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equality of two slopes. For three different scenarios on the values of the
slope, namely (i) unknown (unspecified), (i) known (specified), and (iii)
suspected, we derive the unrestricted test (UT), restricted test (RT), and
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1. Introduction

Inferences about population parameters could be improved using non sample prior informa-
tion (NSPI) from trusted sources (cf. Bancroft, 1944). Such information is usually available
from previous studies or expert knowledge or experience of the researchers, and is unrelated
to any sample data.

It is well known that, for any linear regression model, the inference on the intercept param-
eter depends on the value of the slope parameter. Thus the NSPI on the value of the slope
parameter would directly affect the inference on the intercept parameter.

An appropriate statistical test on the suspected value of the slopes, after expressing it in the
form a null hypothesis, is useful to eliminate the uncertainty on this suspected information.
Then the outcome of the preliminary test on the uncertain NSPI on the slopes is used in the
hypothesis testing on the intercepts to improve the performance of the statistical test (cf. Khan
and Saleh, 2001; Yunus and Khan, 2011a; Saleh, 2006, pp. 55-58).

As an example, in any spotlight analysis the aim is to compare the mean responses of the two
categorical groups at specific values of the continuous covariate. Furthermore, we consider a
response variable (1), a continuous covariate (), and a categorical explanatory variable ()
with two categories (e.g., treatment and control). If there is an association between x and
¢, the least squares line of 5 on y will be parallel with different intercepts for two different
categories of {. However, the two fitted lines will not be parallel if there is no association
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between the two explanatory variables because of the presence of interaction. The scenario
will be different if the two explanatory variables are associated and they also interact.

In any inference, estimation or test, on the equality of the two intercepts of the two regres-
sion lines of ¥ on X for two different categories of Z, the slope of the regression lines plays
a key role. The test (also the estimation) of intercept is directly impacted by the values of the
slope. Therefore, the type of NSPI on the value of the slopes will influence the inference on
the intercepts.

The suspected NSPI on the slopes may be (i) unknown or unspecified if NSPI is not avail-
able, (ii) known or specified if the exact value is available from NSPL and (iii) uncertain if
the suspected value is unsure. For the three different scenarios, three different statistical tests,
namely the (i) unrestricted test (UT), (ii) restricted test (RT), and (iii) pre-test test (PTT), are
defined.

In the area of estimation with NSPI there has been a lot of work, notably Bancroft (1944,
1964), Han and Bancroft (1968), and Judge and Bock (1978) introduced a preliminary test esti-
mation of parameters to estimate the parameters of a model with uncertain prior information.
Khan and Saleh (1997), Khan (2000), Khan and Saleh ( 2001), Khan et al. (2002), Khan and
Hoque (2003), Khan (2003, 2005), Khan and Saleh (2005, 2008), Khan (2008), Saleh (2006),
and Yunus (2010) covered various works in the area of improved estimation using NSPI, but
thereis a very limited number of studies on the testing of parameters in the presence of uncer-
tain NSPL Although Tamura (1965), Saleh and Sen (1978, 1982), Yunus and Khan (2007),
Yunus (2010), and Yunus and Khan (2011a, b) used the NSPI for testing hypotheses using
non parametric methods, the problem has not been addressed in the parametric context.

A parallelism problem can be described as a special case of two related regression lines on
the same dependent and independent variables that come from two different categories of the
respondents. If the independent data sets come from two random samples, researchers often
wish to model the regression lines that are parallel (ie., the slopes of the two regression lines
are equal) or check whether the lines have the same intercept on the vertical axis. To test the
parallelism of the two regression equations, namely

yj =01+ pixi;+ e and y, =0 + Boxy + ey, j=12. ..., 1

for the two data sets: y = [yrl.y;]' and x = [x',.x;]' where y, = [yi1..... y,,!l]', V=
[ya1, - ...yz,,l]', x =[x, ..., x.,,l]', and x; = [x2,..., xz,,ljr, we use an appropriate two-
sample f test for testing Hy : f, = B, (parallelism). This ¢ statistic is given as

BB
S

t

(FL—F2)

where B, and B, are estimates of the slopes f; and B, respectively, and S 5 7 , is the standard
error of the estimated difference between the two slopes (Kleinbaum et al., 2008, p. 223). The
parallelism of the two regression equations above can be expressed as a single model in matrix

form, that is,
y=Xdb+e
where @ = [6,.6,, B1. -], X = [X,. X,] with X; =[1,0,x,,0] and X, = [0, 1,0, x,] ,

and e = [e,, e;]. The matrix form of the intercept and slope parameters can be written,
respectively, as 8 = [0y, 6] and B = [B1, B2] (cf Khan, 2006).
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For the model under study two independent bivariate samples are considered such that
Yii ~ N(6; + ﬁ,-x,—_,-.azj fori=1,2and j=1,..., 1;. See Khan (2003, 2006, 2008) for details
on parallel regression models and related analyses.

To explain the importance of testing the equality of the intercepts when the equality of
slopes is uncertain, we consider the general form of the two parallel simple regression models
(PRM) as follows:

Y, :5,-1,!|.+ﬁ,-x,-_,-+e,-_,-. i=1,2, ﬂndj: 1,2,..., M; (])

where Y, = (Y, ..., Y,-,il.}' is a vector of n; observable random variables, 1, = (1,..., 1
is an n;-tuple of s, X = (xp. ..., x,—,,l.)' is a vector of #; independent variables, #; and ;
are unknown intercept and slope, respectively, and e; = (e, .. ., e,-,il_j' is the vector of errors
which are mutually independent and identically distributed as normal variable, that is, e; ~
N(0, 021,,I.} where I,, is the identity matrix of order »;. Equation (1) represents two linear
models with different intercept and slope parameters. If 8, = 8, = B, then there are two par-
allel simple linear models when ¢s are different.

This paper considers statistical tests with NSPI and the criteria that are used to compare
the performance of the UT, RT, and PTT are the size and power of the tests. A statistical test
that has a minimum size is preferable because it will give a smaller probability of the Type I
error. Furthermore, a test that has maximum power is preferred over any other tests because it
guarantees the highest probability of rejecting any false null hypothesis. A test that minimizes
the size and maximizes the power is preferred over any other tests. In reality, the size of a test
is fixed, and then the choice of the best test is based on its maximum power.

This study considers testing the equality of the two intercepts when the equality of slopes
is suspected. For which we focus on three different scenarios on the slope parameters, and
define three different tests:

(i) For the UT, let ¢V" be the test function and TUY" be the test statistic for testing H, :
0 = 0, against H, : @ > 6, when B = (B,, B,) is unspecified.

(ii) FortheRT,let ™ bethe test function and T*' is the test statistic for testing Hy : 8 = 6,
against H, : 6 = 8, when B = 1, (fixed vector).

(iii) For the PTT, let ¢"' " be the test function and T""" be the test statistic for testing
H, : 8 = 8, against H, : & > 8, following a pre-test (PT) on the slope parameters. For
the PT, let """ be the test function for testing Hy : = 1, (a suspected constant)
against H : B > Bols to remove the uncertainty. If the H is rejected in the PT, then
the UT is used to test the intercept, otherwise the RT is used to test Hy. Thus, the PTT
on Hy depends on the PT on H', and is a choice between the UT and RT.

The unrestricted maximum likelihood estimator or least square estimator of intercept and
slope vectors, 8 = (#,,6,) and B = (B, B,), are given as

' Lara?  of
=¥ - 1F and f = 2~ I @)
mQ;
where § = (61, 62), B = (B1, f2) , T = Diag(%1, %), Qi = x,xi — (;-)[L,xi], and 6; = Y; —
fx fori=1,2.

Furthermore, the likelihood ratio (LR) test statistic for testing H, : 8 = 8, against H, : 0 >

#, is given by

 9HDJHI
F=-——"277 3)
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where H = I, — ﬁlzl;ﬂz_zl,ﬂz_zl = Diag{n.Q, ..... anE)’ ?'IQ = Zr’zzl ?'IF'Q,', ?'IF'Q,' = x;x,' —
;'I_(l;x,-f, ands’ = (n—4)7' 38 (Y — 6,1, — Bx;) (Y — 6,1, — Bx;) (Saleh, 2006, pp. 14~
15). Under H,, F f@hows a central F distribution with (1, n — 4) degrees of freedom, and
under H, it follows a non central F distribution with (1, n — 4) degrees of freedom and non
centrality parameter A*/2, where

0HDL,HO (0 —6,)H D3 H(® — 6)

_ (@ — Bo)rﬂjz[s —80y) (4)

AE

a

and Dy, = HFD2_2'H. When the slopes () are equal to 851, (specified), the restricted maxi-
mum likelihood estimator of the intercept and slope vectors is given as

1L,1,D)'B
nQ
Section 2 provides the proposed three tests. Section 3 derives the distribution of the test

statistics. The power function of the tests are obtained in Section 4. An illustrative example

is given in Section 5. The comparison of the power of the tests and concluding remarks are
provided in Sections 6 and 7.

9=0+THB and B = (5)

2. The proposed tests

To test the equality of two intercepts when the equality of the slopes is suspected, we define
three different test statistics as follows.
(i) For unspecified B, the test statistic of the UT for testing H; : @ = 6, against H, : @ > 8,
under Hj, is given by
-~ —
T _ 6 HD,'H ©)

2
Sur

where

2

= (=97 Y (¥ — 81, — Bx) (Y — 0,1, — Bx).

i=1
The TUT fop]ws a central F distribution with (1,7 — 4) degrees of freedom (d.f.).
oll

Under H,, it follows anon central F distribution with (1, n — 4) d.f. and non centrality
parameter A2/2. Under the normal model, we have

9-0 0 5 Dy, —TDy,
(5-8)%[G) (. )] o

Whel’ﬂD“ =N"! + TD22 Tﬁ and N = Diﬂg{l’“ ..... M, ).
(ii) For specified value of the slopes, f = ;1 (fixed value), the test statistic of the RT for
testing Hy : @ = @, against H, : § > 8, under H,, is given by
— (6 HD;HO) + (B H D'HB) ®
5 .

Sre
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where

2
= (n—=2)" Y (¥ — 81, — Bx;) (¥ — 61, — Bx) and B = fo L.
i=l1
The T* follows a central F distribution with (1, n — 4) d.f. Under H,,, it follows a non
central F distribution with (1, # — 4) d.f. and non centrality parameter A2/2. Again,

note that
-0\ _ THB , (D}, D,
(ﬁ—ﬂ) N[( 0 ) o (Drz D)} )

where Dj, =N '+ TLLTE and D, = —-L1,1,T.

(iii) When the value of the slope is suspected to be f = 31, but unsure, a pre-test on the

slope is required before testing the intercept. For the preliminary test (PT) of Hy : B =
Bol, against H) : B = f1,, the test statistic under the null hypothesis is defined as

st —

BHD,Hp

2
S!ef

T (10)

which follows a central F distribution with (1, n — 4) d.f. Under H,, it follows a non
central F distribution with (1, n — 4) d.f. and non centrality parameter A*/2. Again,
note that

60— Boly _ (B — Bl s (11,/nQ 0
(305) [ (7). = (5 wp,)] w

- f -1
where §+1, = 21222 B (¢ saleh, 2006, p. 273).
Let us choose a positive number o; (0 < ; < 1, forj = 1,2, 3) and real value F, .,
(with v, as the numerator d.f. and v, as the denominator d.f.) such that

P(T"" > Fyge | 0 =6) =, (12)
P(T™ > F e | 0=0p) =z (13)
P(T" > Fipyaw | B=Bols) = as. (14)

Now the test function for testing Hy : @ = 8 against H; : @ > @, is defined by

& — { L if (T <F. T > F)or (I > F, T = F,)

15
0, otherwise, (15)

Whﬂl'ﬂ}";, = }:&l.l_!i—-'l-:Fb = ;;.I.ri—-‘l- ﬂndﬁ = I-:r‘_r}_l.ll!—-'l-'

3. Sampling distribution of test statistics

To derive the power function of the UT, RT, and PTT the sampling distribution of the test
statistics proposed in Section 2 is required. For the power function of the PTT the joint distri-
bution of (TYY, T*") and (T*®", T*7) is essential. Let {N,} be a sequence of local alternative
hypotheses defined as

A A
Ny : (080, B— Boly) = (7%7;) =, (16)
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where A is a vector of fixed real numbers and @ is the true value of the intercept. The local
alternative is used only to compute the power of the tests for specific values of the parameters.
Under N, the value of (8 — ;) is greater than 0 and under H, the value of (8 — 8;) is equal
to 0.

Following Yunus and Khan (2011b) and Equation (6), we define the test statistic of the UT
when B is unspecified, under N,,, as

— ! ‘n-L —

S!ef

The TIUT follows a non central F distribution with non centrality parameter which is a func-
tion of (@ — @y) and (1, n — 4) d.f. under N,,.

From Equation (8) under N,, (8 — 8y) > Oand (8 — fy1;) > 0, the test statistic of the RT
becomes

I;R;r — TRT _ ! 6 — H”'JIHIDE_EIH{H —b0) + (B - ,Bu-lﬂrHrDz_le[ﬁ —— } - (18)

2

Sre

The Tz” also follows a non central F distribution with a non centrality parameter which is
a function of (# — 8,) and (1, n — 4) d.f. under N,,. Similarly, from Equation (10) the test
statistic of the PT is given by

I =1 — ! (B— ﬁolzer'Bz‘;z'H{ﬁ — Fola) } _ (19)

Stet

Under H,, the Tj” follows a non central F distribution with a non centrality parameter which
isa function of (f — Bply)and (p— 1, n —4) d.f

From Equations (6), (8), and (10) the TV" and T"" are correlated, and the T%" and T"'
are uncorrelated. The joint distribution of the TV" and T, that is,

TUT
() o

is a correlated bivariate F distribution with (1, # — 4) d.f. The probability density function
(pdf) and cumulative distribution function (cdf) of the correlated bivariate F distribution are
found in Krishnaiah (1964), Amos and Bulgren (1972), and El-Bassiouny and Jones (2009).
Later, Johnson etal. (1995, p. 325) described a relationship of the bivariate F distribution with
the bivariate beta distribution. This is due to the fact that the pdf of the bivariate F distribution
has the same form as the pdf of the beta distribution of the second kind.

4, Power function and size of tests

The power functions of the UT, RT, and PTT are derived below. From Equations (6) and (17),
(8) and (18), and (10), (15), and (19), the power functions of the UT, RT, and PTT are given,
respectively, as

(i) The power of the UT

7T =P(T"" = Fyqa | Ny)

o A HD;'H\
=1-—P (1,“ =Hg1na— %2')

Sut
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A, DyA

‘Sut
=1- P(]',UT < Fyan-a— kufal} . (21)
where 8, = A, DA and k,, = 3.
(ii) The power of the RT '
W) =P(T" > Fyy0-a | N,)
. 0 —6,) HD,, H(6 — 6
=P (1;“ T ‘”)
) ) Sre
" A HD;'H\ A H D;'HA,
=1-P (T;” = fipln-a— ¢ 0y ) —i_ o O _))
See
=1—P(T" < Eypns — ka (51 + 82)) (22)
where § = A,Dk; and ke = 7.
The power function of the PT is
W) = P(T" > Eiy10-41K,)
BT _ g MH D, H),
=1-P|T; =Fy1na———5—
32
it
=1=P(Ty" < Fp1n-s—kuds). (23)
(iii) The power of the PTT
) = P(T” <Fpynae T9 = -I":.:l.l.ra—4}
+ P(T"" = Fyyrn-a. TV = By 104)
=(1—-a"a™ +dy(a. b, (24)
where d,,(a, b) is a bivariate F probability integral defined as
di(a, b) = f f FEPT FUTdF™ dFv!
i ]
a b N B
=1 —[ [ FEP FUN AR AFYY (25)
1] 1]
where
. A,H D, HA,
a= -h.:]..l.ri—-'l- - % = L3 lun—4 — k||§2
(s;
and
: (6 —6,) HD,,'H(6 — 0,)
b:h.:[.l.ri—Ai - 2 52“ ° = u[.l.r!—ni_klal-

The integral fﬂ” fﬂb FEPT FYNAF™ dFYT in Equation (25) is the cdf of the correlated
bivariate non central F distribution of the UT and PT. Following Yunus and Khan
(2011c), we define the pdfand cdf of the bivariate non central F (BNCF) distribution,
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respectively, as

m4n
2

(1—p7)2 = e — 2
fln,ya) = (n) [W]ZZZ[;)N(_) f‘{m;’2+ﬂ}
) (E—“l-’z{f},ﬂ]”) (=) .mz+f+rl—
r! F{m/ﬁ—i—}-i-fl
) (E_pl'Q{Sz/erl) (%) .m2+a+ral
! r‘{m/2+}+fzi

(qei)
x T(g [(1 = ) +%y| +;y2} " 26)

and

a ]
F(a.b)=P(Y; < a.Y, < b) zf f fr. y)dydys, @7)
1] (1]

where m is the numerator and n is the denominator degrees of freedom of the F variable.
Setting @ = b = d, Schuurmann et al. (1975) presented the critical values of d in a table of
multivariate F distribution.

From Equation (24), it is clear that the cdf of the BNCF distribution is involved in the
expressiun ofthe power functiun of the PTT Using Equation (2?) we evaluate the cdf of the

;;;;;;

R codes are written, and the R package is used for the computation of the power and size and
other graphical analyses.
Furthermore, the size of the UT, RT, and PTT are given, respectively, as
(i) The size of the UT
o' =P(T"" > Fy 10-a | Hy: 0 =16,)
=1=P(T"" <Fy1ua|Ho:0=0)
=1-P(T\"" <Fy10-4)- (28)
(ii) The size of the RT
o =P(T" > Forna | Ho: 0=8)
=1- P(Tm <F,ina|Hp: 0= 90}
=1=P(L," <FEyns—kids). (29)
The size of the PT is given by
o (d) = ( T > Enne 4|Hu}
=1=P(T" < Fyrn-a)- (30)
(iii) The size of the PTT
oI =pP(1" <=a, T >d | H) +P(I" >a, 1" > h| H,)
=P(T"" < Fpy1n-a) P(T™ > Epprnea) + i (a, )
=(1—-a"ea® 44, (a, h), (31)

Whel'e h = 1";[]_”_4.
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Figure 1. The power function of the UT, RT, and PTT against 4, for some selected p, d.f, and non centrality
parameters.

5. Asimulation example

For a simulation example, we generated random data using R package. Each of the two inde-
pendent samples (x;;, i=1,2, j=1,..., 1;) were generated from the uniform distribution
between 0 and 1. The errors (e;, i = 1, 2) are generated from the normal distribution with
i = 0and o = 1. In each case n; = n = 100 random variates were generated. The depen-
dent variable (y,;) was computed from the equation y,; = 6y, + Buix;; + e, for 6y, = 3 and
P = 2. Similarly, define y,; = 6y, + Proxa; + €, for 6y, = 3.6 and By, = 2, respectively. For
the computation of the power function of the tests (UT, RT, and PTT) we seta; = o, = a5 =
o = 0.05. The graphs for the power function of the three tests are produced using the formu-
las in Equations (21), (22), and (24). The graphs for the size of the three tests are produced
using the formulas in Equations (28), (29), and (31). The graphs of the power and size of the
tests are presented in Figures 1 and 2.

6. Analyses of power and size

From Figure 1, as well as from Equation (21), it is evident that the power of the UT does not
depend on &, and p, but it increases as the value of §, increases. The form of the power curve
of the UT is concave, starting from a very small value of near zero (when §; is also near 0),
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Figure 2. The size of the UT, RT, and PTT against &, for some selected p and 4,.

and it approaches 1 as §; grows larger. The power of the UT increases rapidly as the value of
d) becomes larger. The minimum power of the UT is approximately 0.05 for §, = 0.

The shape of the power curve of the RT is also concave for all values of 6, and é,. The power
of the RT increases as the values of 8, and/or §; increase (see graphs in Figure 1(i) and 1(ii),
and Equation (22)). Moreover, the power of the RT is always larger than that of the UT for
all values of §; and/or é,. The minimum power of the RT is approximately 0.2 for §, = 0 and
82 = 0. The maximum power of the RT is 1 for reasonably larger values of 8,. The power of
the RT reaches 1 much faster than that of the UT as 4, increases.

The power of the PT'T depends on the values of 8,, §;, and p (see Figure 1 and Equation
(24)). Like the power of the RT, the power of the PTT increases as the values of §; increase.
Moreover, the power of the PTT is always larger than that of the UT and RT for the values of §,
from around 0.7 to 1.5. The minimum power of the PTT is around 0.18 for 8, = 0 (see Figure
1(i)), and it decreases as the value of 8, becomes larger. The gap between the power curves
of the RT and PTT is much less than that between the UT and RT and/or UT and PTT. The
power curve of the PTT tends to lie between the power curves of the UT and RT. However,
the power of the PTT is identical for any fixed value of p, regardless of its sign.

Figure 2 and Equation (28) show that the size of the UT does not depend on 4;. It is a
constant and remains unchanged for all values of §, and ;. The size of the RT increases as the
value of 8, increases (see Equation (27)). Moreover, the size of the RT is always larger than
that of the UT. The size of the UT and RT does not depend on p.
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The size of the PTT is closer to that of the UT for larger values of §; = 2. The difference
(or gap) between the size of the RT and PTT increases significantly as the value of 8, and
p increases. The size of the UT is " = 0.05 for all values of §, and §,. For all values of §,
and §,, the size of the RT is larger than that of the UT, o®' = "’ For all the values of p,
o't < o®! Thus, the size of the RT is always larger than that of the UT and PTT.

7. Concluding remarks

Based on the analyses of the power for the three tests, the power of the RT is always higher
than that of the UT for all values of §; and é,. Also, the power of the PTT is always larger than
that of the UT for all values of §, (see the curves on interval values 0of0.7 < §; < 1.5 for given
simulated data), 5, and p.

For smaller values of 8, (see Figure 1) the PTT has higher power than the UT and RT. But
for larger values of 4, the RT has higher power than the PTT and UT. Thus when the NSPI
is reasonably accurate (that is 8, is small) the PTT over-performs the UT and RT with higher
power.

Since the size of the RT is the highest, and the PTT has larger size than UT, in terms of the
size the UT is the best among the three tests. However, the UT performs the worst in terms of
power. Thus the PTT ensures higher power than the UT and lower size than the RT, and hence
a better choice, especially when the NSPI on the slope parameters is reasonably accurate to be
close to the true values.

The size of the PTT goes down as either the correlation coeflicient (p) becomes larger (see
graphs (i)-(ii) in Figure 2) or the value of 6, increases (see graphs (iii)-(iv) in Figure 2).
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