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Abstract. We establish in this paper the Hardy-Littlewood—Sobolev in-
equalities for the Riesz potentials on Morrey spaces over commutative
hypergroups. As a consequence, we are also able to get Olsen-tvpe in-
equality on the same spaces. Here, the condition of upper Ahlfors n-
regular by identity is assumed to obtain the inequalities.
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1. Introductio

Poisson equations play an important role in the field of differential equations
and @ir applications in physics. Closely related to a Poisson equation, we
have the fractional integral operator or Riesz potential I, (0 < a < o), which

is defined by:
In.fl:;rjl = f Ldif’- T Hds
B

T — y|rl—::|

for suitable functions f on R%. In Lebesgue spaces over Euclidean spaces, the
Riesz potential I, satisfies the strong inequality:

”-{:JIHL“ = (Tp”f”f_.":-

whenever f € LP(R?) with 1 < p < % and r_? - !%— %: and also the weak
inequality:

REX= Re - |1, flz)] = ‘_r} | < C (&) .
Y
whenever f € L'(R?) with % = 1 — =. These inequalities were proved by
Hardy and Littlewood [11] and extended later by Sobolev [26].
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Some extensions of Hardy-Littlewood-Sobolev inequalities have been

EE}:blished in Morrey spaces (over Euclidean spaces): see, for exanf§Ps. [1.3].
For 1 < p < oo and 0 < A < n, the Morrey space LP* = LP*(R?) consists of
all functions f on R for which:

L 1/p
[ fllpe.r := sup (_/\f |fl:j:j|”d:r) < .
B(xzy) \T7 JBzr)

These spaces may be identical to Lebesgue spaces for special cases, namely
L0 = [P and LP? = L™, Morrey spaces were first introduced by Morrey [14]
to study the behavior of solutions to a partial differential equation.

As the Riesz potential [, is a fractional power of the Laplacian operator,
Olsen [18] applied an extension of Hardy-Littlewood-Sobolev inequality in
Morrey spaces to study the perturbed Schriodinger operator:

—A+ V(z) + W(zx),

where A is the Laplacian operator, V' (z) is the potential function, and W is
a small perturbed potential. Olsen obtained an estimate:

||L‘t'r.{mf||Lp..-\ S C‘ I"‘t‘f||L|:.I‘.I:—.-\_:l_."r'r.,\||f||LJJ.-‘L_\ (1]

for We L M/er with0< A <d—apand 1 < p < % We will refer to the
inequality (1) as the Olsen inequality. Further works on Olsen inequality can
be found for examples in [6,9.13,22,24].

Nowadays, various extensions of Hardy-Littlewood-Sobolev inequality
can be found in many spaces with different settings—see [4,5,7,8,15-17,19-
21,23,25], among others. Particularly, Hajibayov [10] defined the Riesz po-
tential in hypergroups:

Rf(x) = (ple.r)* "« f) (x)
:[ T ple,r)* " f(y™) duly)
K

_ f ple,T)o T F(y™) duly),
K

and proved the extension of Hardy-Littlewood—Sobolev inequalities (strm?
and weak inequalities) in Lebesgue spaces over commutative hypergroups.

hypergroup (K, ) is a locally compact Hausdorfl space K equipped with a
bilinear, associative, and weakly cﬂtiﬂumm convolution * on M"(K) (ie.,
the set of bounded Radon measure on K ) satisfying the following properties:

l. For all z.y € K. the convolution 4, * 4, of the point measures is a
Mobability measure with compact support.

2. The mapping (x, y) — supp(d,*d,) of K x K into the space of nonempty
compact support subsets of K is continuous with respect to the Michael
polog}'.

3. There is an identity e € K, such that 4, xm: A0, =4, forall r € K.

4. There is a continuous involution * (i.e., a homeomorphism = — =™ of
K onto itself with the property (™)~ = =z for all x € K), such that

O * Oy~ = (0 ¥ 0y )™
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5. For r,y € K, we have e € supp(d, *d,) if only if = = y~.

(One may see [2,12] for more explanation on hypergroups.) A locally comp:

Hausdorff group with the group convolution is an example of hypergroup.

8y %0, =48, % 4,

for every x,y € K, then the hypergroup (K, ) (which is often written just
as i a commutative hypergroup.

The proof of the extension of Hardy-Littlewood-Sobolev inequalities
(strong and weak inequalities) in Lebesgue spaces over commutative hyper-
groups involves the condition of upper Ahlfors n-reguler by identity, namely:

u(Ble,r)) < Cr" (2)

for some positive constant which is independent of » > (0. Here, e denotes
the identity of the hypergroup. The results in this type of Lebesgue spaces
assume that the maximal operator satisfies stroand weak inequalities in
the Lebesgue spaces under consideration. Here, the maximal operator M is

defined by:

1
Mf(z) = sup ————-
Ay =8 5 fmﬁ.r;}

As the Hardy-Littlewood—Sobolev inequality in Lebesgue spaces over Eu-
clidean spaces can be extended into Morrey spaces over Euclidean spaces, our

T f(y™)] dply)-

aim in this paper is then to extend the results of Hajibayov [10] to Morrey
spaces over commutative hypergroups. The proof will not invoke any results
on maximal operator in Morrey spaces. Furthermore, we will also prove an
Olsen inequality in Morrey spaces over commutative hypergroups.

2. Main Results

For 1 < p < B¥he Morrey space over commutative hypergroups LPAMK) =
LV K, #, ;i) consists of all measurable functions f on K with norm:

1/p
1
| fllze > (k) := sup 7 / |f ()P dp(y) < 00,
A K B=B(e,r) ru.l:Bl:ﬁ‘,erjx\,n Bler)

An e sion of Hardy-Littlewood-Sobolev inequality in these spaces is pro-
vided 1 the following theorem.

Theorem 2.1. Assume that 0 < A < n, 0 <8 < n, 1 <p < =, and the

measure p is upper Ahlfors n-reguler by identity. Assume also that the maz-

imal operator is an operat@of strong type-(p,p) on Lebesgue spaces LP(K).

Ifr—'j =2 anda=12 q% then there is a positive constant C', such that the
t

P 3
operator R, satisfies the inequality:

| B fllpa-e iy = Cllfllee» &)
for any function f € LPAK).
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Proof. Given f € LPAK), we split it into f = f; + fo = FXB(e2m)
fXK\B“_,1QI.]. For the function f;, we have the following estimate:

L/p
T ( [ s dum)

L/p
- ([ F@P d,u(-x:l)
EBie,2r)

»
_ (u(Be, 20))* @
) E#(BEE,?T”]AE“ (-/:E'{::,:z,-] |f{I]|P d,u.(xj)

< (p(B(e, 2r))M™| ]| Lo (x0)-

Since the maximal operator is an [erator of strong type-(p,p) on LP(K),
Hajibayov [10] established that R, is bounded from LP(K) to L9(K). By this
boundedness of i, and the assumption 2 A

g = p we get:

LSy
1
(fﬂwtﬁ- 2)))77 fB [Rafi@" dum)
I B le,r

1
o E#J.(_B(ﬁi 2?"]]]5;"!“]1 ||j?f1fl||L"£{K]

<GBy il
CT(#‘('B(E:- 2?"] ] :I’kf':“f-’ |
EIU'E-BEE?_. 2]’":]:]:]9.."'!1@ ||f||LJ’Jk{K)
= (':'

Flles (k)

As a conse quence:

”R:.foTHL‘!-”{K] <C

Fllzex gy

Now, to find the estimate for ||, follpe» k), we first need to find an
estimate for R, fo, that is:

|I?-:.1fﬂ |:]":|| G
: / TPRWT) )
K ﬂ(ﬁ', yjn—m
: ./ M il
K Bler) PEF.',yjfl o 6

j=oc |
T fy~])
<> f —— o duly)
i=1 B{!:"2‘1.+1I')"‘.|B{::’12j1'] rOEE:I yj

B,

=l

1
= 2. (@ir)na T fly™)| dp
- 2 (20r)n=e fa»{,_,,zmr)' Fly™) duly)

i=1
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s 1

— u : 1=

-'I’Lflff!.Ej-i-ll'} |T:ﬂ!‘f ]lp df“'{.y] e ,r_ﬂ'.:,:_zj'+1|-_:. ll“':-y:] !
o - ;) ) A
(p(Ble,27t2r)) ) (p{Ble,272r)) )

i=
<C =
i=1 (EJTII .
j=oc 1 ) )
< C Y I lleeo ey (B (e, 27+ 2r))) A=),
< (2ir)
i=

As pu satisfies upper Ahlfors n-regular by an identity, we get:

j=ce

N 1 i+ n{l—XA/n){1-1/
|.H:_1ffj|::]'.':|| < C E W||f||LJ’-*“{KJ[2J+2T:| (1=A/n){1-1/p)
1

i

i
8

' 1 ey . .
" j+2 —A)1-1/
=C Y. e M llaerue (2 2n) o 0amtm

1

J

2_;i+'.2r:|m —A-—nfp+Aip

i=1
Since o = = j—:, we have
n A n n n A Ag—n Ag—mn
aa R A n o m N dem  da-mp
p P P 19 roq Pq Pq
Note also that the assumption % = % and 0 < # < n enable us to get:

Ag—np=~Hp—np=(6—n)p<0.
Therefore:

j=oo
Ag—mnp itAhg—mnpy
P E 2

|Rafolz)] =C

i=1
, Ag—np
S Crrm |[fllzeax).

We then use this last inequality and apply once more the condition of upper
Ahlfors n-regular by an identity to ofm'n:

! 3
R, fol? dul.
(['U'EBE‘?JT”JK fm: r) Hafol “(33))

1 Ag—ngp .
{ &) (._—' :'”i BA d (T
N (I:#I:‘HI:P*ZT:I:I:IW -/‘B{:r__rj ( ||f||L {KJ) ,U(]":I)

1
q

(’:'"r A q:l:!uy N
= [ fllpergrey (0(Ble, 2r)))s
(p(Ble,2r)))m
< CroS T fllsa o)

=Cr» 5 |[fllzea ()
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This inequality gives us:

||.R[_1 ff}”Lq.f.i{KJ < '

and hence, the desired result follows. O

Fllze-s k)

When., in Theorem 2.1, we have # = A, then:

[Rafllzarx) < CllfllLex - (3)
éhis inequality leads us to the following theorem.

Theorem 2.2. [f0 < A <n. 1l <p<n/a, anda = it then the inequality:

T}l’;r’l PaAY !
4 ({8 €Be.F) : [Raf @I SA)) < C ( ”f',]',.“ =

holds.
K
Proof. Let E. = ({xr € Ble,r) : |R.f(z)| > v}). Note that |R,f(z)] > ~

gives us |R,f(x)|? > 4% for ¢ > 0. Hence, (w) > 1. Using the in-
equality (3), we get:

#-Eblril:j dp(z) E/ (M); dpfx)
Ty Ty .,I"

194
q

r/\r,l 1
E."I
Crd r
i: __fr:, ||j?:1f||£q.ﬁ{j{]
(’:'T/\r,l
5 __lrr], ||f||1y.)\. {K-]
g
_ o (P ller a0
-ll" n
which completes our proof. .

Theorem 2.2 provides us with the weak-[p,nequalitj; forl < p < n/a.
Furthermore, the weak-(1, ¢) will hipresented m the following theorem.
K}
Theorem 2.3. For 0 < o + A < n, we have:

f

A R
p({z € Ble,r): |R.f(z)| >y <€ (—r ”f”LH{K’]) .~

provided that o« = n — T
Proof. When f € LY*(K) is decomposed into

f = fj e fﬂ = fXB{:.'._QrJ Ll fXK"'.'B{:.'._'.Zr]:
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we find that:

£l xy < ((Ble, 2r)) M| £l 1 iy
< CrM|fll i) -

Hence, by the weak-(1, q) estimate on Lebesgue spaces:

|
r/\“f”Ll{K])

p({z € Ble,r): [Rafi(z)] > 7}) < C( r

A o
i ( ||f||L1.,xm) |
¥

Now, for fgo, we use the uppn Ahlfors n-regular by an identity to obtain:

T.L
|Rc.1fo(:r]|5f T"jol™) n(y
K ple,y)n e

T f(y™)
: A\B{::,E:) ple, ’HS:‘ “ Myb

s &2

<y j L)

i=1 Ir<pley)<2itiy pl:f?,y:]” -

= i . a

<C —————f T f(y~)| d
EW“ o N L TR IE )
- : A

SO (2r) " (u(B(e, 2272r) " T fll ooy
j:].

5 C"HfHLl"\{K] Ziﬂjr]u+/\—u

j=1
< C‘?"Ll-l_k_“”fllf_,l.,x{}(] .

If we choose ~ = rotA—n

o o
?")‘||f||L1-*~{K) - ?"}‘||f||L1-*~{K)
Yo rat An|| fll poa k)

— [(':'rrh — iy )r:’

— ( _’rrn n—r—:)r’l

— (:'rrh. .

| fll2» (k) then we find that:

Therefore, for a , we have |R, fo| < v < 7. Consequently:
M {IEBF?" “fnfﬂt |> f} —# Efl):D
Meanwhile, for v > =, we have:

i ({z € Ble,r) : |Rafo(z)| > 7)) < u(Ble,r))
< Cr"
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A q
Ml kg
o
A 4
T 1. Ay
C,( 171z m) |
g

Hence, we are done. L]

(P4

Having the extension of Hardy-Littlewood-Sobolev inequality in
Lebesgue spaces over commmtative hypergroups, we could get an Olsen type
inequality in these spaces. This inequality is similar to the result in [24] for
non-homogeneous type spaces.

Theorem 2.4. [f1 <p< = and & = ;_13 — ﬁ, then the inequality
||1’i,.-"_£‘?“f| |L:”{KJ] E CT||L|'_;||L1L.:,--,;.' {K_] ||f| |LJ"{K_]
holds whenever W € L™ K).

Proof. We apply Holder inequality to get:

( f \W R, f(z)” dlu.[;rﬂ) '
K
([ Wiz f! - dp(x ) i ([ | R flz)|* d,u_{ ])E
=( | i d#(ﬂfl)“ ( [ (Ro f()]? dp( ;.)
ol 5

Since R, is bounded from LP(K') to LY( K ), we obtain:
||Lt’j?:1f||L?’{K;I _

which we wish to prove. O

.-“ﬁ-f‘\{KJHfHL?”{KJ-‘

Now, we are extending the result of Olsen [18] to Morrey spaces over
hypergroups.

Theorem 2.5. [f 0 < A <n, 1 < p < =, and W € LMK, then the
inequality

||L‘Lﬂ_{i’_“ f”LJJ.,\.{KJ < (:'||L-ir.»'||L1L_m.,\ (K ||f| |L;;.,\{}(J
holds.

Proof. First, it follows from Hélder inequality that:

| WR.@PaG
Bie,2r)
5[ W ()| 75 du(x) [ Rof(2)9du(z) | -
Be2r) Bie2r)
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As a consequence, we have:
1 1/p
f H"Hn I f-"d AN
(,‘J-I:.Bl:ﬁ_‘ﬁr]/\.ﬁﬂ ‘[13{::._21',] | fE )| f ( :l)

q—pF
. 9 P
5 )lf\/ rli'-'dﬁj-
#J.(.B{ﬁ_-zr] i E(e2r)
L/
7 n HLT
}LI:BI:E:.ET:I}‘"“ Bile,2r)

7 ),
( p‘E'BEE.' 2?"]/\* " Bie,2r)

%d,u.(;r])

L/g
7
. : Ra f(@)du(z) |
(,U.I:BI:F.‘,Q?‘)A“ " JB(e2r)

Now, by applying the inequality (3), we obtain:

||H';-H:.1f”.[.i"-f‘*{}('] < ||W||Lu.-*rr-A{}c;||H:.1f||Lre-A{KJ
<C

Vllpnsa sy | F I Leacreys

which is the desired inequality. O

3. Concluding Remarks

In [25], the Adams-type inequalities have been established on Morrey spaces
over metric measure spaces of non-homogeneous type. Typically, the proof
of Adams-type inequalities needs some results on the maximal operator in
the same spaces. Besides, the results in [25] do not employ any growth con-
dition on measure, which is almost similar to the upper Ahlfors n-regular
by an identity condition for measure (Eq. (2)). In this paper, by employing
this upper Ahlfors measure, we provide Spanne-type inequalities on Morrey
spaces over commutative hypergroups. To prove these inequalities, we do not
use any result associated with the maximal operator on Morrey spaces; we
only take into account the results of Riesz potential in Lebesgue spaces over
commutative hypergroups.
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