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Report from The Organizing Committee

Itisindeed my great pleasure and honor to welcome you all to Soedirman’s International
Conference on Mathematics and Applied Sciences (SICoMJAS) 2019. The conference
running this year is the first SICOMAS series hosted by Faculty of Mathematics and
Natural Sciences Jenderal Soedirman University. As the development of technology and
management of world resources for our future based on the innovation in Mathematics
and Sciences, this conference takes issue “Innovation in Mathematics and Applied
Sciences for better future”.

SICoMAS 2019 aims to provide a platform for iearchers, lecturers, teachers, students,
practitioners, and industrial professionals to share knowledge, exchange ideas,
collaborate, and present research results in the fields of Mathematics, Chemistry, Physics,
#Ad their applications. Hence, my sincere gratitude goes to our four keynote speakers
(Prof. Dr. Hadi Nur from University Teknologi Malaysia, Prof. Dr. Hirokazu Saito from
Tokyo University of Science, Dr. Devi Putra , ST, M.Sc. from Pertamina Research and
Becnology, and Uyi Sulaeman, Ph.D. from Jenderal Soedirman University), and our six
invited speakers (Prof. Dr. Youtoh Imai from Nishogakusha University, Prof. Riyanto,
Ph.D. from Universitas Islam Indonesia, Dr. Moh. Adhib Ulil Absor from Gadjfj Mada
University, Bambang Hendriya Guswanto, Ph.D, Dadan Hermawan, Ph.D. and Dr. Eng.
Mukhtar Effendi, M. Eng. from Jenderal Soedirman University) for sharing their expertise
in this conference. My deepest appreciation also goes to our 80 presenters and 7 non
presenters for their commitment to participate in this conference.

As the output of this conference, some selected papers in the field of chemistry vl be
published in Jurnal Molekul which is accredited Sinta 1; and other selected papers in the
fields of Mathematics, Physics, Physical Chemistry, and [nnovative Chemistry Education
will be published in [OP Conference Series Journal. So, [ greatly thank Jenderal Soedirman
University, all our contributors, and all the members of the committee for the invaluable
support that makes this conference a reality.

Finally, I would like to apologize for any short comings found in this conference; and
hopefully this two-day conference will be engraved in your memory.

The chair of SICoMAS 2019
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:
Half-space model problem for a compressible fluid
model of Korteweg type with slip boundary condition

Suma Inna!, Sri Maryani??, Hirokazu Saito®

YFaculty of Science and Technology, UIN Syarif Hidayatullah Jakarta. Indonesia
?Faculty of Mathematics and Natural Sciences, Jenderal Soedirman University, Indonesia
*Faculty of Industrial Science and Technology, Tokyo University of Science, Japan

E-mail: hsaito@rs.tus.ac.jp

Abstract. In this paper, we consider a half-space model problem for a compressible fluid
model of Korteweg type with slip boundary condition and prove the existence of R-bounded
solution operator families for the model problem.

1. Introduction
In this paper, we consider a half-space model problem for a compressible fluid model of Korteweg
type with slip boundary condition as follows:

;\p-l—r]j\': d in Rf,

Au — pAu - vVdivu - kVAp=f i Rl

n-Vp=g on R, (L.1)
Onug + djun = hy onRY, j=1,...,.N-1,

Uy = h-‘.\-' o1 Rf}r‘

where Rl and Rf‘,\r‘ N = 2, are respectively the upper half-space and its boundary, that is,
' :
RE = {m= (.‘I}f,.‘ll‘r\r) | ¥ = (.‘1}1,. . ,.‘IJ‘.'\.'_I) e R"\I_l,.‘ll‘.\r > D}.
R{‘)\ = {’}L = (.’JL‘;, .’;L‘N) | r = (rq,. .. ﬂ«':\"—l) e R"\r_l,.’},“.\r = D},

and also n = (0,...,0,—1)7 is the outward unit normal vector on R} a
Here X\ is the 1esolvent pmametel varying in C; = {z € C | Rz > 0}, while p = p(z) and
u = u(z) = (u(x), ..., ux ()T are respectively the ﬂmd@lqltv and the fluid velocity that are
unknown functions. lhe 11ght hand sides d = d(z) flx) = (fix),. .., fn@)T, g = g(x),
hj = hj(x), and hx = hn(x) are given functions. FDI a scalar- value(l function u© = u(x) and a
1
4 gpported by BLU UNSOED research scheme International Research Collaboration (IRC) contract number
P/253 /UN23/PN /2019.

5 M" denotes the transpose of M.
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vector-valued function v = v(zx) = (vi(2),...,vn(z))T, we set for 6 = 8/0xy (k=1,...,N)

Vu =(ow,..., avu)?, Au= 22;1 Qtu, Av = (Av,.... Avy)T,
divv =3, &on, Vv={uv|kl=1,...,N},
Vv = {0t | k,L,m=1,... N}

In addition, for N-vectors a = (ay,...,ax)" and b = (by,....bx)7,
N
a-b= Z !I.;\.b;\..
k=1
Especially, n - Vp = —dxp. Throughout this paper, the coefficients p, v, and & are positive

constants and satisfy the following condition:

2
(M) 21 #0 and K # uv. (1.2)
2k K

System (1.1) arises from the study of compressible viscous fluids of Korteweg type with slip
boundary condition, see e.g. [3]. Korteweg-type models are employed to desecribe a two-phase
mixture model of liquid-gas flow.

mtroduce our main result, we introduce the notation.

The set of all natural numbers is denoted by N and Ny = N U {0}. For g € [1, 0], L,(RY)
and H;" (Rf). m € N, denote respectively the Lebesgue spaces on Rl and the Sobolev spaces
g RY. Weset H)(RY) = Ly(RY) and write the ngpm of Hy(RY), n € No. by | Np@y)-
Let X and Y be Banach spaces. Then X™, m € N, denotes the m-product spaffgJof X, while
the norm of X™ is usually denoted by | - || x instead of || - ||x= for short. The set of all bounded
linear operators from X to denoted by £(X,Y), and L(X) is the abbreviation of £(X, X).
For a domain UV in C, Hol(U, £(X,Y)) stands for the set of all £(X, Y )-valued holomorphic
functions defined on U.

For the right member (d,f,g,h1,..., hy_1, hx), we set

X,RY) = HIRY) x LyRNY x HY(RY) x HI(RY)Y 1 x HZ(RY).
In addition, for solutions of (1.1), we set

qu(R_"\_) _ Lq(Rf)N:;-q-A-‘\-'2+A-\r+l‘ Syp = (VSP./\UZVZP, /\vp‘/\ﬁfzp):
B,(RY) = L,(RY)N' NN, Tu = (Viu, AY2Vu, Au).

Let F = (d,f,g. h1,...,hy_1,hn) € Xy (RY) and Ry f = (Vf, A2 f). Then we define X,(RY)
and F) as follows:

xq(R-‘i\—) = Lq(R_}_)\n .F)\F = (R,\d. f. T).Q.R).h..l, ey RAh_.‘.\r_l,ﬂh-‘.\r) &= xq(g)‘
N=(N+D+N+(N24+N+D+(N-D)(N+1)+(N2+N+1).

At this point, we introduce the definition of the R-boundedness. Let sign(a) be the sign function
of a. Then the definition is given by

Definition 1.1. Let X and Y be Banach spaces, and let r;(u) be the Rademacher functions on
[0,1]. i.e.

ri(u) = sign sin(2ru) (jEN,0< u<1).

[
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A family of operators T C L(X,Y) is called R-bounded on L(X,Y), if there exist constants
p € [1,00) and C > 0 such that the following assertion holds: For each m € N, {T;}7L, C T,
and {f;}", C X, there holds

Jj=1

m 1/ . y
(A'l H 2 rj(u)ijJ'Hi du) ’ Sa/: H ; rJ-(u.)fJ-H; du) p_

The smallest such C is called R-bound of T on L(X,Y) and denoted@ Rexy)(T).

Remark 1.2. (1) The constant €' in Definition 1.1 may depend on p.

(2) It is Jgggwn that 7 is R-bounded for any p € [1,00), provided that 7 is R-bounded for
some p € [1,@. This fact follows from Kahane's inequality, see [4, Theorem 2.4].

Now we state the main result of this paper.

Theorem 1.3. Let g € (1,00) and assume that p, v, and K are positive constants satisfying 1.2.
Then, for any X € C., there erist operators A(X) and B(\), with

A(N) € Hol(C., L(X,(RY), H}(RY))),
B\ € Hol(Cy, £(X,(RY), HERY)V)),
such that, for any ¥ = (d,f,g,h1,... ,hn_1,hn) € Xq(Rf),
(p,u) = (AN)FAF,B(A)FAF)
is a unique solution to (1.1). In addition, for n = 0,1,

d\"
R, () 2,(RY)) ({ (/\5) [SAA(/\D‘ A€ C+}) <G,

d L3
Rz, (RY), B, (RY)) ({ (/\a) (7;8(/\))‘ Xe c+}) <,

whﬁ C =C(N,q,p, v, k) is a positive constant.

is paper is organized as follows: The next section introduces a reduced system for (1.1)
and shows that Theorem 1.3 follows from the main result for the reduced system. In tion
3, we calculate representation formulas for solutions of the reduced system by using thenrtia.l
Fourier transform with respect to 2’ = (x1,...,zy_1) and its inverse transform. Section 4 proves
our main theorem for the reduced system by results obtained in Section 3.

2. Reduced system

Setui=vi U=l N —1) and uy = vn + hy in (L1). Then v = (vi,...,vn5)" satisfies
Ap+divv=d in RY,
AV — pAvV —vVdiv v — kVAp = in RY,
N on Ry’ (2.1)
Onvj + Ojun = FEJ omR{, j=1,... N-1
vy = 0 on R{I}r‘
where
d =d- dnh,
f =f- (—vohonhn, ..., —viny_10xhy, Ahy — pAhy — Ua}z\rh.-_.\r}T,
Hﬁj = h; — djhn.
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Furthermore, similarly to the last part of [2, Section 2], we can reduce (2.1) to the following
system:

Ap +% u=_>0 n Rl

A — pAu — vVdivu — kVAp =0 in RY,

n-Vp=g on R, (2.2)
Onuj + djun = hj on Rf‘,\ j=1,...,N -1,

uy =0 on R

Let us define function spaces for (2.2). Set yq(Rf) = H;(R}_) X H;(Rf)‘w_l and let
G= (9 h,....,hn_1) € yq(Rj‘f). Then QQ(R}_) and G, are defined as follows:

V,(RY) = Lq(Rf)M‘qg)‘G = (Thg, Rah1, ..., Rahn_1) € Dy (RY),
M=(N?4+N+1)+(N-1)(N+1).

As is discussed in [2, Section 2], it suffices to prove the following theorem in order to complete

the proof of Theorem 1.3.

Theorem 2.1. Let g € (1,00) and assume that p, v, and & are positive constants satisfying 1.2.
Then, for any X € C., there erist operators A(X) and B(\), with

A(N) € Hol(C, L(Y,(RY), H}(RY))),

B(\) € Hol(Cy, L(P (RY), HERY)N)),

such that, for any G = (g, h1, ..., hy-1) € yq(Rf),
(p.1) = (AN)GG,B(A)G\G)

is a unique solution to 2.2. In addition, forn =0,1,

d\" ~
R, RY) 2, )) ({ (Aﬁ) (S,\A(A))‘
d\" ~
Req,@y).s,@90) (| \Agx (7?\3(/\)) AeCyp) =C,

where C' = C (N, q,p, v, k) is a positive cowm.

Remark 2.2. The following sections are devoted to proof of the existence of R-bounded
solution operator families stated in Theorem 2.1. The uniqueness of solutions follows from the
existence of solutions for the dual problem.

3. Representation formulas for solutions
In this section, following [2, Subsectio.l], we compute representation formulas for solutions
of (2.2). To this end, let us define the partial Fourier transform @ of u = u(x’, xx) with respect

to &’ = (x1,...,xy) and its inverse transform as follows:
1

U= ﬁ(xN) = a(gf, :I“N) B fRN—l C_M(-f('u'(f: -’BN) dx,:
5_’1 [ﬁ(iij :EN)] (:LJ) = (Q_?r)l,'ﬁ fRN—l eiu"-f’ﬁ(giij) dg;:

where é—i = (51: s :gN—l) € RN_l-
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differential equations:

Let ¢ = div u. Applying the partial Fourier transform to 2.2 yields the following ordinary

M+@ =0,
Xy — (3% — |€'P)i; — vig @ — wi€; (0% — 1€'*)p

ry =0, (3.1)
=10, xy >0, (3.2)
Niy — (0% — |€)in — vOng — rdn (0% —1€)9)5 =0, ax >0, (3.3)
with the boundary conditions:
) = —500), (34)
6\&}(0} + FfJ‘JI\(U) = ,?.-J'(U}. =1, N =1, (3.5)
un(0) =0. (3.6)
We then see from (3.1)-(3.3) that
Py(an)p =0,
(0% —Wh)Py(Ax)iy =0, J=1,... N,
where we have set

PA(8) = N = A+ 0) (€ = 119 + w8 — [P, won = [I€P + ?
so that Ry/z > 0 for z € C\ (—o0, 0]

Here we have chosen a brunch cut along the negative real axis and a branch of the square root

Remark 3.1. Under Condition (1.2), the four roots of P (t) are given by +t; and £ty, where

ti = \f|f"2 +sA (k=1,2)
for complex numbers s (k = 1,2), depending only on p, v, and s, which satisty s, > 0
(k=1,2) and
s1#£ 82, S1FE N

5o # ph
For more detail, weéafer to [1, Section 3].
In what

we look for gﬂ

olutions iy (J = 1,..., N) and @ of the forms:

ws,j=1,...,N—1and J =1,...,N. In view of (3.7), (3.8), and Remark 3.1,

Uy = age NN L Gi(em N _ gmWAIN) fo g (eTIREN _ pTWAENY (3.9)

F = ge 1N 4 peleEy, (3.10)
One then obtains from ¢ = div u and 3.1-3.3

Ffi o Ffi . ﬁ; — FE; - ’:r'; — WrO N -I—(.t),\ﬁ‘.\.‘ + Wr YN = 0, (311)

,(33‘ = —“é——j,(i_r\r. Y= —ﬁ’y_.\r. (3.12)
t1 to
rz 2 rz et 2
o= — (lim) By, T=-— (A) AN, (313)
t1 3]
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where if’ - d' = ZJ\:_ll i&a; for a € {o,8,4}. In addition, we insert (3.9) and (3.10) into
(3.4)-(3.6) together with (3.1) in order to obtain

tf — €' Bn + (8 — 1€ ) = Ag(0), (3.14)
—wnaj 4 (—t1 +w))Bj + (—ta +wa)y; = hy(0), (3.15)
(03N = 0. (3.16)

Let us insert (3.12) into (3.15) to see

i&;

1 i
o = _wA { U) + — €J -1 4+ f.c))‘)ﬁ‘.\r + E(—ﬁg -I—u))‘)"y‘.\r} . (317)

This relation furnishes

\f |2

112
—1y -I—u),\)ﬁ |€f|

it o = _'i {-i«f’ -h'(0) - (—t2 + w/\)ﬁw} : (3.18)
Wy 2

where £’ -E'(O) = Z.i:\:_ll -ng-?ik(U). On the other hand, (3.12) yields

2 1|2
i e,
(5

i€ g = i€ -y =

Inserting these relations, (3.16), and (3.18) into (3.11), we have

By + v = pA~lig - W (0),

Whem we have used the relation w? — [¢/|? = p~'A. In addition, it follows from (3.14) and
2 —1¢)? = seA (k= 1,2) that

81,8‘.\.' -+ SN = E(U}

One solves the last two equations in order to obtain

By =5k (<90) + saurtig - R(0)),

sz—81

N = ( (0) — sypA~lig" H( D)) (3.19)

s2—48]

Thus we have together with (3.16)
Uy = Bn(e 15N — e NN oy (e7IEN e TEATN),
In addition, we have by (3.12) and (3.17)

iy = *.i {E(U) + I.f*j(*fl + wx)Bn + %(*32 er)u)h.fw} eTWATN

1fj ﬁ‘\ ((_,—L“_v\. eTWALN ) i} ”:r".‘\.'(e_!'zl."\‘ eTWALN )‘
while we have by 3.1, 3.13, and 7 — [¢/|? = \sp (k= 1,2)

- - S T S T S
p=—A llp = —1,(3‘.\"(-3 by + —2":r‘.\.‘(-3 tean
t1 to

Finally, setting p = fgl[ﬁ(f, an)](a') and uy = Fo s (€, xn)](2)), we see that (p, u) solves
(2.2).
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4. Proof of Theorem 2.1
Throughout this section, we use the notation introduced in the previous section.

4.1. Solution operators
Let us define

e—t2tN _ o—lizn e UEIN _ g—whrIN
J’\AQ(.’I‘;\.‘) ==, J'\/{E(f}‘-‘.\:') == (f = 1, 2).
fo — 1t fo — 11
Noting sy — 51 = /\_l(tg - rf) we can write (3.19) as
By = (727) 90 + L5 (34%) Tu(0), (4.1)

= () 300) - TR (3448) (o).

One constructs from now on solution operators associated with p, uj (j=1,...,N—1), and
uy that are solutions of (2.2) obtained in the previous section. Let us start with p. Note that

p= }-5' |:t2 \( ,—bow _e—r!u-,v\,-)] (.’I.‘.f) + }-g_*l |:(—,(3‘\ +_q\) —Luv\,:l (.’I.‘-f).
We have by (4.1)
ﬂﬂr-\r(ﬂ‘“"”‘ — e hiEw)
= _m_ G(0) Mo (xx) Z:\ —11 mhk(g)ﬂ,{n(,}:‘w)‘

ta(ta+i) J ta(tz+t1)

while we have by (3.19)
13 o %2 E E'se U sisp (1 L) =L ?!(0
tlf{:\' + EQ’I”:\' = .gz a1 =1 ( (0) + el Wl e B Y i£' - h'(0).

Combining the last relation with

1 1 fo — 17 _ /\(82 - 81)
1t 1l tita(ta +11)

furnishes

2
Lo+ Loy = —— (Z(—Uf‘;—f)am+Lﬁ"»€'-?€-'(o)-

tita(ta + t1)

Summing up the above computations, we see that

527" [ Mo(en)a€,0)] @) = sisan DY Fo'!
[mmm)mf 0)]( s i () s [3, e heNg(E, 0)]( ')

+"3132F-Z;;I=_1 ff_,l [mt L“"‘h;\ f 0)} )
=: AN (g, h1, ..., hy-1).

)
II
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Next we consider u; (j =1,..., N — 1) and uy. They are respectively given by
uj = —Fg" [Feiy(€.0)] @)
+ﬁ ZH(—U [l g, 0) (@)
e T (5) 7 e 0)] @)
- zizlt—l)*fg [ Mien)a€.0)] @)
—elez;xzi DI 1)51 6’1 [H%M;(:}:N)hk(f’.ﬂ)} (x')
=:Bij(A)(g,h1,...,hn_1)
and
un = z'le(—l)*fg‘ [ﬁzvu(:v VIEL0)] (@)
—s1san RS S (1) [ Muan) (€, 0)] @)

=: By( A) g, hy,..., hn-1).

This completes the construction of solution operators.

4.2. Classes of symbols

To construct R-H@iinded solution operator families from A(X), B;(A) (j = 1,..., N —1), and
By(A) as above, we intfduce two classes of symbols. Let m(¢', A) be a function, defined on
(RN=1Y {0}) x C, that is infinitely many times differentiable with respect to &' = (fl, co€n-)

and holomorphic with respect to A. For any multi-index o = (o, ...,an_1) € N 1, let us
define ,
ol 8|a l '
% _W‘ o] = a1+ -+ an-1.
If there exists a real number r such that for any multi-index o' = (ay,...,an_1) € Nf,\"_l and

(€. A) € (RY-1\ {0}) x Cs
' d\" ,
% ((Aﬁ) m“"”)‘SC(I/\\‘/2+|5’|)*'—"*' (n=0,1)

with some pqitive constant C' depending on at most N, r, ', u, v, and &, then m(£’, A) is called
a multiplier of order r with type 1. If there exists a real number r such that for any multi-index
o' = (a1,...,ax_1) € N) "Fand (¢,0) € (RV-1\ {0}) x Cy

% ((3g5) m€n)| <O +IglyIere =0,

ith some positive constant C' depending on at most at most N, r, ¢, y, v, and &, then m(¢&’', \)
is called a multiplier of order r with type 2.
Here and subsequently, we denote the set of all symbhols of order r with type j on
(RN=11\ {0}) x C4 by M, ;(C,). For instance,

&/1€] € Mga(CL), & AY2 e M (CL) (k=1,...,N —1),

and also |¢'|?,\ € M21(C+). One notes that M, ;(C+) are vector spaces on C and that the
following fundamental properties hold (cf. [5, Lemma 5.1]).
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Lemma 4.1. Let ry,r2 € R.

(1) Givenl; € M, 1(Cy) (j = 1,2), we have lyly € M, 1, 1(CL).

(2) Given m; € M,, ;(C1) (j = 1,2), we have mymg € M, 1, 2(Cy).

(3) Given n; € M, 2(Cy) (§ = 1,2), we have nynally, 11, 2(CL).
Finally, we have from [2, Lemma 2.5]

Lemma 4.2. Let r € R. Then

£t wh, (ta +11)" € My (Cy).

4.3. Proof of Theorem 2.1

Let us construct R-bounded solutions operator families associated with A(X), B;(A) (j =
1,..., N — 1), and By(A) given in Subsection 4.1. To this end, we use [2, Lemmas 2.6 and 2.7
for the terms with g, while we use the following two lemmas for the terms with hy, ... hy_;.

Lemma 4.3. Let g € (1,c0). Suppoese that
k(€' A) eM_51(Cy), UEN) € M_1,1(Cy),

and set for x = (' xx) € RY

[Ko(A)f](x) = }—51 [k:(f’, A)emwrEnN f(ﬁ’.ﬂ)} (z'),

with A € C. and f € H[}(Rl) Then the following@‘aemiom hold.
(1) For j =0,1,2 and A € C., there erist operators I?j(/\), with

Rj(0) € Hol(C.., L(L, (RN, HI(RY)),
such that for any f € H‘}[Rf)
KA\ = KN (VA ).
In addition, for j=0,1,2 and n = 0,1,

d " =
Ry (B )N+ 2, (RY)) ({ (’\ﬁ) QYY) ‘ Ae C+}) <,

with some positive constant C = C(N,q, i1, v, £
(2) Forj=0,1,2 and A € C., there exist operators L;(\), with

L,() € Hol(Cur, C(L,(RY )™, HERY))),
such that for any f € H;(Ri‘f)
Ly = LAV FAY2R).
In addition, for j =0,1,2 andn = 0,1,

d\" =
R0 1.1 (R Vo1 ({ (,\ﬁ) (L) ‘ e C+}) <,

with some positive constant C' = C(N, g, p,v, k).
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Lemma 4.4, Let g € (1,c0). Suppose that
mp(§,A) € M_11(Cy),  mu(E',A),ma(&,A) € Mg 1(Cy),

and set for x = (2’ zn) € Rl

_
MV f)() = Fg! [mk (€ N Mg (an) f(g’.o)} (@),

with A € C. and f € H[}(Rl) Then the following assertions hold.
(1) For A € C., there exists an operator ;-ﬁg(/\), with
My(N) € Hol(Cy, Ly RN HI(RY)),
such that for any [ € H(}(Rf)

My(A) f = Mo(\)(V f,AV2f).

In addition, forn = 10,1,

d\"; ~
RE{LQ‘{R"_V]‘N_I,%Q«(R"_V}} ({ (/\a) (SA;HV.{G(A)) ‘ A = C+}) S C.

with some positive constant C' = C'(N, q, u, v, K).

(2) For j=1,2 and A € C., there exists operators ":{J(A), with
M;(\) € Hol(Co, L(Ly(RY)NH, HA(RY))),

such that for any f € H{}(Rf)

M;(N)f = M\ (V A2 )).

In addition, for j = 1,2 andn = 0,1,

d\" (.~
R (0 10 (R V241 ({ (’\ﬁ) (1) ‘ e c+}) <,

with some positive constant C' = C(N, q, p, v, k).

By Lemmas 4.1 and 4.2, we observe that the svmbols appearing the solution operators satisfy
the following conditions: In the case of A(A),

A

taty +11)

G 11

— = —eM_141(C,),

tolto+11) 11 1o 11(C+)
ik

tito(ty +11)

€ My 1(Cy),

€ M_»1(Cy);
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In the case of Bj(A) (j=1,...,N—1),

1 iEi(t —w i (ty —w
L oemyy(cy), Blhi—) &l e ey,
wy Liwy lowy

gjgk gjgk
tywa(ty +LJA) ’ towy (2 +LJA)
Q&N 139
ti(t2 +11) ta(t2 + t1)
fjfk fjfk
t(ta+ 1) ta(ta+ t1)

eM_11(Cy),

€ My 1(CL),

€ Mo1(Cy):

In the case of By(A),

ik
ty + 11 ta + 11

Thus, applying [2, Lemmas 2.6 and 2.7] and Lemmas 4.3 and 4.4 to A(X), B;j(A) (7 =

1,...,N—1), and By(A), we obtain the R-bounded solution operator families stated in Theorem
2.1. This completes the proof of Theorem 2.1

€ My (Cy), € My1(Cy).
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