° 8110 ues for . NeuroDiffEq are 2.38 x 1? K and
5 9.4x10% 97x1077 66x10° 1.01 x 107 for 75 x 75 and 100 x 100 training data,
MeuroDiffEq 3 70x107% 1.2x107% 12x10°% : ;
a 85 %106 3B5x10-5 410 respectl\.rely.f, or almost twice better. than Pydens and
5 48%10°% 65%10°7 92x%107 Nangs. While compare to the classical method, FDM
Nangs 3 B.7x107% 28x10% 20x10° oo performed better at 25 x 25 which is 2.50 x
4 95x 107 46x1077 1.8x10°% _): P . 5 '
5 24%10% 14x107% 21x107 10 against  1.21 x 10 that belongs to
NeuroDiffEq. Figures 9-11 below support all
Table 3. The performance of the three methods for solving PDE wave equation.
FDM Pydens NeuroDiffe Nangs
Training data Y al ng
Time (s) Loss Time (s) Time (s) Loss Time (s) Loss
25% 25 361 1.01 %1073 61 2.82 %1077 81 4.33 % 1072 624 184 % 107!
50 % 50 4.39 250 % 107" 150 2.43 107 284 1.21 % 1072 707 7381072
75% 75 534 111 %1074 317 7.84 % 107 516 238 % 10°° 875 185 x 1072
100 x 100 7.06 6.21 % 10°° 530 3.42 % 107 1274 1.01 % 10°* 1094 163 x 1072
0.75
T 100
+0.50
=075
025
0.00
=0.25
-0.50
-0.75

Figure 8. Analytical solution of wave equation.
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Figure 9. Comparison analytical and approximate solutions of PDE wave equation by using Pydens method.
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Figure 10. Comparison analytical and approximate solutions of PDE wave equation by using NeuroDiffeq method.
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Figure 11. Comparison analytical and approximate solutions of PDE wave equation by using Nangs method.

performances of Pydens, NeuroDiffEq and Nangs
methods for solving the PDE wave. It can be seen
that Pydens curve get closer to the analytical curve
for the lower dimension, whereas NeuroDiffEq curve

gets closer to the analytical curve (Figure 8) in the
higher dimensions.

In Figures 9(a)-11(a), we can see that NeuroDiffEq
closer to analytical solution from 50x50 to
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Figure 12. Comparisons of the loss values and the computational times between the ANN-based methods for solving wave

equation at all training points.

Table 4. Wave simulation results with different number of layers and neurons.

Methods Layers neurons 32 64 9
Pydens method 3 3.42 % 1077 1.77 % 1077 215 % 1072
4 2.46 % 107 59%10°° 392 x 1072
5 1.04 % 107 2.6 %1072 264 % 1072
MeuroDiffEg method 3 1.0 1072 1.9 10°F 50 107
4 85%10°% 3.6 % 10°% 212 x 1071
5 19%10°3 81x10°3 28x10°
Nangs method 3 16107 2.1 % 107" 23 %107
4 51 %107 3.2x 107" 1.0 x 1074
5 1.18 % 1072 7.0 1073 27 % 107

100 x 100 training data compare to the other
Pydens in 25 x 25 training data is the best; however,
the other training data gives no significant progress.
Meanwhile for Nangs, all of the training data result
is not close to the analytical solution.

Figure 12 above shows similar trends with the
one in the previous section, where Pydens took the
shortest time with about 61s for 25x 25 training
data, compared with 81 and 1062s for NeuroDiffeq
and Nangs, respectively. However, NeuroDiffEq gives
better results for using greater numbers of training
data than the other two methods. The simulation
results with different ANN architectures are shown in
Table 4.

5.1.2. Simulation results in
Poisson equation

Poisson is applied in many modern technologies
(Aggarwal & Ugail, 2019) and in a wide area of prob-
lems from simulating fluid flows (Xiao, Zhou, Wang,
& Yang, 2020), modelling gravitational and electro-
static fields (Blakely, 1996), surface reconstruction
(Kazhdan, Bolitho, & Hoppe, 2006), image process-
ing (Pérez, Gangnet, & Blake, 2003), as well as other

solving

applications in geometric design (Amal, Monterde,
& Ugail, 2011; Ahmat, Castro, & Ugail, 2014
Chaudhry et al, 2015; Elmahmudi & Ugail, 2019;
Jha, Ugail, Haron, & lIglesias, 2018; Shen, Sheng,
Chen, Zhang, & Ugail, 2018; Ugail & Ismail, 2016).
The PDE Poisson, as its anaytical solution is dis-
played in Figure 13, has the form of Elsherbeny, El-
hassani, El-badry, and Abdallah (2018):

Pu Pu ]
E_FW = 10(x—1) cos (5y)—25(x—1)(y—1)sin (5y),
0<(xy) =T,
(31)
with boundary conditions
u(0,y) = (1-y)sin (5y),
Y Y Y (32)

u(ly) =uly,0) =ulx, 1) =1.

The analytical solution for this PDE is given as
follows
u(x,y) = (1—x)(1—y) sin (5y) (33)

Table 5 shows detailed information of the three
methods in solving Poisson equation above.
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Figure 13. Analytical solution of Poisson equation.

Table 5. The performance of the three methods for solving Poisson equation.

. FDM Pydens MeuroDiffeq Nangs
Training data
Time (s) Loss Time (s) Loss Time (s) Loss Time (s) Loss
25% 25 341 1.14 % 107 53 169 x 1071 105 3.42 % 1077 544 292 %1077
50 % 50 4.34 3.46 % 107 126 282 % 10°* 391 281 %108 653 443 x 10
75% 75 11.14 4.87 % 107 250 216 x 107 656 1.66 % 107° 760 121 % 107*
100 » 100 12.26 1.30 107 423 223 x107* 1177 417 % 107" 97 583 % 107°
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imate solutions with all training data when x = 0.2 polsson equation training data

Figure 14. Comparison analytical and approximate solutions of PDE Poisson by using Pydens method.

According to Table 5, all methods showed a  25x 25 numbers of training data and above. This
good performance, NeuroDiffEq, however is still number is 99.8, 99, 100 and 100% more accurate
the most accurate with 3.42x 1077, 2.81 x than the other methods. This trend is clearly seen
107,166 107 and 4.17x107'° for wusing in Figures 11-13.
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Figure 15. Comparison analytical and approximate solutions of PDE Poisson by using NeuroDiffeq method.
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Figure 16. Comparison analytical and approximate solutions of PDE Poisson by using Nangs method.
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Figure 17. Comparisons of the loss values and the computational times between the ANN-based methods for solving Poisson
equation at all training points.




246 @ D. A PRATAMA ET AL

Table 6. Poisson simulation results with different number of layers and neurons.

Methods Layers neurons 32 o4 96
Pydens method 3 22x107* 24 %107 1.8 107"
4 1.9x10°" 30x 107 32x10"
5 31% 107 2.7 %107 14107
NeuroDiffEq method 3 4.2 %1070 2.7 % 10710 4.4 % 10710
4 4.4 107" 33% 107" 13107
5 6.0 x 107" 51x 107" 2.3x107°
Nangs method 3 58x107° 1.2x107° 141078
4 1.8 10°° 1.1 %1078 6.1 10°%
5 13x10° 7.7 x10°¢ 56%10°

In Figure 14, when we see the overall result,
Pydens failed to approximate the boundary condi-
tion well. That is the reason why even Pydens show
a good results at x=0.2, the overall error is not
good enough. NeuroDiffEq in Figure 15 is the best
in this case when all of the training data result is
almost similar to the analytical solution. Meanwhile
for Nangs in Figure 16, only 25 x 25 training data
that not show a good result.

The performances of the three methods are sum-
marized in Figure 17, when it can be seen that the
NeuroDiffEq is the most accurate method to solve
the Poisson Equation (31). However, this method is
the slowest one compared with Pydens and Nangs
methods, with 1177s for using 100 x 100 training
data. Pydens, in contrast, took the shortest time
which only 53s for 25 x 25 training data, compared
with 105 and 544 s for NeuroDlIffeq and Nangs meth-
ods, respectively. Similarly, when using 100 x 100
training data, Pydens needs 423s only, compared
with 1177 and 967s for the other two methods,
respectively. The simulation results for using differ-
ent ANN architectures are recorded in Table 6.

5.2. Discussion

Overall, can be said the approximation solutions of
PDE heat, PDE wave and PDE Poison equation using
NeuroDiffEq give the better and stable accuracy than
Pydens, Nangs, and even classical method FDM. This
observation can be seen in Tables 1, 3 and 5,
respectively. However, in the evaluation of the com-
putational time, the FDM still give the shortest time
compared to all ANN-based method. While compar-
ing between the three ANN-based methods; this
method took the longest when we added more
training data. Furthermore, Pydens is the fastest
method in solving all given problems. Unfortunately,
the performance of this method is disappointing
since more training data points do not affect its
accuracy. Meanwhile, Nangs gives an unpredictable
expectation results with its position is in the middle
between the two methods. This method, in our
point of view, can potentially give the better per-
formance when solving the variety of PDE problems.
The readers can see all the performances of the

three methods through Figures 7, 12 and 17 which
clearly indicate the conditions explained above.

To further investigation of the performances of
these three methods, we also ran the simulations
that can be seen in Tables 2, 4 and 6, respectively.
The results showed that to improve the performance
of the three methods, we can also change the ANN
architectures by adding more numbers of layers and
neurons. However, these options will increase the
computational time. Another options are to increase
iteration and change the optimizer.

6. Conclusion

We have discussed Pydens, NeuroDiffEq and Nangs
methods to solve the heat, wave and Poisson equa-
tions of the second order of PDEs, and also com-
pared with classical method. The training data used
ranging from 25x 25 to 100 x 100 points. We com-
pared the accuracy as well as the time efficiency of
each method. There are advantages and disadvan-
tages of each method based on our experiments
result. In term of the accuracy, NeuroDiffEq consist-
ently produced the lowest loss values compared
with Pydens, Nangs and FDM. To get better loss val-
ues, the training data points need to be increased
though. However, it affected the longer computa-
tional time. On the other hand, the classical method
FDM is still given the fastest method compared with
the others. Interestingly, for Nangs method, although
this method is not the fastest nor the lowest loss
value, but it potentially produces the better loss val-
ues for solving high dimensional problems. It can be
seen on Figures 6, 10 and 14 that the training data,
the computation times, and the trend of loss values
are potentially overtaken by NeuroDiffEq's perform-
ance on high training data problems.

For future work, we recommend solving the
smaller dimensional problems using the Pydens
method because this method shows good perform-
ance. For higher dimensional problems, we recom-
mend the NeuroDiffEq or Nangs methods. However,
for NeuroDiffEq, we can see that this method is risky
when using high amount of training data, affecting
computation time. While for Nangs, although it does
not perform very well, it is still capable of providing
better performance and shorter computation time




than NeuroDiffEq. Adjusting the ANN architecture,
such as increasing the number of layers and neu-
rons, can also improve the performance of ANN-
based methods. However, the more complex the
ANN architecture, the more expensive the method.
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