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Abstract. Stochastic precipitation simulation is of great impcrlau for
the design and operation of water infrastructures. The objective of this
research is to develop a stochastic simulation method for daily
precipitation. Daily precipitation generation needs special treatment
because of many zero values appearing due to dry days. It is implemented
for 26 rain gauge stations located in Singapore. This research follows three
steps. First, a hidden autoregressive (AR) model is fitted to time series data
at each gauging station using a power transformation. Zero precipitation
amounts are treated as censored values of the power-transformed Gaussian
process. The hidden AR has four parameters: mean, autocorrelation, power
transformation, and variance of error. Second, a conditional multivariate
Gaussian distribution is fitted to residuals of the AR models and used to fill
in censored values corresponding to errors of the AR at dry events. Third,
stochastic simulations from the created spatial-temporal model are carried
out. Single and multi-site statistical characteristics such as empirical
distribution function, cross-correlation coefficient and entropy are used for
evaluation of the model. The results of this research show that the
developed model produces synthetic precipitation amounts having
statistical characteristics very similar to the observed ones.

1 Introduction

Stochastic precipitation simulation is of great importance for the design and operation of
water infrastructure projects because precipitation is one of the key inputs of the hydrologic
systems analysis which is required in every step of projects such as planning, design,
operation, and monitoring. The basic idea of a precipitation generator is to reproduce long
synthetic precipitation data series which preserve some important statistical characteristics
of observed precipitation data not only at single station such as mean value, variances,
median, minimum and maximum values and some important quantiles of rainfall amounts,
but also at multiple locations such as interdependence between two stations at different
locations, namely Pearson and Spearman rank correlations of precipitation values.
Recently, the entropy-based measure is {0 used to evaluate the performance of
precipitation simulations [2,6]. It provides a measure of dispersion, uncertainty, disorder
and diversification of precipitation [5].
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Daily precipitation model development is more demanding and needs special treatment
because dailyf@recipitation has unique characteristics including zero-inflated data due to dry
days. Unlike annual and monthly precipitation amounts which can be modelled with simple
autoregressive moving average (ARMA) processes, daily precipitation amounts cannot be
directly modelled by the ARMA model [2,3]. The main difficulty with modelling daily
precipitation amounts arises from the intermittent property of precipitation values both in
space and time. Dry days with high probability due to zero-inflated data can be modelled by
a discrete distribution and the rainfall amounts on rainy days at a selected location can be
described by a continuous distribution [1], but the continuous distribution is usually
skewed.

Two additional contrasting properties that make [E@veloping daily precipitation model
more challenging are the long memory visible ilﬁ autocorrelation function and the
sudden changes in the series [3]. Long memory refers to a not negligible dependence
between distant observations in a time series [7]. Precipitation intensities itself follow
exponential decay which indicates that precipitation series can be change rapidly.

The purpose of this study is to develop daily precipitation models at multiple locations
incorporating both temporal and spatial dependencies. Zero-inflated data for dry days are
treated as latent variables [flhd estimated using the MCMC approach. The models are
implemented in Singapore. The paper is divided into five sections. After the introduction,
the spatial and temporal model developments are described in secticffl2. Section 3 presents
the data and study location. Section 4 explains the simulation steps. The empirical findings
of the investigation in Singapore are discussed in section 5. In the end, a summary of the
results is given in section 6.

2 Model developments

2.1 Temporal model

An autoregressive model (AR) with lag-1 is used to model mixed daily precipitation
occurrence and amount simultaneously. The general equations for this model are defined as
follows.

Y, =p+r.Y, +g, (D
Where Y, is daily precipitation at time t, Y., is daily precipitation at time t-1, uis the mean
parameter, » is autocorrelation, and & is the residual error of AR (1) process at time ¢. The
residual error & is independent, identic, and normally distributed (white noise process). By
taking & and putting on the left side and also putting Y, on the right side, the equation (1)
can be written in a different formula.
€, = Yl _[P+ r‘Y‘l-l} (2)
Since & follows the normal distribution, the probability density function (PDF) of & can be
written as a simple normal distribution function.

]exp[_ L, —mean}z} (3)
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LY . ~ . . . ~ -
Where o is the variance of the residual error &, & is the random variable of residual error
which is equal to ¥i-(gtr. Y1) and the mean is zero. By substitution & with Y-(zetr.Y),
equation (3) can be written in a different formula.

|
\2no’

Since the daily precipitation ¥, follows the linear regression model AR (1) process, ¥} also
follows the Gaussian process due to the assumption that its errors are white noise processes.
In fact, the daily precipitation values present a skewed distribution characterized by zero-
inflated data. To model the zeroes in the AR (1) process, a latent variable approach is
employed and zeroes are considered as censored values of realizations in the negative part
of the distribution whereas non-zeroes precipitation values are considered the positive
realizations of a random wvariable. For the true daily precipitation (¥r=0), a likelihood
function of density function derived from equation (4) can be expressed as follows.

2a°

l'f‘f})=[ Jexp[—%{‘r} —(u+ryY, )~ 0}-’} (4)

L[:,Lt.r,rf): ﬁﬁcxp[—%{\’__—{;;+ .Y, ]]}lj| (5)

Since negative values of Y; are considered as censored values, the likelihood function is
modified. The likelihood function is used not only for parameter estimation purpose but
also for filling in censored values.

LLu._ r.,r;g.,‘t’kl._‘(’u._...‘(’u}zn ! exp|— 13 (Y, —(u+rY, ) (6)
-2 4 2ne” 20°
Y corresponding to variables for which is just known ¥; < (). These correspond to no rain
observation.

2.2 Power transformed AR (1) model

Daily precipitation amounts follow the skewed process instead of the normal distribution
[1]. The skewed precipitation amounts are transformed to normality by using a beta
power transformation. This beta f power transformation is applied only to positive rainfall
(Z:=0) values. In the following, rainfall values are represented by Z, whereas Y, represents
the underlying transformed into normalised AR By considering the beta [ power
transformation, the transformed rainfall amount values are plugged into the AR (1) model.

S
v =JZp, forZ >0 (7)
Yt, for Zt =10

1

The probability density function of each residual error & as a function of daily precipitation
Z; 1s changed into equation 8 and 9 due to the beta  power transformation.

ff\’,}:[\!—)l_!]exp{—%[z?,i—(,u+r.‘f’,,|}]3} z!;" JforZ, =0 (8)

f[YJ ) - (#1 cxp[_ L’[YJ - L‘” +r. Yl-l })2 Ffur Z1 = D (q}
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The likelihood function of equation & and 9 can be expressed as shown in equation 10. The
likelihood function is used for estimating parameters on the basis of rainfall values Z; > 0
and latent variables ¥; corresponding to Z,= 0.

) Nppas I ! ¢ 1 vy 2 rZ_I_|
be.r.[i.csl.‘fk, ..... Yujz ——exp| - —— lZ, B —[,c.-+r Y, ﬁ” L L
;:21;11\'211:-:73 20 't -ﬁ
Nneg 1
1 : (10)
e -, ey, ) |
;:l;:!m.l'zﬂw1 2e” d
Where Nu.. = {k;...k;} corresponds to the times for which no rain was observed
(Z=...=Zy=0). This likelihood function is used both for the purpose of parameter

estimation and also for filling in censored daily precipitation by including as arguments of
the likelihood function of latent variables Yiy,....Ywcorresponding to dry days, Zu=Zu=0.

2.3 Spatial gaussian model

Residual errors obtained from times series model AR (1) are modelled spatially by spatidii’}
Gaussian distribution. A vector-valued random variable X =[x,,X,,..,X,] 1s said to have a

multivariate normal (or Gaussian) distribution with mean vector 1 and covariance matrix X
denoted b}’X:[XI X, X, ]m N[H‘E), if its PDF is given by this following formula.

12

['}zp[zl(x —p)z {x—u)] (b

det(Z)

b | e

plx:p E){'—]

2

Where X is a d * d symmetric, positive definite of a covariance matrix, u 1s expected value,
d is dimensional multivariate df}Gaussian model, T is matrix transpose operator, and d is
the multivariate dimensional. In order to estimate parameters g and Z the likelihood
function is wused. Given an independent and identically-distributed (iid) sample
X:{XI,XA,,_,,deuf random vectors, the likelihood of the sample, assuming data is

normally distributed, is given by the equation below.

L{w,Z)= r(xl,...,xd;u,z)ﬂj (21:}9]42}’5 exr{-{XJ -u}[f-'[xJ -M}H (12)

Where n is the length of series data and X/ is the inverse of the covariance matrix, also

called a concentration matrix or precision. Zero mean vectors and covariance matrix X are
used to model the residuals of the fitted individual AR (1) models using multivariate
Gaussian distribution. These residual errors consist of censored errors since some of them
come from the censored daily precipitation that is non-positive daily precipitation. In order
to fill in the censored residual errors, conditional normal distribution is adopted.

X, N H 2 Ly (13)
X, s P> 3 L
Where X7 is the censored residual errors, X is the true residual errors, gy s the mean value

of the censored residual errors, g is mean value of true residual errors, %, is variance of
the censored residual errors, 2> i1s covariance matrix between the censored residual errors,
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and X is the covariance matrix between the true residual errors and the censored residual
errors, and 22z me 15 variance of the true residual errors.

3 Data and study location

The models are implemented in Singapore using daily precipitation amounts which are
simultaneously measured frorffR6 stations during the period of 1980-2010 (31 years). The
stations cover a wide range of distances from 1.9 to 38.7 km as presented in Fig. 1.
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Fig. 1. Study location of Singapore.
4 Simulation steps

4.1 Temporal model

The time series model is developed separately for each station. To capture seasonal

behaviour, the temporal models are constructed for every month separately. The detailed

steps for developing the temporal models are illustrated as follows.

1. Observed daily precipitation variables Z, are transformed using beta power
transformation into normal variates ¥, as given in equation 7.

2. Transformed daily precipitation values are formulated into AR (1) underlying Gaussian
process as in equation 1.

3. Power transformed normal density functions are formulated as equations 8 (Z=0) and 9
(Z=0).

4. Likelihood functions of AR (1) are formulated as equation 10.

5. The parameters of AR (1) are estimated and the censored values are filled in by MCMC
using metropolis Hastings algorithm.

4.2 Spatial model

Residual errors resulted from the marginal time series AR (1) models are modelled spatially
using a multivariate Gaussian distribution with a mean vector of zeroes and covariance
matrix X The residual errors include censored data coming from censored data in time
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series AR (1). Hence, conditional multivariate normal distribution is applied to impute

censored residual errors based on the true residual errors. To estimate covariance matrix Z

as well as to fill in censored residual errors, the MCMC approach is implemented. The

detailed steps for the fitting spatial model are illustrated as follows.

1. For each station, observed daily precipitation 7, data are transformed into normal
variates ¥, using estimated beta power transformation () as equation 7.

2. Simulated N number synthetic daily precipitation data using fitted temporal model AR
(1) as equation 1. Variable N corresponds to the length of observed daily precipitation
minus one data because it is taken as initial value ¥..; in the first simulation (¥;-).

3. If daily precipitation given at time ¢ is observed positive (Z>0), calculate the true
residual errors £ using subtracting transformed observed daily data (step-1) with
simulated synthetic data (step-2).

4. 1If daily precipitation given time is observed non-positive (Z,<0), initiate the censored
errors & .

5. Estimate parameters of multivariate normal distribution (the covariance matrix ¥ and
correlation matrix I') and impute the censored errors using MCMC approach with
metropolis Hastings algorithm.

4.3 Model simulation

Based on the temporal and spatial models constructed, synthetic daily precipitation data can

be generated. The detailed steps for developing simulation models are described below.

1. Set up a number of values to simulate as N. For comparison purposes, this number
should be the same as the observed values.

2. The observed daily precipitation at time t=1 (Z) is transformed into normal variate Y

using estimated beta power transformation as equation 7. This value Y 1s used as

starting value for simulation (¥,-g).

Generate residual errors based on fitted multivariate Gaussian distribution.

4. Simulate synthetic daily precipitation data using fitted time series model AR (1) at each

station.

If simulated daily precipitation at time 7 from step-4 is positive (Y>0), transform this

value ¥, to the power fitted beta (p).

6. If simulated daily precipitation at time ¢ from step-4 is non-positive (¥,<0), set up
simulated daily precipitation to zero.

7. Set up this simulated data Y, as previous value ¥, for the next step simulation.

8. Repeat steps 3-7 until N number of simulations.

e

Ln

5 Results and discussion

To evaluate whether or not the model performs well, some measures such as empirical
cumulative distribution function (ECDF), cross-correlation coefficient (CCC) and entropy-
based measure [2, 4] are taken. A good model will reproduce synthetic daily precipitation
series which have similar statistical key parameters characteristics to observed data.

5.1 Single site evaluation
Mean daily precipitation is a basic measure to be used for measuring information of dfEY

precipitation generation model between simulated and observed daily precipitation. The
mean 1s a measure of central tendency of data distribution. The developed model can

6
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synthetically reproduce daily precipitation very well in terms of mean value for all stations.
Like the mean wvalue, the standard deviation is also used to measure whether or not
simulated daily precipitation resembles observed daily precipitation. The standard deviation
1s defined as the positive square root of the variance. The variance of a given set of data
gives a measure of the variability of the with respect to the mean. The model performs
very well in that there are no significant differences between simulated and observed daily
precipitations.

Cumulative relative frequencies both observed and simulated daily precipitation for all
rain gauge stations are shown in Fig. 2. Overall, simulated ones can satisfactorily follow the
behaviour of observed ones. Using the Kolmogorov Smirnov test with a significant level
95%, there 1s no significant difference between the two different datasets. But interestingly,
for extreme wvalues, some simulated cumulative relative frequencies tend to be located
slightly above the observed cumulative relative frequencies, indicating an underestimation
of the probability of very high rainfall values. It can occur due to the strange precipitation
events that are influenced by many factors, for example, climate change.

5.2 Cross-correlation coefficient (CCC)-based evaluation

Spatial correlation exhibited by observed daily precipitation should be mimicked by the
good multi-site daily precipitation generation model. Multi-site simulated daily
precipitation should reveal similar two-dimensional cross-corrdfltions of a pair of daily
precipitation series data to the real data. The correlations measure the strength of
association between two continuous variables.

In this study, three different types of CCCs, namely Pearson, Spearman, and Kendall
cross-correlation, ar@hpplied to evaluate the multi-site precipitation generation model. The
Pearson cormrelation is also called the linear correlation coefficient because it measures the
linear association between two variables. The Pearson correlation is not resistant to outliers
because it is computed using non-resistant measures, namely means and standard
deviations.

In contrast, the Spearman correlation 1s a rank correlation. It depends only on the ranks
of the data and not the values themselves. Thus, the Spearman correlation is more resistant
to outliers than Pearson correlation. Fig. 3 reveals that there 1s only a slight difference for
all CCCs between simulated and observed daily precipitation. It is found that simulated
daily precipitation exhibits lower cross-correlations compared to cross-correlations
observed in data.
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Fig. 2. The empirical cumulative distribution function for both observed and simulated precipitation
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Fig. 3. Cross-correlation coefficient between two stations at different locations for Pearson,
Spearman, and Kendall).

5.3 Entropy-based measure

Traditional measures such as mean, variance, cross-correlations, and other conventional
criterions are not enough to evaluate multi-site daily precipitation model. The entropy
method to measure uncertainty information especially used to validate daily precipitation
model independently is the breakthrough approach in any hydrologic application.
Therefore, the entropy-based measure is also used for both observed and simulated daily
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precipitation amounts for some important quantiles (0.5, 0.6, 0.75, 0. 8,0. 9, and 0.95). A
number of triangles created each month are combinations of all stations taken from three
stations at a time. All simulated daily precipitation for all thresholds systematically gives a
slightly bigger entropy value than observed data. This fact indicates that simulated daily
precipitation yield greater uncertainty or lower association than the observed one. This
issue has become a hot topic in hydrological application. This finding also confirms what
Bardossy [2, 4] discovered about the entropy approach used for validation of daily
precipitation generation models. As already noted, the entropy of simulated daily
precipitation is consistently higher than the entropy of observed daily precipitation.
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Fig. 4. Comparison of observed and simulated entropy for all triples combinations.

6 Conclusions

The results of the research show that the model reproduces synthetic daily precipitation
having very similar statistical characteristics to the observed daily precipitation in terms of
mean, variance, and cumulative frequency relative. There 1s only slight a difference value
for all CCCs between simulated and observed daily precipitation. It is found that simulated
daily precipitation exhibits lower CCCs compared to observed data. All simulated daily
precipitation amounts for all thresholds give larger entropy than observed data. This fact
indicates that simulated daily precipitation gives greater uncertainty or lower association
than the observed one.
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