# Biodiversitas\_dhuta 2021

*by* Erwin Ardli

**Submission date:** 28-Mar-2023 06:05AM (UTC+0700)

**Submission ID:** 2048478456

File name: 9317-Article\_Text-53848-1-10-20211206\_1.pdf (753.7K)

Word count: 7648

Character count: 39052

# Superoxide dismutase (SOD) activity of *Ceriops zippeliana* in Segara Anakan Cilacap (Indonesia) under heavy metal accumulation

## DHUTA SUKMARANI<sup>1,2,¶</sup>, ELLY PROKLAMASININGSIH<sup>1</sup>, AGUS HERY SUSANTO<sup>1</sup>, ERWIN RIYANTO ARDLI<sup>1</sup>, EMING SUDIANA<sup>1</sup>, EDY YANI<sup>1</sup>

<sup>1</sup>Faculty of Biology, Universitas Jenderal Soedirman. Jl. Dr. Soepamo 63, Purwokerto Utara, Banyumas 53122, Central Java, Indonesia.

Tel.: +62-281-638794, fax.: +62-281-631700, ▼email: dhutasukmarani@ummgl.ac.id

<sup>2</sup>Department of Elementary School Teacher Education, Universitas Muhammadiyah Magelang. Jl. Tidar 21, Magelang 56125, Central Java, Indonesia

Manuscript received: 27 August 2021. Revision accepted: 30 November 2021.

Abstract. Sukmarani D, Proklamasiningsih E, Susanto AH, Ardli ER, Sudiana E, Yani E. 2021. Superoxide dismutase (SOD) activity of Ceriops zippeliana Blume in Segara Anakan Cilacap (Indonesia) under 52 vvy metal accumulation. Biodiversitas 22: 5627-5635. Ceriops zippeliana Blume is a true mangrove species that occupy habitats exposed to environmental stress, such as salinity 34 heavy metal contamination, which is the case in Segara Anakan Cilacap, Central Java. Both salinity and heavy metal stress can lead to the production of reactive oxygen species (ROS), which can be detrimental to plants if they are present in e 11s. Plants have defense mechanisms to prevent excessive ROS, one of which is by the use of superoxide dism 15e (SOD) enzyme. This study aims to explain the accumulation of heavy metals (Pb, Cd, Cu, and Zn) in C. zippeliana as well as the translocation of the metals. In addition, the correlation between heavy metal concentrations and SOD act 1 ty in C. zippeliana is reported. Plant samples were randomly collected from Segara Anakan, Cilacap. The analysis was conducted using the bio-concentration factor (BCF), translocation factor (TF), and linear regression in the SPSS program. It was found that Pb, Cu, and Zn levels in Segara Anakan Cilacap sediments were still within acceptable limits, while Cd level was moderately polluting. Metal accumulation was higher in the branches of C. zippeliana compared to those in roots and leaves. The SOD activity of C. zippeliana in Segara Anakan is seemingly not related to metal contents in plant parts.

Keywords: Bio-concentration factor, Ceriops zippeliana, heavy metal accumulation, SOD activity, translocation factor

#### INTRODUCTION

Ceriops zippeliana Blume is one of the two Ceriops species (Rhizophoraceae) that occurred in Indonesian mangrove forests, while the other one is C. tagal. According to the IUCN Red List, C. zippeliana is categorized as Least Concern with decreasing population trend (IUCN 2008). As a member of Rhizophoraceae, which is the most common mangrove family in Indonesia, one area of C. zippeliana geographical distribution is Segara Anakan Cilacap, Central Java. This is an estuary or delta located at the mouth of main rivers in Central Java south coast heading to the Indian Ocean. Despite being blocked by Nusakambangan Island from the open ocean, mangroves in Segara Anakan receive the in 22 nce of the Indian Ocean currents. C. zippeliana grows in the eastern part of Segara Anakan Cilacap. The mangrove vegetation in this area is pressured by land conversion as well as pollution caused by an oil refinery industry (Supriatna et al. 2018; Sih Piranti et al. 2019; Setyaningrum et al. 2020). 21 As a true mangrove species, C. zippeliana has extensive morphological, anatomical, physiological and molecular adaptations, allowing growth and development in environ 13 ts with significant environmental stress, such as salinity and heavy metal (Rodriguez et al. 2012; Srikanth et al. 2016; Surya and Har 12)17). This mechanism can be explained by the buildup of reactive 39 ygen species (ROS) as one of the metabolic alterations that occur when plants are exposed to salt and heavy metal stress (Hasanuzzaman

et al. 2020). Plants produce ROS as a consequence of regular cellular metabolism. However, when there is a disruption in the environment pollution), the equilibrium between production and elimination is disturbed. When present in excess, ROS rapidly inactivate enzymes, damage vital cellular organelles in plants, and destroy membranes by inducing the degradation of pigments, proteins, lipids, and nucleic acids, ultimately resulting in cell death (Karuppanapandian 12011). Raja et al. (2017) found that ROS can disturb normal metabolism by causing oxidative damage to lipids, proteins, and nucleic acids, as well as impairing membrane function (Hasanuzzaman et al. 2020).

ISSN: 1412-033X

E-ISSN: 2085-4722

DOI: 10.13057/biodiv/d221259

Not al 16 DS are free radicals. Some ROS are radicals, such as superoxide anion (O<sub>2</sub>), hydroperoxyl radical (HO<sub>2</sub>), alkoxy radical (RO) and hydroxyl radicals (OH), while others are non-radicals, such as hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and singlet oxygen (O<sub>2</sub>). Superoxide radicals are extremely harmful when combined with hydrogen peroxide (28)<sub>2</sub>) because they form hydroxyl radicals (OH) (Hasanuzzaman et al. 2020).

Plants have defense mechalisms to deal with environmental stress. Activating antioxidant enzymes is 36 of the antioxidant defense strategies in plants. Superoxide dismutase (SOD), catalase (CAT), and 32 tathione peroxidase are some of the enzymes involved. SOD catalyzes the dismutation of superoxide radicals (O<sub>2</sub>) into H<sub>2</sub>O<sub>2</sub> and O<sub>2</sub>; catalase degrades H<sub>2</sub>O<sub>2</sub> in 50 water and oxygen; and glutathione peroxidase catalyzes the reduction

of H<sub>2</sub>O<sub>2</sub> to H<sub>2</sub>O using reduced glutathione (GSH) and oxidized glutathione (GSSG) as cofactors (Hasanuzzaman et al. 2017). SOD is considered to be at the forefront of overcoming oxidative stress due to its position as the first enzyme to catalyze superoxide radicals (O<sup>2-</sup>) (Ighodaro and Akinloye 2018).

There has been no investigation on heavy metal bioaccumulation and its correlation with SOD activity in *C. zippeliana* from Segara Anakan Cilacap so far. As a result, such studies must be conducted to provide information on the long-term conservation of *C. zippelian* 113 well as the management of estuaries and coastal areas. This study aims to elucidate the accumulation of he 157 metal Pb, Cd, Cu, and Zn in *C. zippeliana*, as well as the translocation of the metals in *C. zippeliana*. The correlation between heavy metal concentrations and SOD activity in *C. zippeliana* is also investigated.

#### 17 MATERIALS AND METHODS

#### Study area and period

Samples were collected randomly from the eastern section of Segara Anakan lagoon, Cilacap District, Central Java, Indonesia at geographical position of 7°68'91" S 108°99'35" E. They were collected at three different sites along the estuary, from the outside to the inside, across the oil refinery industries (Figure 1). The sampling was accomplished in July 2020.

#### Procedures

Sample collection and identification

Sediments as well as roots, branches, and leaves of *C. zippeliana* were taken randomly from three different sites

in the canal. Every sample was weighed up to 500 g. The samples w 37 placed in zip lock bags, labeled, and stored in an icebox. The *Flora of Java* by Backer and Bakhuizen van Den Brink (1963) determination book was used for identification.

Heavy metal content analysis

Analyzing the metal contents of C 197n, Pb, and Cd in sediments and plant parts began with drying the sample in an oven for 6 hours at 80°C for plants and 105°C for sediments. The aqua reg 51 nethod (HNO<sub>3</sub>: HCl = 1: 3) was used to digest 5 g of the sample, which was heated at 100°C for 8 hours until the volume reached 1 mL. Before heating, [23] rofluoric acid (HF) was added to the sediment samples. The sample was then cooled to room temperature and transferred to a 100 mL volumetric flask, where aduablest were added to the mark—then filtered using 0.40  $\mu$ m pore filter paper. AAS (Atomic Absorption Spectroscopy) was used to 18 rmine metal concentration (Takarina and Pin 2017). The recovery rates of heavy metals in CRM are listed in Table 1.

Ta 18 1. Recovery rates of heavy metal concentrations measured in certified reference material and standard deviation

| Element | Certified value<br>GSD-10<br>(mg/kg) | Measured value<br>(N = 3)<br>(mg/kg) | Recovery<br>rate<br>(%) |
|---------|--------------------------------------|--------------------------------------|-------------------------|
| Cu      | 22.6±0.6                             | 20.33±4.72                           | 90                      |
| Zn      | 46±1.3                               | 32.22±0.20                           | 70                      |
| Pb      | 27±1                                 | 27.38±0.86                           | 101                     |
| Cd      | 1.12±0.05                            | 1.73±0.04                            | 154                     |

#### SEGARA ANAKAN CILACAP MAP



Figure 1. Map of the sampling sites in Segara Anakan lagoon, Cilacap District, Central Java, Indonesia

60

#### Superoxide dismutase (SOD) activity assay

The SOD activity assay start 44 vith extraction of roots, leaves, and branches that have been dried in an oven at 70°C for 48 hours before being mashed. Extraction was performed with a 96% ethanol solvent using the maceration process. SOD activity assay was performed according to the RANSOD Manual by Randox Laboratories, with the following modifications:  $20~\mu\text{L}$  of sample was added to a combination of 1,000  $\mu\text{L}$  R1 (1 bottle of mixed substrate R1a with 20  $\mu\text{L}$  Buffer R1b) a 25 100  $\mu\text{L}$  R2 (1 vial of xanthine oxidase dissolved with 10 mL of distilled water). The absorbance of the reaction mixture was measured at  $\lambda$  520 nm (Randox Laboratories 2009).

#### 26 ta analysis

Bio-concentration factor (BCF)

Bio-concentration factor (BCF) can be used to determine the value of metal bioaccumulation (Pb, Cd, Cu, and Zn) in plant sections of *C.* 229 liana, either by active or passive accumulation. BCF is the ratio of individual metal concentration in the tissue (Ctissues) to that in the sediment (Csediment) (Takarina and Pin 2017).

$$BCF = C_{tissues}/C_{sediment}$$

Translocation factor (TF)

The metal translocation process among pa 27 of the *C. zippeliana* plant was calculated using the translocation factor (TF), which is the ratio of metal concentration between two plant parts (Takarina and Pin, 2017):

TF<sub>root to branch</sub>=C<sub>branch</sub>/C<sub>root</sub>
TF<sub>root to leaves</sub>=C<sub>leaves</sub>/C<sub>root</sub>
TF<sub>branch to leaves</sub>=C<sub>leaves</sub>/C<sub>branch</sub>

Superoxide dismutase (SOD) activity

Pearson correlation in the SPSS program was utilized to establish the correlation between metal concentration and SOD activity (Bujang and Baharum 2016).

#### 55 RESULTS AND DISCUSSION

#### Heavy metal concentrations in sediments

Lead (Pb) concentration in the Segara Anakan sediments 1 as found ranging from 26.53 to 28.24 mg/kg (Table 2) with an average of 27.38 mg/kg (Table 3). These are still within the tolerable levels compared to those in other mangrove locations (Table 2). In natural environment, it is available at 70 mg/kg or lower, and 57 uld be toxic to plants when presents at 100 to 500 mg/kg (Kabata-Pendias and Pendias 2000). Meanwhile, the Pb concentration is also still much below the standard for agricultural soils in some countries, i.e. 80 mg/kg (EPMC, China), 200 mg/kg (CME, Canada), 200 mg/kg (TMS Tanzania), 200 mg/kg (USEPA, USA), 300 mg/kg (EPAA, Australia), 530 mg/kg (EEA, Netherlands), 1,000 mg/kg (EEA Germany) (He et al. 2015), and 4,000 mg/kg (NOAA) (Buchman 1999).

Pb is a toxic element that cause 5 arious physiological consequences, including decreased seed germination, root elongation, lower biomass, inhibition of chlorophyll biosynthesis, 5 neral feeding and enzymatic responses. The severity of these effects depends on the length of exposure, the stage of plant development, the 5 gan understudy, and the Pb concentration involved. Pb enters plants mostly through roots, no 12 y the apoplast route or calcium ion channels (Pourrut et al. 2011). On the other hand, Pb enters plants in little amounts through leaves (Ghosh and Roy 2019). The sampling site in Segara Anakan Cilacap was located less than 1 km from an oilrefinery area with various pollutants, including air pollution. As one of the pollutants from the oil refinery industry, Pb can also enter the leaves through the air, along with other heavy metals (De Agostini et al. 2020), but it is not used in plant physiological processes. This could explain why the concentration of Pb in the leaves is higher than that 22 Zn or other metals.

The concentrat 48 of cadmium (Cd) in the Segara Anakan sedimen in this study ranged from 1.69 to 1.77 mg/kg (Table 2) with an average of 1.73 mg/kg (Table 3), which is higher than those of natural levels. Nevertheless, the Cd concentrations obtained are not excessively high or moderate compared to those in other places (Table 2). Cd values of 0.1-1 mg/kg are found naturally in soil (Smolders and Mertens 2013). Standards for Cd in agricultural soils from numerous countries are 0.11 mg/kg (US EPA USA), 0.3-0.6 mg/kg (EPMC China), 1 mg/kg (TMS Tanzania), 3 mg/kg (EPAA Australia), 3 mg/kg (CME Canada), 13 mg/kg (EEA Netherlands), 50 mg/kg (EEA Germany) (He et al. 2015), and 100-300 mg/kg (NOAA) (Buchman 1999). This means that Cd concentration in the Segara Anakan sediments is higher than natural values and exceeds American, Chinese, and Tanzanian standards, but still below the standard of others.

Cd is a non-essential element that has deleterions impact on plant growth and development. Because of the generation of reactive oxygen species (ROS), Cd can cause metabolic problems in plants by inhibiting nitrogen uptake and transport, reducing plant growth, lowering chlorophyll and carotenoid content, and inhibiting photosynthesis. Cd enters plant tissues through the soil and water, along with other nutrients, which are absorbed through roots, transported through xylem, and stored in various tissues (Ghosh and Roy 2019). Cd is generally accumulated in vacuoles or cell walls. This accumulation was identified as one of the Cd detoxification and tolerance me 20 hisms (Uddin et al. 2021). It restricts and limits the free circulation of Cd ions in the cytosol. Like other metal ions, Cd can be taken from the air, deposited on the leaf surface, and subsequently absorbed into plant tissues (Ghosh and Roy 2019).

Copper (Cu) concentrations in mangrove sediments in Se analysis ra Anakan ranged from 15.61 to 25.06 mg/kg (Table 2) with an average of 20.33 mg/kg (Table 3), which are still moderate when compared to those in some other places (Table 2). Cu standards in agricultural soils are 100 mg/kg (EPAA Australia), 150 mg/kg (CME Canada), 150-300 mg/kg (EPMC China), 190 mg/kg (EEA Netherlands), 200

mg/kg (EEA Germany), 200 mg/kg (TMS Tanzania), 270 mg/kg (US EPA USA) (He et al. 2015), and 10,000-25,000 mg/kg (NOAA) (Buchman 1999). Thus, it could be said that Cu levels in Segara Anakan sediments are still below the standard of a gricultural soils in the countries.

Since required in enzyme systems related to photosystem II electron transport, mitochondrial and chloroplast reactions, carbohydrate metabolizm, cell wall lignification, and protein synthesis, Cu is an essential element for plant growth. This metal, in particular, ser sas a cofactor for metalloenzymes (Kumar et al. 2021). Cu can be toxic to plant growth if the concentration level in the sediment exceeds 800 mg/kg (Marques et al. 2018). This is about 40 times higher than those observed in Segara Anakan sediments (Table 3).

Compared to the other metals, the concentration of Zinc (Zn) in the sediment, roots, and branches of *C. zippeliana* in Segara Anakan was found highest. This is as Marschner (2011), who claims that Zn is the second most prevalent 33 sition metal in living organisms after iron (Fe) (Balafrej et al. 2020). Zn concentrations in Segara Anakan segments ranged from 32.03 to 32.43 mg/kg (Table 2) with an average of 32.23 mg/kg (Table 3). This concentration has not exceeded its normal level, and it is also quite mode 6 compared to other locations (Table 2). Natural levels in soils and rocks are typically between 10 and 300 mg/kg, while those in rivers are often less than 0.2 mg/kg (Noulas et al. 2018). Zn standards for agricultural soils in some countries are 150 mg/kg (TMS Tanzania), 200 mg/kg (EPAA Australia), 200-300 mg/kg (EPMC China), 500 mg/kg (CME Canada), 600 mg/kg (EEA Germany), 720 mg/kg (EEA Netherlands), 1,100 mg/kg (US EPA USA) (He et al. 2015), and 7,000-38,000 mg/kg (NOAA) (Buchman 1999). This indicates that Zn levels in Segara Anakan sediments are less than the standards.

Zn is found in soil due to the pedogenetic process of washing the source rock (Wuana and Okieimen 2011). This metal influences cell division and differentiation, as well as plant development, reproduction, and cell signaling which includes "IA" replication, transcription, and protein synthesis. "Wany enzymes, such as carbonic anhydrase, carboxypeptidase, and Zn-superoxide dismutase, require Zn as a cofactor (Balafrej et al. 2020).

According to NOAA, the sequence of metal concentrations from high to low is Cu/Zn>Pb>Cd, implying that Cu may be greater than Zn, or that Zn may be

greater than Cu. In addition, Pb concentration comes after Cu or Zn, and Cd comes last (Buchman 1999). Sediment metal concentrations in Segara Anakan were Zn>Pb>Cu>Cd. The Pb concentration is still below the international standard set by various countries and the NOAA, as previously stated. Even so, because the Pb concentration was higher than the Cu concentration, it can be said that Pb in Segara Anakan was relatively high.

### Heavy metal concentrations in plant parts compared to sediments

It can be seen from the analysis of sediment samples from the three different sites and a total of nine samples of C. zippeliana plant parts that a relatively similar distribution of elements in sediments, roots, and branches were observed, i.e. Zn>Pb>Cu>Cd. However 61 is was not the case with leaves, where Pb>Zn>Cu>Cd (Table 3). The average concentration level of individual metal in the plant parts of C. zippeliana showed a relatively similar pattern, in which branches had the highest metal concentrations followed sequentially by roots and leaves. This demonstrates that roots, as opposed to branches, have a stronger potential to absorb metals rather than accumulate them (Takarina and Pin 2017). On the other hand, the branch tissue can store more metals, including nonessential metals (Arumug49 et al. 2018). This could be related to a long-term accumulation of metals in the branches (Marchiol et al. 2004). Rous are more susceptible to metals than shoots are, because roots are the first organs to come into touch with metals (in the soil), and they accumulate metals in higher proportions than shoots do (Tiryakioglu et al. 2006; Hilmi et al. 2017).

Toxicity and even the usefulness of an element for plants are both subjective. Plants can demonstrate a phytotoxic response or tolerance with the buildup of metals in their bodies, as indicated by Mishra et al. (2006), depending on their demands, endurance, and environment. Phytotoxic responses such as chlorosis, necrosis, wilting, decreased growth, lower biomass (Kumar et al. 2016), stunting, and decreased crop yields, have all been observed. Meanwhile, the tolerance response can be indicated by enzyme activity (Hasanuzzaman et al. 2020) or detoxifying mechanisms, such as selective metal absorption, excretion, synthesis of metal compounds with specific ligands, and metal compartmentalization (Pourrut et al. 2011).

Table 2. Heavy metal concentrations in sediment samples from eastern part of Segara Anakan compared to other locations

| N - | Pb                                                                                                                                        | eavy metal con<br>Cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | centrations (mg/k                                                   | C.                                                                                                                                                                                                                                                                         | - References                                                                                                                                                                                                                                                                                                                                      |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3   |                                                                                                                                           | Cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cu                                                                  | 77                                                                                                                                                                                                                                                                         | - Kererences                                                                                                                                                                                                                                                                                                                                      |
| 3   |                                                                                                                                           | Cd Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     | Zn                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                   |
| 9   | 26.53-28.24                                                                                                                               | 1.69-1.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.61-25.06                                                         | 32.03-32.43                                                                                                                                                                                                                                                                | This study                                                                                                                                                                                                                                                                                                                                        |
| 34  | -                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16-84                                                               | 39-480                                                                                                                                                                                                                                                                     | (Syakti et al. 2015)                                                                                                                                                                                                                                                                                                                              |
| 6   | 3.96-21.99                                                                                                                                | 0.43-2.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                   | -                                                                                                                                                                                                                                                                          | (Hidayati et al. 2014)                                                                                                                                                                                                                                                                                                                            |
| 4   | <lod-357< td=""><td><lod-13< td=""><td><lod-515< td=""><td>-</td><td>(Siregar et al. 2016)</td></lod-515<></td></lod-13<></td></lod-357<> | <lod-13< td=""><td><lod-515< td=""><td>-</td><td>(Siregar et al. 2016)</td></lod-515<></td></lod-13<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <lod-515< td=""><td>-</td><td>(Siregar et al. 2016)</td></lod-515<> | -                                                                                                                                                                                                                                                                          | (Siregar et al. 2016)                                                                                                                                                                                                                                                                                                                             |
| 15  | 13.5-230                                                                                                                                  | ND-5.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45.5-280                                                            | 3.95-275                                                                                                                                                                                                                                                                   | (Usman et al. 2013)                                                                                                                                                                                                                                                                                                                               |
| 12  | 11-19                                                                                                                                     | 0.06-0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9-18                                                                | 32-57                                                                                                                                                                                                                                                                      | (Qiu et al. 2011)                                                                                                                                                                                                                                                                                                                                 |
| 60  | 20.96-31.81                                                                                                                               | 0.23-0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.39-27.91                                                         | 35.15-59.70                                                                                                                                                                                                                                                                | (Yan et al. 2012)                                                                                                                                                                                                                                                                                                                                 |
|     | 6<br>4<br>15<br>12                                                                                                                        | 34 - 6 3.96-21.99 4 <lod-357 11-19="" 12="" 13.5-230="" 15="" 20.96-31.81<="" 60="" td=""><td>34</td><td>34     -     16-84       6     3.96-21.99     0.43-2.21     -       4     <a href="LOD-357">LOD-13</a> <a href="LOD-515">LOD-515</a>       15     13.5-230     ND-5.48     45.5-280       12     11-19     0.06-0.13     9-18       60     20.96-31.81     0.23-0.30     25.39-27.91</td><td>34     -     -     16-84     39-480       6     3.96-21.99     0.43-2.21     -     -       4     <a href="LOD-357">LOD-357</a> <a href="LOD-515">LOD-515</a>     -       15     13.5-230     ND-5.48     45.5-280     3.95-275       12     11-19     0.06-0.13     9-18     32-57       60     20.96-31.81     0.23-0.30     25.39-27.91     35.15-59.70</td></lod-357> | 34                                                                  | 34     -     16-84       6     3.96-21.99     0.43-2.21     -       4 <a href="LOD-357">LOD-13</a> <a href="LOD-515">LOD-515</a> 15     13.5-230     ND-5.48     45.5-280       12     11-19     0.06-0.13     9-18       60     20.96-31.81     0.23-0.30     25.39-27.91 | 34     -     -     16-84     39-480       6     3.96-21.99     0.43-2.21     -     -       4 <a href="LOD-357">LOD-357</a> <a href="LOD-515">LOD-515</a> -       15     13.5-230     ND-5.48     45.5-280     3.95-275       12     11-19     0.06-0.13     9-18     32-57       60     20.96-31.81     0.23-0.30     25.39-27.91     35.15-59.70 |

54 e: the values are based on the range from minimum to maximum concentration from each study. (N: number of samples; -: not measured)

**Table 3.** Heavy metal concentrations in sediments and *Ceriops zippeliana* samples from eastern part of Segara Anakan

| Course   | NI. | Mean of hea | vy metal co     | ncentration ± | stdev (mg/kg) |
|----------|-----|-------------|-----------------|---------------|---------------|
| Source   | IA. | Pb          | Cd              | Cu            | Zn            |
| Sediment | 3   | 27.38±0.86  | 1.73±0.04       | 20.33±4.72    | 32.22±0.20    |
| Root     | 3   | 16.68±9.87  | $0.92\pm0.84$   | $7.82\pm2.10$ | 25.48±12.11   |
| Branch   | 3   | 29.64±0.50  | 2.11±0.13       | 26.07±32.23   | 41.94±38.80   |
| Leaves   | 3   | 13.43±0.59  | $0.71 \pm 0.07$ | 2.33±0.07     | 6.78±3.38     |

#### Bio-concentration factor (BCF)

Based on the average value of BCF, Zn>Pb>Cd>Cu sequence of concentration levels in the roots with an average value of less than 1 was observed. Different sequence of Zn>Cd>Cu>Pb with an average value of more than 1 was found in the branches, while Pb>Cd>Zn>Cu with an average value of less than 1 was obtained in the leaves (Table 4). The Bioconcentration factor value is divided into 3 (three) categories; with a BCF value >1 is classified as an accumulator, BCF value = 1 can be categorized as an indicator, while BCF value <1 is classified as an excluder (Mastaller 1996 in Isroni et al. 2020). Each species has a different ability to absorb heavy metals from its environment. Several other mangrove species have a high capacity to absorb heavy metals from their environment. Even Xylocarpus granatum, Sonneratia alba, Rhizophora apiculata, Bruguiera gymnorrhiza, B. parviflora, C. tagal, and Lumnitzera racemosa can have a BCF value of more than 2 (Analuddin et al. 2017). In addition, the older tissue can store more metal, and the BCF value can be greater (Mejías et al. 2013). In this study, the BCF values indicate the ability of C. zippeliana to store metals absorbed from the environment in its plant tissues. It is likely that in C. zippeliana the ability to store metals in branches is higher than that in roots and leaves.

 Table 4. Bio-concentration factor (BCF) of heavy metals in

 Ceriops zippeliana samples from eastern part of Segara Anakan

|             |      | 45   |      |      |      |
|-------------|------|------|------|------|------|
| Plant parts |      | Pb   | Cd   | Cu   | Zn   |
| Root        | Min  | 0.25 | 0.06 | 0.33 | 0.27 |
|             | Max  | 1.07 | 1.18 | 0.50 | 1.12 |
|             | Mean | 0.60 | 0.53 | 0.42 | 0.79 |
| Branch      | Min  | 1.03 | 1.09 | 0.15 | 0.39 |
|             | Max  | 1.12 | 1.34 | 2.86 | 2.98 |
|             | Mean | 1.07 | 1.21 | 1.09 | 1.30 |
| Leaves      | Min  | 0.48 | 0.37 | 0.10 | 0.07 |
|             | Max  | 0.50 | 0.45 | 0.15 | 0.31 |
|             | Mean | 0.49 | 0.41 | 0.13 | 0.21 |

#### Translocation factor (TF)

Translocation factor (TF) is used to analyze the movement of elements from roots to shoots and to evaluate the phytoextraction capability of plants by comparing metal concentrations in leaves, branches, and roots (Marchiol et al. 2004). Figure 2 shows that the highest TF value was found from roots to branches with an average of more than 1, where Cu>Cd>Pb>Zn was observed. In contrast, the TF values from roots to leaves and from branches to leaves with an average of less than 1 respectively were obtained. This indicates that metal translocation from roots to stems is better than that from roots to leaves, where the speed of translocation is affected by the transport network capillary system (Takarina and Pin 2017). It is also revealed that metal accumulates continuously in branches throughout time and that branches have a higher phytoextraction potential than those of roots and leaves (Marchiol et al. 2004).

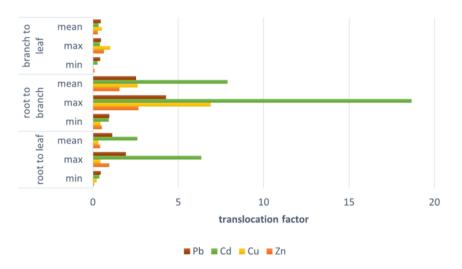



Figure 2. Diagram of each metal's translocation factors (TF) in plant sections of Ceriops zippeliana

Zn was detected at the highest concentration in the roots and branches of *C. zippeliana*. The high Zn concentration in the roots and branches may be due to its high concentration in the sediments (Thanh-Nho et al. 2018). Each metal concentration was found higher in the roots than in the leaves. This may occur because roots are the organs that interact first with various elements and metals in sediments. Moreover, the highest metal concentration in the branches suggests that *C. zippeliana* could accumulate metals in tissues (Jadia and Fulekar 2008).

The concentration of Pb in the leaves was found higher than the other three metals. This can be the case because Pb enters the plant through the leaves from the air, especially since the sample was taken from near an oil refinery, contributing to Pb contamination through the air. On the other hand, Cu can be bound to organic debris, reducing its availability in leaves (Lacerda et al. 1993). Cu and Zn concentrations in leaves are thought to be lower than that of Pb because they are widely used in biological metabolic activities (Lacerda et al. 1993; Arumugam et al. 2018).

C. zippeliana was shown to have phytoremediation capability by accumulating most metals in its branches as can be seen from BCF and TF values obtained in this study. This is in accordance with Jadia and Fulekar (2008), suggesting that tolerance to heavy metal, high metal accumulation ability, abundant root system, and high bioaccumulation factor are some of the characteristics for plants that can be applied for phytoremediation. Lacerda et al. (1993) also noted that BCF might be used to determine how well plants adapt to their environments.

### Correlation between metal concentration and SOD activity in Ceriops zippeliana

It was found that branches showed the highest SOD enzyme activity (155.57±15.66 U/ml), followed by leaves (104.2±30.07 U/ml) and the roots (98.7±33.90 U/ml). The significance value of the p-value for each element was 0.064 for Pb; 0.070 for Cd; 0.967 for Cu; and 0.0992 for Zn when it was correlated to metal concentration in individual part of the plant using Pearson correlation. All the four metal elements showed a p-value greater than 0.05, implying no significant relationship between metal concentrations in 58 ant parts and SOD enzyme activity overall. Several previous studies have al 46 shown that enzyme activity can increase or decrease in response to metal treatment (Tiryakioglu et al. 2006; Hu et al. 2007).

The activity of the SOD can decrease or increase depending on the amount of Pb present. In this case, individual plant has also unique response. SOD activity can increase and decrease in aquatic plants *Potamogeton crispus* due to differences in Pb treatment (Hu et al. 2007). When compared to control plants, SOD activity decreased at 10-20 mg/L Pb concentrations but increased again at 50 mg/L Pb concentrations. Lethal Pb concentrations in *P. crispus* are estimated to be between 10 and 15 mg/L. Mishra et al. (2006) reported different responses in the aquatic plant *Ceratophyllum*, showing that *Ceratophyllum* could show an increase in SOD as a positive tolerance

response at moderate Pb concentrations (1-25  $\mu$ m) and that SOD activity decreased with increasing duration and Pb concentration (100  $\mu$ m) (Hu et al. 2007). Thus, it can be deduced that each plant has a tolerance for different Pb levels, which affects the SOD activity. Similarly, Pb levels in the branches of *C. zippeliana* from Segara Anakan were relatively high (Figure 3), which corresponded to high SOD activit 24 Meanwhile, even though the Pb concentration in roots was higher than that in leaves, SOD activity in roots was lower than that in leaves. The ability of Pb to induce ROS accumulation might cause a change in the attivity of the SOD enzyme.

It is widely accepted that Cd toxicity causes oxidative stress in plants by causing the for 59 tion of ROS (Tiryakioglu et al. 2006). Cd can cause oxidative stress in plants by increasing ROS production (Luo et al. 2011). Plants can be protected from oxidative damage by increased SOD activity after being exposed to low Cd doses. SOD activity, on the other hand, decreases when exposed to high doses of C13 iryakioglu et al. 2006). As a comparison, in leaves and ross of B. gymnorrhiza and K. candel with treatment 1HM (1.0 mg/l Pb, and 0.2 mg/l Cd and Hg), 5HM (five times higher), 10HM (ten times higher), and 15HM (fifteen times higher). Leaf SOD activity decreased at 1HM for both species compared to the 3ntrol, but increased with heavy metal concentration. SOD activity in B. gymnorrhiza peaked at 5HM and decreased to control levels at 15HM, but remained high 3 than control at 10HM (Zhang et al. 2007). SOD activity in K. candel peaked at 10HM and remained significantly higher than controls at 15HM. Different results were obtained in sorghum with SOD activity decreasing at moderate Cd concentrations (25 µM) and increasing at higher Cd concentrations (50-100 µM) (Hassan et al. 2020). In the other hand, C. decandra still has lower SOD activity than Thespesia populneoides and S. apetala, with an average of 1.49 (Vadlapudi and Naidu 2009). As a result, the level of Pb and Cd concentrations that can inhibit or increase SOD enzyme activity in plants, particularly C. zippeliana, is unspecified.

Aside from antioxidant enzymes, plants have other defense mecha 12 ns. For example, immobilization or detention of Cd in the cell wall to prevent Cd from entering the cell, compartmentalization or accumulation of Cd in vacuoles to limit circulation and prevent Cd from entering the cytosol, exclusion or release of Cd through cell membrane diffusion, and formation of Cd into complex compounds in the form of phytochelatins, as well as to prevent the free circulation of Cd in the organ. Metalbinding to sulfhydryl or thiol groups (-SH20s an example of phytochelatin because Pb and Cd have a high affinity for sulfhydryl groups. However, due to the inhibition of functional sulfhydryl groups in the action of SOD enzymes, this binding can alter antioxidant activity (Patra et al. 2011). It is possible that the sulfhydryl groups binding to Pb or Cd caused the decrease in SOD enzyme activity in C. zippeliana in this study.

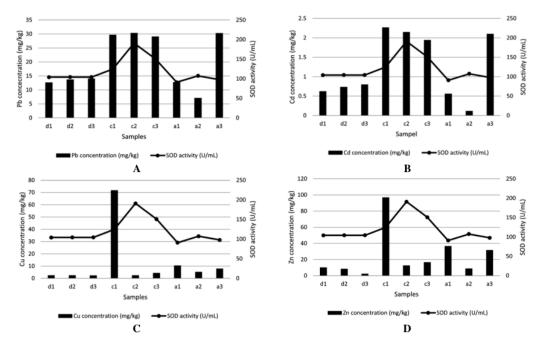



Figure 3. Correlation between heavy metal concentration and SOD activity in Ceriops zippeliana. A. Pb, B. Cd, C. Cu, D. Zn

Cu content is also reported as one of the factors influencing the increase in SOD activity. Cu content in leaves and roots increased with inc 53 ing Cu concentration due to treatment. It also affects the decrease in Fe ar 47 Mn content in leaves and roots (Karimi et al. 2012). The increase in Cu concentration was also accompanied by an increase in SOD activity active against ROS (Karimi et al. 2012). In this case, Cu acts as a cofactor for the SOD enzyme 63 lthough Cu is an essential metal needed by plants, Cu can also be harmful to plants in high concentrations. Cu content that inhibits SOD activity in *Jatropha curcas* L. was 800 µmol (Gao et al. 2008), therefore it may be stated that Cu in *C. zippeliana* from Segara Anakan has not reached the level that inhibits SOD activity

With an increase in Zn conc 35 ation in plants, the activity of SOD can increase. This can be explained by the fact that the presence of Zn as a cofactor is required for SOD (Castillo-González et al. 2018). SOD can work adequately when Zn is available in appropriate amounts. In order to increase enzyme activity, the duration of Zn treatment is also essential (Bharti et al. 2014). Similarly, a Zn deficit mainly influences the decline in Cu/ZnSOD activity, but Zn deficiency has little effect on MnSOD activity. Even if the Zn concentration is the same, the symptoms of deficiency can be of varying severity. This is due to a differential in the quantity of Zn that is physiologically

active instead of the overall Zn concentration (Cakmak et al. 1997).

Similarly, it was found in this study that the increase in SOD activity of C. zippeliana could be due to the availability of sufficient amounts of Zn. However, it could also decrease due to a lack of physiologically active Zn. Furthermore, according to Balafrej et al. (2020), because Zn and Cd have competitive interactions, the presence of Zn in organisms can prevent Cd toxicity. On the other hand, if an organism is lacking in Zn, Cd toxicity might rise, which is, of course, linked to an increase or decrease in SOD activity. Other factors that are thought to influence SOD activity include salinity (Carrasco-Ríos and Pinto 2014), pH (Kushkevych et al. 2014), or the presence of inhibitors such as H2O2 compounds (Hasanuzzaman et al. 2020), KCN, methyl viologen (Takagi et al. 2016), or nitration reactions that may occur in the plant body (Holzmeister et al. 2015).

It could be concluded from this study that the levels of Pb, Cu, and Zn metals in the sediments of Segara Anakan Cilacap were still within acceptable limits, while that of Cd was considered at polluting level though not excessive. C. zippeliana in Segara Anakan showed branches as the most metal accumulating parts compared to roots and leaves. The SOD activity in C. zippeliana from Segara Anakan showed a complex interaction with some factors other than metal concentrations in plant sections.

#### 10 ACKNOWLEDGEMENTS

The authors are sincerely grateful to the Institute for Research and Public Service Universitas Jenderal Soedirman Purwokerto for funding this project under the scheme of Riset Institutional Unsoed 2021 (Chancellor's Decree number of 1070/UN23/H10)2/2021). High appreciation is also addressed to the Faculty of Biology, Universitas Jenderal Soedirman, Banyumas Indonesia and Universitas Muhammadiyah Magelang, Indonesia for all facilities provided.

#### REFERENCES

- Analuddin K, Sharma S, Jamili, Septiana A, Sahidin I, Rianse U, Nadaoka K. 2017. Heavy metal bioaccumulation in mangrove ecosystem at the coral triangle ecoregion, Southeast Sulawesi, Indonesia. Mar Pollut Bull 125 (1-2): 472-480. DOI: 10.1016/j.marpolbul.2017.07.065.
- Arumugam G, Rajendran R, Ganesan A, Sethu R. 2018. Bioaccumulation and translocation of heavy metals in mangrove rhizosphere sediments to tissues of Avicenia marina – a field study from tropical mangrove forest. Environ Nanotechnol Monit Manag 10: 272-279. DOI: 10.1016/j.enmm.2018.07.005.
- Balafrej H, Bogusz D, Triqui, ZEIA, Guedira A, Bendaou N, Smouni A, Fahr M. 2020. Zinc hyperaccumulation in plants: A review. Plants 9 (5): 562. DOI: 10.3390/plants9050562.
- Bharti K, Pandey N, Shank dhar D, Srivastava PC, Shankhdhar SC. 2014.
  Effect of different zinc levels on activity of superoxide dismutases and acid phosphatases and organic acid exudation on wheat genotypes. Physiol Mol Biol Plants 20 (1): 41-48. DOI: 10.1007/s12298-013-0201-7.
- Booher LE, Zampello FC. 1994. Lead exposure in a petroleum refinery during maintenance and repair activities. Appl Occup Environ Hyg 9 (2): 125-131. DOI: 10.1080/1047322X.1994.10388283.
- Buchman MF. 1999. NOAA Screening Quick Reference Tables Squirts. In: National Oceanic and Atmospheric Administration.
- Bujang MA, Baharum N. 2016. Sample size guideline for correlation analysis. World J Soc Sci Res 3 (1): 37-46. DOI: 10.22158/wjssr.v3n1p37.
- Cakmak I, Ozturk L, Eker S, Torun B, Kalfa HI, Yilmaz A. 1997. Concentration of zinc and activity of copper/zinc-superoxide dismutase in leaves of rye and wheat cultivars differing in sensitivity to zinc deficiency. J Plant Physiol 151 (1): 91-95. DOI: 10.1016/S0176-1617(97)80042-9.
- Carrasco-Ríos L, Pinto M. 2014. Effect of salt stress on antioxidant enzymes and lipid peroxidation in leaves in two contrasting corn, "Lluteño" and "Jubike." Chil J Agric Res 74 (1): 89-95. DOI: 10.4067/S0718-58392014000100014.
- De Agostini A, Cortis P, Cogoni A. 2020. Monitoring of air pollution by moss bags around an oil refinery: A critical evaluation over 16 years. Atmosphere 11 (3): 272. DOI: 10.3390/atmos11030272.
- Drazkiewicz M, Skórzyńska-Polit E, Krupa, Z. 2004. Copper-induced oxidative stress and antioxidant defence in Arabidopsis thaliana. BioMetals 17 (4): 379-387. DOI: 10.1023/B:BIOM.0000029417.1815422.
- Gao S, Yan R, Cao M, Yang W, Wang S, Chen F. 2008. Effects of copper on growth, antioxidant enzymes and phenylalanine ammonia-lyase activities in *Jatropha curcas* L. seedling. Plant Soil Environ 54 (3): 117-122. DOI: 10.17221/2688-pse.
- Ghosh R, Roy S. 2019. Cadmium toxicity in plants: Unveiling the physicochemical and molecular aspects. In Cadmium Tolerance in Plants: Agronomic, Molecular, Signaling, and Omic Approaches. Elsevier Inc.
- Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, Al Mahmud J, Fujita M, Fotopoulos V. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 9 (8): 681. DOI: 10.3390/antiox9080681.
- Hasanuzzaman M, Nahar K, Anee TI, Fujita M. 2017. Glutathione in plants: Biosynthesis and physiological role in environmental stress

- tolerance. Physiol Mol Biol Plants 23 (2): 249-268. DOI: 10.1007/s12298-017-0422-2.
- Hassan MJ, Raza MA, Rehman SU, Ansar M, Gitari H, Khan I, Wajid M, Ahmed M, Shah GA, Peng Y, Li Z. 2020. Effect of cadmium toxicity on growth, oxidative damage, antioxidant defense system and cadmium accumulation in two sorghum cultivars. Plants 9 (11): 1575. DOI: 10.3390/plants9111575.
- He Z, Shentu J, Yang X, Baligar VC, Zhang T, Stoffella PJ. 2015. Heavy metal contamination of soils: Sources, indicators, and assessment. J Environ Indic 9: 17-18.
- Hidayati NV, Siregar AS, Sari LK, Putra GL, Hartono, Nugraha IP, Syakti AD. 2014. Pendugaan tingkat kontaminasi logam berat Pb, Cd dan Cr pada air dan sedimen di perairan Segara Anakan, Cilacap. Omni-Akuatika XIII (18): 30-39. DOI: 10.20884/1.oa.2014.10.1.14. [Indonesian]
- Hilmi E, Siregar AS, Syakti AD. 2017. Lead (Pb) distribution on soil, water and mangrove vegetation matrices in eastern part of Segara Anakan Lagoon, Cilacap. Omni-Akuatika 13 (2): 25-38. DOI: 10.20884/I.oa.2017.13.2.83.
- Holzmeister C, Gaupels F, Geerlof A, Sarioglu H, Sattler M, Dumer J, Lindermayr C. 2015. Differential inhibition of arabidopsis superoxide dismutases by peroxynitrite-mediated tyrosine nitration. J Exp Bot 66 (3): 989-999. DOI: 10.1093/jxb/eru458.
- Hu JZ, Shi GX, Xu QS, Wang X, Yuan QH, Du KH. 2007. Effects of Pb<sup>2+</sup> on the active oxygen-scavenging enzyme activities and ultrastructure in *Potamogeton crispus* leaves. Russ J Plant Physiol 54 (3): 414-419. DOI: 10.1134/S1021443707030181.
- Ighodaro OM, Akinloye OA. 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med 54 (4): 287-293. DOI: 10.1016/j.ajme.2017.09.001.
- Isroni W, Bahni AS, Maulida N. 2020. Assessing bioaccumulation of Pb and Cu of mangroves in Sarinah island, Indonesia. Ecol Environ Conserv 26 (4): 1584-1586.
- IUCN. 2008. Ceriops zippeliana https://www.iucnredlist.org/species/178812/7614493
- Jadia CD, Fulekar, MH. 2008. Phytotoxicity and remediation of heavy metals by fibrous root grass (sorghum). J Appl Biosci 10 (1): 491-499
- Kabata-Pendias A, Pendias H. 2000. Trace Elements in Soils and Plants (3rd Ed.). CRC Press, Boca Raton, Florida.
- Karimi P, Khavari-Nejad RA, Niknam V, Ghahremaninejad F, Najafi F. 2012. The Effects of excess copper on antioxidative enzymes, lipid peroxidation, proline, chlorophyll, and concentration of Mn, Fe, and Cu in Astragalus neo-mobayenii. Sci World J 2012: 615670. DOI: 10.1100/2012/615670.
- Karuppanapandian T, Moon JC, Kim C, Manoharan K, Kim W. 2011. Reactive oxygen species in plants: Their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5 (6): 709-725
- Kozlowski TT, Pallardy SG. 2002. Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rrev 68 (2): 270-334.
- Kumar D, Singh D, Barman S, Kumar N. 2016. Heavy metal and their regulation in plant system: An overview. In: Singh A, Prasad SM, Singh RP (Eds.). Plant Responses to Xenobiotics. Springer.
- Kumar V, Pandita S, Singh Sidhu GP, Sharma A, Khanna K, Kaur P, Bali AS, Setia R. 2021. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere 262: 127810. DOI: 10.1016/j.chemosphere.2020.127810.
- Kushkevych IV, Antonyak HL, Fafula RV. 2014. Activity and kinetic properties of superoxide dismutase of the sulfate-reducing bacteria Desulfovibrio piger Vib -7 and Desulfomicrobium sp. Rod-9. Microbiol Biotechnol 4: 26-35. DOI: 10.18524/2307-4663.2014.4(28).48409.
- Lacerda LD, Carvalho CEV, Tanizaki KF, Ovalle ARC, Rezende CE. 1993. The biogeochemistry and trace metals distribution of mangrove rhizospheres. Biotropica 25 (3): 252. DOI: 10.2307/2388783.
- Loring DH, Rantala, RTT. 1992. Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Sci Rev 32 (4): 235-283. DOI: 10.1016/0012-8252(92)90001-A.
- Luo H, Li H, Zhang X, Fu J. 2011. Antioxidant responses and gene expression in perennial ryegrass (*Lolium perenne* L.) under cadmium stress. Ecotoxicology 20 (4): 770-778. DOI: 10.1007/s10646-011-0628-y.

- Marchiol L, Assolari S, Sacco P, Zerbi G. 2004. Phytoextraction of heavy metals by canola (*Brassica napus*) and radish (*Raphanus sativus*) grown on multicontaminated soil. Environ Pollut 132 (1): 21-27. DOI: 10.1016/j.envpol.2004.04.001.
- Marques DM, Veroneze Júnior V, da Silva AB, Mantovani JR, Magalhães PC, de Souza TC. 2018. Copper Toxicity on photosynthetic responses and root morphology of Hymenaea courbaril L. (Caesalpinioideae). Water Air Soil Pollut 229: 138. DOI: 10.1007/s11270-018-3769-2.
- Mejías CL, Musa JC, Otero J. 2013. Exploratory evaluation of retranslocation and bioconcentration of heavy metals in three species of mangrove at Las Cucharillas Marsh, Puerto Rico. J Trop Life Sci 3 (1): 14-22. DOI: 10.11594/itls.03.01.03.
- Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK. 2006. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65 (6): 1027-1039. DOI: 10.1016/j.chemosphere.2006.03.033.
- Noulas C, Tziouvalekas M, Karyotis T. 2018. Zinc in soils, water and food crops. J Trace Elem Med Biol 49: 252-260. DOI: 10.1016/j.jtemb.2018.02.009.
- Patra RC, Rautray AK, Swarup D. 2011. Oxidative stress in lead and cadmium toxicity and its amelioration. Vet Med Intl 2011: 457327. DOI: 10.4061/2011/457327.
- Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E. 2011. Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213: 113-136. DOI: 10.1007/978-1-4419-9860-6\_4.
- Qiu YW, Yu KF, Zhang G, Wang WX. 2011. Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island, China. J Hazard Mater 190: 631-638. DOI: 10.1016/j.jhazmat.2011.03.091.
- Raja V, Majeed U, Kang H, Andrabi KI, John R. 2017. Abiotic stress: Interplay between ROS, hormones and MAPKs. Environ Exp Bot 137: 142-157. DOI: 10.1016/j.envexpbot.2017.02.010.
- Randox Laboratories L. 2009. RANSOD Manual. Randox Laboratories
- Rodriguez HG, Mondal B, Sarkar NC, Ramaswamy A, Rajkumar D, Maiti RK. 2012. Comparative morphology and anatomy of few mangrove species in Sundarbans, West Bengal, India and its adaptation to saline habitat. Intl J Bio-Resource Stress Manae 3 (1): 1-17.
- Siregar TH, Priyanto N, Putri AK, Rachmawati N, Triwibowo R, Dsikowitzky L, Schwarzbauer J. 2016. Spatial distribution and seasonal variation of the trace hazardous element contamination in Jakarta Bay, Indonesia. Mar Pollut Bull 110 (2): 634-646. DOI: 10.1016/j.marpolbul.2016.05.008.
- Smolders E, Mertens J. 2013. Cadmium. In: Alloway BJ (Ed.). Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability. Springer.

- Srikanth S, Lum SKY, Chen Z. 2016. Mangrove root: Adaptations and ecological importance. Trees Struct Funct 30 (2): 451-465. DOI: 10.1007/s00468-015-1233-0.
- Surya S, Hari N. 2017. Leaf anatomical adaptation of some true mangrove species in Kerala. Intl J Pharm Sci Res 2 (3): 11-14.
- Syakti AD, Demelas C, Hidayati NV, Rakasiwi G, Vassalo L, Kumar N, Prudent P, Doumenq P. 2015. Heavy metal concentrations in natural and human-impacted sediments of Segara Anakan Lagoon, Indonesia. Environ Monit Assess 187: 4079. DOI: 10.1007/s10661-014-4079-9.
- Takagi D, Takumi S, Hashiguchi M, Sejima T, Miyake C. 2016. Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem I photoinhibition. Plant Physiol 171 (3): 1626-1634. DOI: 10.1104/pp.16.00246.
- Takarina ND, Pin TG. 2017. Bioconcentration factor (BCF) and Translocation factor (TF) of heavy metals in mangrove trees of Blanakan fish farm. Makara J Sci 21 (2): 77-81. DOI: 10.7454/mss.v21i2.7308.
- Thanh-Nho N, Marchand C, Strady E, Vinh TV, Nhu-Trang, TT. 2018. Metals geochemistry and ecological risk assessment in a tropical mangrove (Can Gio, Vietnam). Chemosphere 219: 365-382. DOI: 10.1016/j.chemosphere.2018.11.163.
- Tiryakioglu M, Eker S, Ozkutlu F, Husted S, Cakmak I. 2006. Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. J Trace Elem Med Biol 20 (3): 181-189. DOI: 10.1016/j.jtemb.2005.12.004.
- Uddin MM, Chen Z, Huang L. 2021. Cadmium accumulation, subcellular distribution and chemical fractionation in hydroponically grown Sesuvium portulacastrum [Aizoaceae]. PLoS One 15: e244085 DOI: 10.1371/journal.pone.0244085.
- Usman ARA, Alkredaa RS, Al-Wabel MI. 2013. Heavy metal contamination in sediments and mangroves from the Coast of Red Sea: Avicennia marina as potential metal bioaccumulator. Ecotoxicol Environ Saf 97: 263-270. DOI: 10.1016/j.ecoenv.2013.08.009.
- Vadlapudi V, Naidu KC. 2009. Available online through evaluation of antioxidant potential of selected mangrove Plants. J Pharm Res 2 (11): 1742-1745.
- Wuana RA, Okieimen FE. 2011. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011: 402647. DOI: 10.5402/2011/402647.
- Yan X, Zhang F, Zeng C, Zhang M, Devkota LP, Yao T. 2012. Relationship between heavy metal concentrations in soils and grasses of roadside farmland in Nepal. Intl J Environ Res Public Health 9 (9): 3209-3226. DOI: 10.3390/ijerph9093209.
- Zhang FQ, Wang YS, Lou ZP, Dong JDe. 2007. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67: 44-50. DOI: 10.1016/j.chemosphere.2006.10.007.

**ORIGINALITY REPORT** 

19% SIMILARITY INDEX

14%

I **T**%
INTERNET SOURCES

15% PUBLICATIONS

4%

STUDENT PAPERS

**PRIMARY SOURCES** 

1

link.springer.com

Internet Source

1 %

2

mafiadoc.com

Internet Source

**1** %

3

Feng-Qin Zhang, You-Shao Wang, Zhi-Ping Lou, Jun-De Dong. "Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza)", Chemosphere, 2007

1 %

Publication



Feng-tao LI, Jian-min QI, Gao-yang ZHANG, Lihui LIN, Ping-ping FANG, Ai-fen TAO, Jian-tang XU. "Effect of Cadmium Stress on the Growth, Antioxidative Enzymes and Lipid Peroxidation in Two Kenaf (Hibiscus cannabinus L.) Plant Seedlings", Journal of Integrative Agriculture, 2013

1 %

| 5  | Internet Source                                                                                                                                                                                                                                | 1 % |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 6  | www.mdpi.com Internet Source                                                                                                                                                                                                                   | 1 % |
| 7  | Submitted to University of Bath Student Paper                                                                                                                                                                                                  | 1 % |
| 8  | Nguyen Thanh-Nho, Cyril Marchand, Emilie<br>Strady, Nguyen Huu-Phat, Tran-Thi Nhu-<br>Trang. "Bioaccumulation of some trace<br>elements in tropical mangrove plants and<br>snails (Can Gio, Vietnam)", Environmental<br>Pollution, 2019        | 1 % |
| 9  | Ramkrishna Nirola, Mallavarapu Megharaj,<br>Rupak Aryal, Ravi Naidu. "Screening of metal<br>uptake by plant colonizers growing on<br>abandoned copper mine in Kapunda, South<br>Australia", International Journal of<br>Phytoremediation, 2015 | <1% |
| 10 | journal.uin-alauddin.ac.id Internet Source                                                                                                                                                                                                     | <1% |
| 11 | Submitted to Mahidol University Student Paper                                                                                                                                                                                                  | <1% |
| 12 | digibug.ugr.es Internet Source                                                                                                                                                                                                                 | <1% |

| 13 | dokumen.pub<br>Internet Source                                                                                                                                                                                                                              | <1% |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 14 | issuu.com<br>Internet Source                                                                                                                                                                                                                                | <1% |
| 15 | www.hyxb.org.cn Internet Source                                                                                                                                                                                                                             | <1% |
| 16 | Submitted to University of Zululand Student Paper                                                                                                                                                                                                           | <1% |
| 17 | media.neliti.com Internet Source                                                                                                                                                                                                                            | <1% |
| 18 | Tuti Hartati Siregar, Nandang Priyanto, Ajeng Kurniasari Putri, Novalia Rachmawati et al. "Spatial distribution and seasonal variation of the trace hazardous element contamination in Jakarta Bay, Indonesia", Marine Pollution Bulletin, 2016 Publication | <1% |
| 19 | www.frontiersin.org Internet Source                                                                                                                                                                                                                         | <1% |
| 20 | Abiotic Stress Responses in Plants, 2012.  Publication                                                                                                                                                                                                      | <1% |
| 21 | www.sirsyedcollege.ac.in Internet Source                                                                                                                                                                                                                    | <1% |
| 22 | AS Piranti, DRUS Rahayu, ER Ardli, N<br>Setyaningrum, DS Widyartini, I Insan. "Water                                                                                                                                                                        | <1% |

## Quality Status of Segara Anakan Cilacap Indonesia for Biota Life", IOP Conference Series: Earth and Environmental Science, 2020

| 23 | www.collectionscanada.gc.ca Internet Source                                                                                                                                                                                                                                                | <1% |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 24 | Donglin Guo, Jun Ma, Wenyue Su, Baoming<br>Xie, Changhong Guo. "Contribution of reactive<br>oxygen species (ROS) to genotoxicity of<br>Nitrobenzene on V. faba", Ecotoxicology, 2014<br>Publication                                                                                        | <1% |
| 25 | oaji.net<br>Internet Source                                                                                                                                                                                                                                                                | <1% |
| 26 | www.plantarchives.org Internet Source                                                                                                                                                                                                                                                      | <1% |
| 27 | P. Bhattacharya. "Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal, India", Paddy and Water Environment, 09/24/2009  Publication                                                                                                       | <1% |
| 28 | Prabhat K. Chauhan, Sudhir K. Upadhyay, Manikant Tripathi, Rajesh Singh, Deeksha Krishna, Sushil K. Singh, Padmanabh Dwivedi. "Understanding the salinity stress on plant and developing sustainable management strategies mediated salt-tolerant plant growth-promoting rhizobacteria and | <1% |

# CRISPR/Cas9", Biotechnology and Genetic Engineering Reviews, 2022 Publication

| 29 | Submitted to Universidad Nacional del Centro<br>del Peru<br>Student Paper                                                                                                                                                   | <1% |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 30 | Submitted to University of Basrah - College of Science Student Paper                                                                                                                                                        | <1% |
| 31 | rucore.libraries.rutgers.edu Internet Source                                                                                                                                                                                | <1% |
| 32 | Gunes, A "Silicon mediates changes to some physiological and enzymatic parameters symptomatic for oxidative stress in spinach (Spinacia oleracea L.) grown under B toxicity", Scientia Horticulturae, 20070626  Publication | <1% |
| 33 | Mamta Sharma, Jyoti Mathur. " Phytoaccumulation of zinc from contaminated soil using ornamental plants species L. and L. ", International Journal of Phytoremediation, 2022 Publication                                     | <1% |
| 34 | www.pomics.com Internet Source                                                                                                                                                                                              | <1% |
| 35 | "Proceedings of the 3rd International Conference on Green Environmental                                                                                                                                                     | <1% |

## Engineering and Technology", Springer Science and Business Media LLC, 2022

Publication

Bagmi Pattanaik, Rhena Schumann, Ulf <1% 36 Karsten. "Chapter 2 Effects of Ultraviolet Radiation on Cyanobacteria and their Protective Mechanisms", Springer Science and Business Media LLC, 2007

Publication

MICHAEL HEADS. "Seed plants of Fiji: an 37 ecological analysis", Biological Journal of the Linnean Society, 2006

<1%

Publication

Muhammad A. Farooq, Rafaqat A. Gill, 38 Basharat Ali, Jian Wang, Faisal Islam, Shafaqat Ali, Weijun Zhou. "Subcellular distribution, modulation of antioxidant and stress-related genes response to arsenic in Brassica napus L.", Ecotoxicology, 2015

<1%

Publication

Reviews of Environmental Contamination and Toxicology, 2014.

<1%

Publication

Saud Alamri, Yanbo Hu, Soumya Mukherjee, 40 Tariq Aftab, Shah Fahad, Ali Raza, Manzoor Ahmad, Manzer H. Siddiqui. "Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative

<1%

defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress", Plant Physiology and Biochemistry, 2020

| 41 | Triyoni Purbonegoro, Suratno Suratno. "Health Risk Assessment Related to Total Mercury (THg) Concentration in Clam (Periglypta crispata) from Kepulauan Seribu Regency, Indonesia", Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 2020 Publication | <1 % |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 42 | scholarbank.nus.edu.sg Internet Source                                                                                                                                                                                                                                       | <1%  |
| 43 | www.vliz.be Internet Source                                                                                                                                                                                                                                                  | <1%  |
| 44 | academicjournals.org Internet Source                                                                                                                                                                                                                                         | <1%  |
| 45 | aurore.unilim.fr Internet Source                                                                                                                                                                                                                                             | <1%  |
| 46 | ebin.pub<br>Internet Source                                                                                                                                                                                                                                                  | <1%  |
| 47 | lurepository.lakeheadu.ca Internet Source                                                                                                                                                                                                                                    | <1%  |
| 18 | www.aasci.org                                                                                                                                                                                                                                                                |      |

"Fenugreek", Springer Science and Business Media LLC, 2021

<1%

Publication

"Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress", Springer Science and Business Media LLC, 2017

<1%

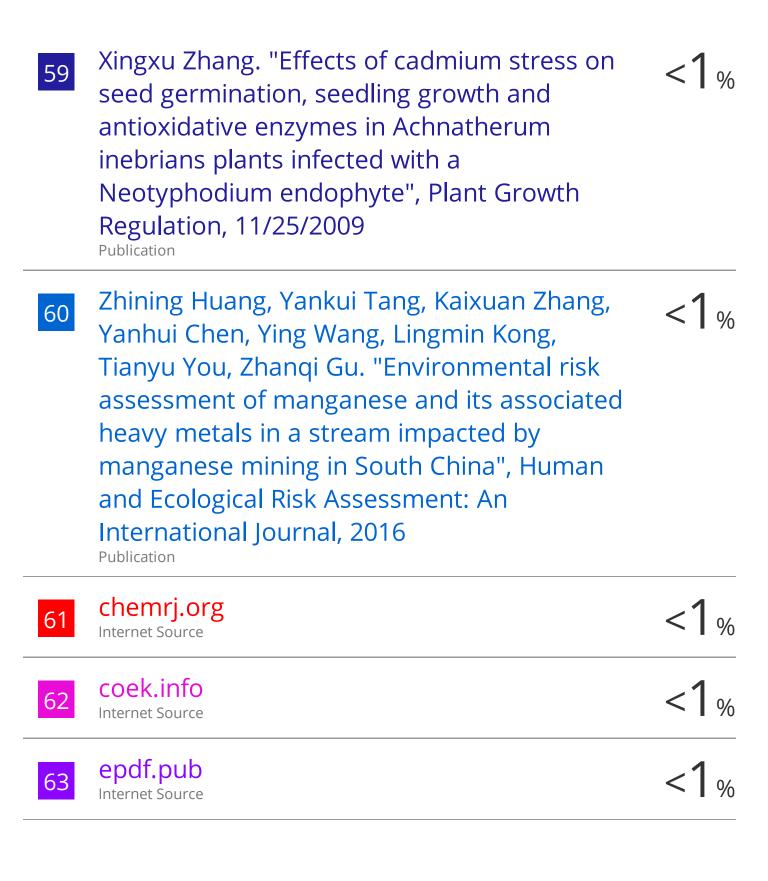
Publication

Anjuman Hussain, Faroza Nazir, Qazi Fariduddin. "Polyamines (spermidine and putrescine) mitigate the adverse effects of manganese induced toxicity through improved antioxidant system and photosynthetic attributes in Brassica juncea", Chemosphere, 2019

<1%

Publication

Aye en. "Chapter 3 Oxidative Stress Studies in Plant Tissue Culture", IntechOpen, 2012


<1%

Publication

Chao Wang. "Cadmium toxicity and phytochelatin production in a rooted-submerged macrophyte *Vallisneria spiralis* exposed to low concentrations of cadmium", Environmental Toxicology, 2008

<1%

| 54 | Dhruba Jyoti Sarkar, Soma Das Sarkar, Basanta Kumar Das, Bigan Kumar Sahoo et al. "Occurrence, fate and removal of microplastics as heavy metal vector in natural wastewater treatment wetland system", Water Research, 2021 Publication                                                                                                              | <1%  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 55 | Hossein Parvaresh, Zahra Abedi, Parvin<br>Farshchi, Mahmood Karami, Nematullah<br>Khorasani, Abdolreza Karbassi. "Bioavailability<br>and Concentration of Heavy Metals in the<br>Sediments and Leaves of Grey Mangrove,<br>Avicennia marina (Forsk.) Vierh, in Sirik Azini<br>Creek, Iran", Biological Trace Element<br>Research, 2010<br>Publication | <1%  |
| 56 | Phytoremediation, 2015. Publication                                                                                                                                                                                                                                                                                                                   | <1 % |
| 57 | Soil Biology, 2015. Publication                                                                                                                                                                                                                                                                                                                       | <1%  |
| 58 | Uğurcan Baran, Yasemin Ekmekçi. "Physiological, photochemical, and antioxidant responses of wild and cultivated Carthamus species exposed to nickel toxicity and evaluation of their usage potential in phytoremediation", Environmental Science and Pollution Research, 2021                                                                         | <1%  |



Exclude quotes On

Exclude bibliography