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Abstract. Changes in land use need to be assessed for future needs. One of them is in efforts to
mitigate natural disasters. This research goal is analyzed the correlation between changes in
land use land cover on the discharge in the river, in the range between 2001-2017. This
research located at Brantas watershed, which is the largest watershed in East Java. It has an
area of approximately 11,988 km®. There are 24 million people who occupy this area and this is
one of the national strategic watersheds. SHETRAN is modeling that is based on physical
distribution. Reviewing spatial aspects, hydrological and climate data makes SHETRAN is
comprehensive model. The method used is to combine input data of the digital elevation
model, evaporation rate, rainfall data, land use land cover data, and soil properties classified
using the British system. The results obtained for land use, the biggest change is for the grass
area which increased by 80.49%, the forest area increased by 22.37%. As for river discharge,
modeling results indicate that river flow rates upstream range 6—30 compare to downstream is
between 1200-2200 meters’/second.

1. Introducgipn
In the tropics,%impact of land use and climate change on watersheds can changgjthe flow volume to
be greater [18] due to large energy input and faster anthropogenic changes [12]. The most significant
factors affecting surface runoff are changes in forests, dry agriculture, and urban areas. V‘%h
increasing urbanization, intensification of industry and agriculture, increased runoff will increase the
flow of nutrients and sediments to water bodies [33]. Uncontrolled logging makes forest vegetation
from a hydrological point of view unstable. In a previous study, logging action could influence the
impact of the 100-year return period rain. Land use evaluation is needed within a certain period in
order to determine trends in natural change that can be used for mitigation needs in the future [32].

In addition to land use analysis, it%also necessary to develop a more up-to-date hydrological
model to be implemented in Indonesia. There is a long history of research that has been carried out on
automatic generation of river networks from digital elevation models (DEM) [10]. The basic method
for extracting river channel networks then uses flow direction to calculate upstream contribution areas
for each square grid [22]. Models are needed that can define channels to simulate hydrological
mifffation needs.

ETRAN is a physical-basedgfistribution model (PBDM) for water flow, sediment and solute
transport in river catchments [2]. Includes hydrological components for simulation: interception of
rainfall by vegetation; evaporation and transpiration; snow formations and melted snow; land flow and
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channel; subsurface flow varies saturated; and river/aquifer. SHETRAN solves glysics-based partial
differential equations, for flow and transportation on rectangular finite elements.

The purpose of this study is to develop a modeling that was first carried out in Indonesia. The
analysis carried out is an investigation of changes in land use that occurred on the results of
SHETRAN for river discharge modeling. The research object chosen in the Brantas catchment area,
East Java because in the recapitulation of existing data, the cities and regencies which include in
Brantas catchment area account for approximately 50% of the total impact of buildings and humans
due to flooding in East Java, and Brantas watershed is a watershed that is included in the national
strategic area.

2. Data and Study Location

Brantas watershed chosen because it is one of major watersheds in Indonesia, which watershed area
around of 11.988 km> or about 25% of East Java Province. Located at coordinates 110°30' East to
112°55" East and 7°01" East to 8°15" East. Covering 8 cities and 16 districts, upstream location is in
Kediri Regency and the downstream is in Surabaya City.

Brantas watershed has great potential for various sectors, such as Surabaya city which is center of
government in East Java, Kediri city which is the city with third highest Gross Regional Domestic
Revenue, industrial and plantation cities in Batu and Malang, tourism and cultural cities in Ponorogo,
and also other cities and districts. Brantas watershed also has a significant role in supporting East Java
Province as a national food barn. In 2018, East Java Province will still be the backbone for rice, com
and cassava stockpiles by contributing + 19.3% of the national food stock needs. In Brantas watershed
there are also a total of 10 Irrigation Areas included in the Brantas watershed with an area around
113,368 Ha.

In terms of geography, Brantas watershed is crossed by volcanoes and mountains, which results in
very varied topographic conditions ranging from flat, hilly, valley and mountainous. This causes the
available land can not be fully cultivated to improve the welfare of the community, because there must
be a protected area that must be protected and preserved to maintain environmental balance and
prevent the recurrence of environmental damage, especially landslides and floods due to reduced land
cover.

£ | Logend
s [
[ e,

- e e

G5 20 3 a0

- — m— T
0 &N 2 2

Figure 1. Research Location
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3. Method

Hydrofigical model SHETR AN was utilized to perform runoff simulations for the Brantas Catchment
Area. SHETRAN is a physically-based, distributed, deterministic, integrated surface and subsurface
modelling system, designed to simulate water flow, sediment transport, and contaminant transport at
the catchment scale ([2];[3]). SHETRAN has a modular design, in which each module or component is
used to represeggy the different physical processes of the hydrological cycle in each part of the
catchment. The methods used in SHETRAN to simulate the processes of its water flow component
include Potential Evapotranspiration (PET), Actual Evapotranspiration (AET), Interception, Overland
ru , Infiltration/subsurface flow, River flow routing.

¢ catchment is conceptualized as an ensemble of columns and networks of stretches of channels,
called river links. Each column is a stack of computational cells containing information of land
cover/vegetation type at the top and sequential depth of soil/s horizons underneath it. Each river link
gns along the edge of column tops. SHETRAN works out the water balance in each column.

patially distributed data, including a digital elevation modgl, the soil and land use map were used in a
raster format with a grid resolution maximum 200 % 200. The net outcome of hydrological processes
at all the columns is @ hydrological behaviour of the catchment.

In thisgrpdel, the partial differential equations for flow and transport are solved by finite difference
methods. The basin is discretized into a horizoffal orthogonal river network and at each square grid in
the vertical direction by a column of layers. A network of river links runs aung the edges of grid
squares representing the river network. The model explicitly incorporates spatial heterogeneity in
topographm;oil, land use and catchment properties with its grid-column structure. The model
represents coupled surface/subsurface flow, allowing overland flow to be produced by rainfall excess
over infiltration and by upward saturation of the soil column [4].

The interception of rainfall is represented by the modified Rutter model. The actual
evapotranspiraf@f® is calculated from Potential Evapotranspiration (PET) as a function of soil water
potential. The ditfusive wave approximation of the St. Venant equation governs the overlan d
channel flow processes, while the Richards and Boussinesq equations give the one—Qensional ow
in the unsaturated zone and two-dimensional flow in the saturated zone, respectively. The river aquifer
int@mction is calculated using the Darcy equation.

e procedure for tiggautomatic generation of the river channel network in SHETRAN is different
than typical approach. Therefore, the following procedure for the automatic generation of the river
channel network in SHETRAN has been developed. Initially this follows a typical approach [8]: the
pits in the DEM are removed, the flow directions are calculated and this gives an upstream
contributing area for each grid square, and a procedure for channel extraction is defined.

In this study, the main steps undertaken from beginning to end are:

a) GIS processing to get ASCII files that will form coordinates as a basis for making maps on

SHETRAN

b) Processing matrix as a record for input data that becomes a value for the output data formed
¢) Configure XML to run SHETRAN model

d) Running SHETRAN to the standard version to get computational correction

¢) Extract SHETRAN data results to be further processed for presentation of research data

4.  Results and Discussion
4.1. Land Use Land Cover Change

nd use and cover data used is derived from MODIS which is a level 3 combination product from
Terra and Aqua satellites (MCDI12Q1). Provides information on annual land cover types with
sinusoidal projections and spatn resolution of 500 meters, in HDF-EOS format, with an observation
series from 2001 to 2017. The MCD12Q1 product is able to identify the geographical distribution of
17 land cover classes using a scheme defined by the International Geosphere Biosphere Program
(IGBP). One MCDI12Q1 product has several data payers, including the type of land cover, assessment
layer and quality flag for each type of land cover. In this study, a similar approach was carried out by
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classifying 17 types of land cover from MODIS MCDI12Q1 data into 7 categories that have been
classified for the SHETRAN program, shown in Table 1.

Table 1. Conversion MODIS Classification to SHETRAN LULC Classification

MODIS Classification SHET “lassification
Croplands, Natural Vegetation Mosaics rable
Permanent Wetlands, Barren, Water Bodies Bare Ground
12 Grasslands Grass
Deciduous Needleleaf Forest, Deciduous Broadleaf Forest, Deciduous Forest
12 Mixed Forest
Evergreen Needleleaf Forest, Evergreen Broadleaf Forest Evergreen Forest
Closed Shrublands, Open Shrublands, Woody Savannas, Shrub
Savannas
Urban and Built-Up Lands Urban

Table 2 shows the results of an analysis for 17 years in the Brantas catchment area. Two types were
degraded, it is an arable 9.17% and deciduous forest 11.26%. While those who experienced an
increase there were five types, namely bareground 2.54%,; grass 80.49%; evergreen forest 22.37%;
shrub 10.77%; urban 8.74%. If calculated from the entire area of the Brantas catchment area, the
changes in each type of LULC range from 0.06% to 5.38%. The arable area has become a changing
area, be it an urban, shrub, or evergreen forest area. The addition of green forest areas that bring a lot
of benefits, including groundwater storage that can affect river discharge.

Table 2. LULC change over the past 17 years (2001-2017) in Brantas Catchment Area

LULC 2001 2017  Change  %Change of  %Change of % LULC
(km*)  (km’) (km?) 2017 Total Area of Total
Area
Arable 8118 7373 -745 9,17 -5,38 55,8
Bareground 316 324 8 2,54 0,06 2.3
Grass 51 93 41 80,49 0,30 0.4
Deciduous 73 65 -8 -11,26 -0,06 0,7
Forest
Evergreen 1334 1632 208 22,37 2,15 9,2
Forest
Shrub 2921 3235 315 10,77 2,27 23,8
Urban 1039 1129 91 8,74 0,66 7.8
Total 13850 13850 100

In Figure 2 below, shows the percentage of each type of LULC SHETRAN to the total area of the
Brantas watershed. Visible changes in each type of LULC every year in 2001 to 2017.
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Figure 2. LULC change from 2001-2017 at Brantas Catchmen Area

4.2, River Discharge Analysis Based on SHETRAN Model
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Figure 3. (A) Maximum river discharge, and (B) Average river discharge based on SHETRAN

moadel (source : author)
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In figure 3 (A), a very clear difference can be seen from the selected sample points. Discharge in the
downstream area is different to more than 1000 meters /second when compared to upstream area.
Sample points that are on the right and left side of the watershed also produce a discharge that is not
too large. In line, figure 3 (B) show average river discharge produced by the SHETRAN model also
shows a vast difference of more than 150 meters’/second. In maximum flow analysis, discharges
produced showed high results in 2004, 2010, 2015, and 2017. It is not much different from the data on
rainfall and flood events.

The highest river discharge resulted by SHETRAN model in upper stream is 30,66 meters’/second
in 2016, which the lowest is 6,90 meters’/second in 2008. In the outlet of Brantas catchment area, the
highest river discharge resulted 2197,73 meters’/second in 2010, and the lowest is 1230,87
meters*/second in 2001. Still in the downstream area, the debit in the middle sample point obtained a
large discharge, namely the lowest maximum discharge of 888.97 meters’/second in 2006 and the
highest maximum of 1600.15 meters’/second in 2017. For the right sample point the maximum
discharge results the highest is obtained 27.63 meters'/second and the lowest maximum discharge is
8.77 meters’/second. While the left sample, the results obtained 129.07 meters’/second for the lowest
and 303.96 meters*/second for the highest maximum discharge, namely in 2002 and 2010.

For average discharge, from 2001-2017 shows a value that tends to stagnate, except in 2010 which
found a significant increase in average discharge. Reviewing average daily discharge generated every
year, the results obtained for outlets ranged from 200-350 meters'/second, midpoint 150-250
meters”/second, and for the right, left, and upstream samples ranging from 0.1-1.8 meters’/second.
The highest was in 2010, the average increase in debit at outlets and middle samples reached around
15@ineters”/second.

owever, it should be noted that in actual cases, the sensitivity of a particular watershed to runoft
generation is also impacted by other factors such as magnitudes of land use change, soil conditions,
and different climatic factors [1].

5. Conclusion

Results of land use processing, obtained five types that have increased. The LULC types that have
increased in sequence are: shrub, evergreen forest, urban, grass, and bareground. While those
experiencing reductions along with the size of the area deficit: arable, and deciduous forest.

The most dominant area in the Brantas watershed is the arable type with an average of + 55.8% of
the total Brantas watershed area, then shrubs of + 23.8%; evergreen forest & 9.2%; urban + 7.8%; bare-
ground + 2.3%; deciduous forest £ 0.7%; and grass + 0.4%. Results of SHETRAN model on river
discharge at each point show fluctuations because LULC every year are always changes. In 2010 or
2016, there was no significant forest growth in downstream location, while urban areas continued to
increase. This result causes a lack of control over river discharge due to insufficient availability on
absorption land. Meanwhile, the amount of discharge occurs when the condition of the largest
deciduous forest like in 2014, or evergreen forest has not been degraded in a large amount like in
2001. It shows that good vegetation affects groundwater storage which will have an impact on surface
water.
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