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Abstract. Necessary condition for a norm estimate of Riesz potential will be presented on
Morrey spaces over commutative hypergroups by taking into account the upper Ahlfors condi-
tion. This norm estimate is the Hedberg type estimate. By assuming that the weak estimate
of maximal operator holds in Morrey spaces over commutative hypergroups, the Hedberg type
estimate leads to the weak estimate of the Riesz potential.

INTRODUCTION

Some estimates regarding Riesz potential, which is also known as fractional integral operator,
have been known for many types of spaces. The well known results on strong and weak type
estimates for Riesz potential on Lebesgue spaces over Euclidean spaces were provided by Hardy
and Littlewood [1] as well as Sobolev [2]. These results were then extended by Petree in Spanne
[3], Adams [4], as well as Chiarenza and Frasca [5] into Morrey spaces over Euclidean spaces;
and by Nakai [6] as well as Guliyev [7] into generalized Morrey spaces over Euclidean spaces.
After Nazarov et. al [8] introduced the notion of non-doubling measure, some estimates on
Riesz potential were then established on Lebesgue, Morrey, and generalized Morrey spaces over
Euclidean spaces with non-doubling measure. (See [9], [10], [11], [12] and some other references.)
Later, the estimates of fractional integral operators on Lebesgue spaces, Morrey spaces and their
generalization over metric spaces were given under doubling as well as non doubling measure.
These can be seen for example in [13], [14],[15], [16], [17]. The estimates can be proved using
several norm estimates. One of them is introduced by Hedberg [18] so that some researchers call
such norm estimate as Hedberg estimate. Recently, on commutative hypergroups (/K ) which
posses a Haar measure p, Hajibayov [19] defined the Riesz potential I, to be

Inf(2) = fh ple. )T F(f(5*) duly).

Here, T* (for © € K) denotes the generalized translation operator and is given by

T (y) = fod(fn*Jy)‘ e K,

where d, and 4, denote probability measures for x and y respectively. Hajibayov proved
that the Riesz potential satisfied the norm estimates, i.e. the strong and weak estimates, for
1< p< ¢ < oo on Lebesgue spaces over commutatives lqlper%oup under the condition of upper
Ablfors n-regular by an identity. This condition says that there exists a positive constant C'
(which is independent of r > 0) such that

w(Ble,r)) < Cr™.




Here the ball B(e,r) has center e (that is the identity of the hypergroup (K, #)) and radius r.
Note that in this paper, we will denote C' as the positive constants which have different values.
The results in [19] assume that the maximal operator
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satisfies strong and weak estimates. As it is described previously that the results on Lebesgue
spaces can be extended into Morrey spaces, our aim in this paper is then to extend the
Hedberg estimate into Morrey spaces over commutative hypergroup; and we will use this
Hedberg type estimate to prove the weak estimate of the Riesz potentialfiln the space under
consideration. For 1 < p < ¢ < oo, Morrey spaces MPY(K ) consist of all p-measurable
functions f : K — (—o00,0c) such that the norm

| fll age-ar ) = sup u(B)i v (/Blftﬂl)l"du(ﬂ:))

B=R(e,r)
is finite.
MAIN RESULTS

The Hedberg type estimate will be stated in the following theorem.

Theorem 1. Let 1 < g <oc,l <s<oo, 0<a< r—; Assume that .‘w measure jt satisfies

the condition of upper Ahlfors n-reqular by an identity. If% = % — =, then there is a positive
constant C' such that the norm estimate

o ()] < CMF (@) | FI5A % e -

holds.

Proof. For every f in Morrey space BY (K, i), we write
Irxf('?:) = b"l + (J"Q

where
U = / ple.r)* " T f(y*) du(y)

and




Firstly, we find an estimate for /1, which is given by
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Next, we find the estimate for Us, that is
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By taking

the following result

follows.




The Hedberg type estimates then gives us the following theorem.

Theorem 2. let 1 <g<oo, 1 <5< o0, and 0 < < % Assume that the measure pi satisfies
the condition of upper Ahlfors n-reqular by an identity. Assume also that there is a positive

constant Cy such that the maximal operator M satisfies the inequality
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holds for any positive p-measurable function f.
Proof. From the Hedberg type estimate in Theorem 1, for |1, f(x)| > A, we have
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This last equation and the estimate of the maximal operator then provide us with
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Thus, the desired estimate is proved.

CONCLUSION

Here we apply the Hedberg type estimate to find the weak type estimate for Riesz potential.
However, we may prove the weak estimate without Hedberg type estimate if we have no

assumption on maximal operator.
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