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Abstract

We siudy the wriple exponential smoothing (TES) and ARIMA
miethods fo forecast amd analyze time series data. Both the methods ane
stitable for typical daa with scasomal increasing and seasonal pattemn.
The mean absolute emor MAE) is msed o obtin fie cligible
lorecasting. To compute the result. the Zaimn and Minitab softwares
are then tised. The sesall shos cd that the TES can be considerad o be
an alermative method with mcan ervor of the MAE equal © 5.05_and
the best mode! of astoregressive integrated moving average (ARIMA)
methods & ARIMA(L L 10, 06,11 with MAE of 401 Following
iz paniern of e plot and the esulis. we conclude Sas tie ARIMA
madel is more eligible than TES.

2005 Maahemastics Subject Cliosificatnm: a2HL62EIF. 62005,
Keymonds and phrises: lwecasting. punmicters lag. smoathing exponential.
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detail of the exponential smoothing can be found in Makridakis |7] and
Makridakis et al. [16]. Here. they described that the single exponential
smoothing & suitable for the random and Stationary data. the double
cxponentral smoothing (Brown and Hot methods is eligible for the trend
increases of the pattern data. and the triple exponential smoothing is then
used on the trend seasonal of the pattemn data using three smoothing weights,
namely @, } and v (Makridakis ot al. [16]}. Morcover, the detail of ARIMA
can be also tomdeoxand(m[}lJ Box et al. [12], Montgomery |9] and
Montgomery et al. | 16).

To produce the forecasting on £ period ahead for getting the cligible
lorecasting of the fime series data. we note some steps: (1) plot the actual
toriginal} data o identify the frend of the data {time series data}, (2} find the
suitable method. (3} give a simulation data using theory and software for
getting the forecasting data on # period ahead. and (4) check the significant
result using MAE or MAPE.

The introduction is presented in Section 1. The ARIMA i< given
m Section 2. The simulations arc obtained in Section 3. Section 4 then
describes the conclusion of the rescarch.

2. The Time Series, ARIMA and TES

Following Makridakis et al. 16|, there are four fvpes of pattern of the
time series data (Figure 1), namely (1} horizontal (/1. see Figure Majp,
(2} trend (7. see Figure 1(bj). (3} scasonal (5. sce Figure I{c}i. and cycles
(C see Figure 1¢dj).
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Figure 1. The types {patternj of the time series data,
2.1. The ARIMA

Following Box and Cox [11). Box et al. [12] and Makridakis of al.
[16]. the autoregressive integrated moving average éARlMA) is used in
forecasting time series data. The model is then written as ARIMA (p. d. q]).
with p is the order of the auuxcgrc»i'- (AR} d is differencing. and g is the
order of the moving average (MA). The ARIMA {p.d. q) model of the
non-seasonal is then given as (68 i1 - B}"X, = (UB}. where 8 is backward
shift operator. For example, the ARIMA (L L 1} follows 1st differencing
(in stationary processj with p =1 and g = 1. so the model is written as
(-8B -¢B8Xx,)=(1 - 6;8}. This is duc to the non-scasonal which
can be expressed as (1 - B} — 4,8 — ¢:87 — .- i""’w X, =0 + 0,8 +
H;_,B" -+ +8,8%}X,. Furthermore. the scasonal ARIMA model is written

& ARIMA (p.d. gi{P. D. QY. where (p. d.q) is a part of the non-
seasonal and (P, D, Q) is a part of the seasonal model. with s is called the

seasoial period,
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2.1.1. The autoregressive model
Auwtorcgressive (AR} is a lincar regression model of the forecasting
data. It is a function r?tcd to the previous data on time lag. Following
Makridakis et al. [16]., the autoregressive model (AR} order p. AR(p). is

written as
X, =Xyt X n -t ¢.-"XF‘P t &, @)

where ¢; are regression cocfficients, § =L, 2.3, .., p. &, is error at £, and p
is an order of the AR. We then modified it using backward shift operator
{8). so equation (2} is expressed as

X, =$BX, + §:B°X, + -+ $,B”X, v&, = (@B)X, =¢,. (3}
§ 2 ¢ ¥ ¢ ‘ s ‘

with ¢8 =1 - B — ¢8> — - - 4,87 is called aperator of the AR(p}.
Note that the commonly the order of the AR is g =1 or g = 2, namely as
AR(land AR(Z).

2.1.2. The moving average model

Referring to Wei [18). moving average (MA} model with ¢ order.
MA({g}. is given as

8
X, =g +0i8 4 +0rg0 3 +--- + 0,8 g ~ N, o). 4}

where £,.8, 4. 8,.3... %, arc error ferms at Lf-Le-2 . 1-q.

£, is a whitc noise {normal distribution). §; are regression coefficients,
i:L23, ..q and ¢ is the order of the MA. We then re-expressed
equation (4} as

X, = (6B} )
with 68 =1+ 6,8 + 0:8° + -1 0,B% as said operator of the MA(g).

Generally, the order of the MA s ¢ =1 or ¢ = 2, and it is then written as
MA(] } and MA(2}.
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2.1.3. The ARMA model

We note that ! special casce of the ARIMA is calfed amoregressive
moving average (ARMA). It is occurred when the value of & is zero
{stationer}, so it does not need differencing. Generally, the formula of the
ARMA model is given as &

X, = GBX, +4:87X, + -+ 4,B°X, te,
+OE g +UE 5 +-- t Bq‘"—t)" (6}

Furthermore, we can re-write equation (6) as

X, - 08X, ~4:8°X, —-- - 4,B7X,
=
= g KB + 0,005 1+ -+ 0.2, = (@8] X, =(08]. 7y
2.2. The TES model

In this section, we present the triple exponential smoothing (TES) This
is due fo the fact that we suspect that there is a littfe increasing scasonal
pattern of the data. Thus, the TES is used fo anficipate the suspected
scasonal increasing trend of the data. Following Makridakis ef al. [16], the
three smoothing weighted parameters of the TES. namely . § and . are
choscn based on the smalfest mean absolute error (MAE) (in many trials).
Detailed TES is found in Makridakis et al. [16]. and the formula of the TES
model is given as

Level: L, =a(Y, - S, }+ (I -alL, 5 - T, 4)

Trend: T, = oL, - L5} + (1 - T, 4}

Scasonal: S, =B L) -BUS, )
Forecasting : ﬂ,.l, =L v pl + 8 ¢ipe (&)

where £, is value of level, @. 3 and ¥ are smoothing weights, T, is an
9%

estimation trend, a=(%} ts the parameter smoothing (I <a <1), i is
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smoothing constant of trend scasonal, and ¥ is smoothing constant of rend
estimation, §; is an estimation of scasonal, s is length of seasonal. ¥, pisa
forecasting data on p period ahead. and p is the period of forecasting.

3. A Simulation Study in the TES and ARIMA
A smulation study is given using the ramfall daia from BMKG Cilacap.

Here, we simulate 60 data in five vears (60 months) data. with some of them
as zero (no rain}. The eriginal {actual dafa} plot is presented in Figure 2.

Timw Series Plot of Rainfall
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Figure 2. Plot of the rainfall data from BMKG Cilacap.

From Figure 2, we see that there are seasonal patterns on the plot of
data and also its rend 1o increase. Following the types of the pattern in
Figure 1. Figure 2 and the previous theory, we, therefore, choose the TES
and ARIMA as appropriate models for analyzing this case.

3.1. The simulation study in the TES

In this step. we suspect that there is a little increasing seasonal pattemn of
the data (not purcly seasonal) in big rain scason during October-December,
which is due © intuitive analysis. Thus, the TES is then used to anticipate
this trend in October-December of the data We first determine the
smoothing weighted parameters by choosing the small value of MAE from
the output in Table 1.
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Table 1. Triple exponential smoothing grid search

From Table 1, it is clear thar the smaflest MAE is 4469027, we then
chose the smoothing weighted parameters. @ = 0.6, § = 0.1 v = 0.1. and
period of seasonal (s} = 12. with period of predicting is p = 12. Note the
MAE is used (not the MAPE), this is due to we have a lot of missing data, so
the MAPE s not available. Using cquation (8) and Zaitun sofiware, we then
presented the forecasting of the data in Figure 3.

A teinl avad B el lmad Go agris
na o ERA ) A :
40 1
30 4 A A {
A \ f1 J
] » 4 \ / |

% A 1
o L T ‘ v v \l / Y ; g

\ N/
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darwiary 2014 Agwst 2015 Susdy 2016 Octotsey 2017
¥ o

Figure 3. Graph of the forecasting {red linc).

Figure 3 showed that the red line (forecasting} s close to the blue line
(actual data). It means that their error is small, so we belicve that it is
significant. Furthermore, the result of the predicting (forecasting} for three
months in 201K and three months (October-December) in 2019 are presented
in Table 2.
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Tabie 2. The smoothing level, trend, scasonal and forecasting

T; Yeur : ;;fsmoﬂliag ' _S;lmthing Ssoathing ;anming l';
i ! level (£ | mend (T} | seasomal (5.} |
| Year 2018 (predicting)
ETRETT L O0a | s 0384 aje2 | 9149
50 | 2018 | New 15273 | a2%2 6847 | 15015
(60 |28 | Dee | 15235 | a2 | esee | 2es
| Vear 2019 greally forccasting)
7 [ 219 | oa | | 1em
1 {2009 | N | T
72 {2049 | Bee | T

3.2. The simulation study using A RIMA

This section is very appropriate 1o the mode of the plot data. Intuitively,
we see that the pattern is scasonal. Here, we first must check and
make stationary the data using partial autocorrelation function (PACF} (sce
Figure 4}.
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Figure 4. Plot of PACF original data.

Fraure 4 showed that the data has not been stationary vet (see cufoff
at lag 3). so we must do differencing in order to be stationer (g =1).
Morcover, we then figured the differencing (¢ = 1) data in Figure 5.
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Figure 5. Plot of PACF data afier differencing.

We see from Figwre 5 that the non-scasonal model s
ARIMA(L, 1. 1}.€0, 1. 1}, (1. 1. 0} and scasonal modet (0, 0. 072, (1. 0. 1)2,

(L 0.0y L {0, 0, l}l{ respectivelv. Using some simulations, we obtained
many madels of the scasonal ARIMA that are

ARIMA(L 1. 1} (0. 6. 0]~ ARIMA(L 1. 1} (. @, 1}'2.
ARIMA(L 1, 1} (0, 0, 17~ ARIMA{L 1. 1j (1. 6. 0>,
ARIMA(L 1. 0} {0, 0, 07, ARIMA(L L 0} 1. 0,1},
ARIMA(L 1. 0}(1. 6. 0}, ARIMA(L 1. 0} (0. 0, 1}~
ARIMA(D, 1, 1)(0, 0, 07, ARIMA(0. 1. 1) (1. 0. 1),

ARIMA(O. 1 1) (1. 0. 0} . or ARIMA{0, 1. 1j(0. 0. 172

Furthermore, using diagnostic check and a lot of tests of the hypothesis
testing of the parameter, we got the cligible model of the ARIMA. namely
ARIMA(L 1, 1} (0. 0. 1}2. Itis chosen from the smalfest MAE in Table 3.
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Table 3. MAL and scasonal ARIMA

| M. | Madel | MAE |
{ 1 I ARIMALL L 1) 6. 0. a? ! S.196419 j
[ 2 ARIMAGL 1 1§ i0. 1§~ ; s |
h | A rn@ao® | sasser i;
;r 4 J' ARIMA(G L 1piL a0 | 4969806 Jl

Funhermore,  the predicting  (forecastingl  data  of  the  best
ARIMA(L L. 1} 0. 0. 11~. for 3 months in 201%. are presented in Table 4.

Table 4. The predicting data for 3 months using ARIMA

Nay. ’ Yeur [ Munth ! _-\cimluk;:n [ Foscesa Supws | Note
10 | 2008 | Ocwober | 30240 | 31264 | Close | Accumic |
11| 2018 | Nowewher | 51104 | 29%9  Toolew | Nofacor
12 | 208 | Deconher | datsen | 4mos  Chse | Acamie

To compare the accuracy of the predicting daa  benween
ARIMA(L 1.1} (0. 0. 1}'> and the TES. we re-cxpressed the result of the
TES in three months (October-December 2018, soe Table 2} as below in
Tabie 5.

Table 5. The predicting data for 3 months using TES

| Mo, 5 Year Munth Actmil duta l Foscad | Stows | Note
10 I 2018 Octoher 103740 ! 9149  Touhigh Not acenraie

11| 208 | Novemher $11030 | 15015 | Tookigh | Notacoumie
12 | 2018 | Decomber 465860 ] 22168 | Toohigh | Notaccwnse

From beth the ables, Table 4 and Table 3. we see that the ARIMA is
betrer than the TES.
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4. Conclusion

The rescarch studied the TES and ARIMA methods in forecasting and

analyzing time scries data. Both the methods are suitable for typical data

with scasonal increasing and seasonal pattern. The MAE is used to obtain
the eligible forecasting. and the MAPE is not used due ro the fact that there
are some missing data (zero data). The Zaitun and Mmnitab softwares are
used (o compute the resufl. The result showed that the TES is cligible
methed with mean error of the MAE as 5.05, and the best model of ARIMA

is ARIMA(L 11} 0. 0. 177 with MAE as 4.0). Folfowing the pattern of the
actual data plot and both the results. we conclude that the ARIMA maodcl is
more cligible and significant than the TES.
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