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Study region: Java Island, Indonesia.

Study focus: The Indonesian island of Java is home to more than half of Indonesia's pop-
ulation and routinely experiences water related natural disasters. This study represents
a first step towards skillful hydrologic prediction and hydrologically-informed mitigation
strategies. This is the first study to collate a comprehensive suite of hydrome teorological
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nobserva[ions and systematically identify Variable Infiltration Capacity (VIC) Land Surface
Model (LSM) parameters on Java to create a set of benchmark simulations.

New hydrological insights for the region: Quality control procedures revealed inconsisten-
cles between precipitation and streamflow with only five watersheds possessing data
of suitable quality. Simulations and observations confirmed that both precipitation and
streamflow variability increase eastward on the island and that rainfall-runoff response
was most frequently dominated by baseflow, rather than surface runoff. The most sensitive
VIC parameters were identified and then calibrated with an automatic calibration proce-
dure. In the calibration period, model performance was generally deemed satisfactory with
Mash Sutcliffe Efficiency (NSE) between 0.31 to 0.89, whereas the validation period exhib-
ited rer performance than expected (0.07 < NSE<0.79). This drop in performance was
attribufed to a combination of inconsistent data quality, hydrometeorological outliers dur-
ing the validation period, and over-fitting parameters during the calibration period. The
model indicated that direct runoff exhibits more spatial and temporal variability than both

rainfall or baseflow, the latter being associated with variability of soil thickness.
© 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http: |/creativecommons.orgflicenses/by-nc-nd/4.0/).

1. Background

The Indonesian island of Java, where 160 million of the country's 241 million inhabitants reside, experiences water
related natural disasters - i.e., floods, droughts and landslides. In the last decade more than50% of Indonesian hydro-climatic
disasters occurred in Java (BNPE, 2015). Yet, while other main islands (Sumatera, Kalimantan, Sulawesi, West Papua, Nusa
Tenggara and Maluku) experience water surplus, annual water demand on Java exceeds supply by an average of ~69 billion
cubic meters (BCM) (Bappenas, 2010). With a large population, these water related hazards have caused severe social and

economic impacts.
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Table 1
Hydro-climatic characteristics of Java.

Components Description

Annual rainfall Spatial:

- 3300 mm in southwest
- 2000 mm in northeast

Temporal:

- B55mm indry season
- 1800 mm in wet season

Temperature 28" Ccoastal plains, 26 Cinland and mountain area, 23 C higher mountain region
Land cover 61% agricultural area, 25% forest, 10% settlement, 4% water body

Rainfall variability is the primary driver of streamflow in tggpical regions and understanding the underlying streamflow
generation mechanisms is essential for making predictions. g]nfall-runoff models have been used to model and forecast
streamflow (e.g, Wood et al., 2002, 2005; Regonda et al,, 2013). Land surface models (LSMs) have been developed to enable
coupling with the atmosphere and may also be used to model hydrologic processes. These are typically physically-based
models that solve the coupled energy and water balance, more recently focusing on accurate simulation of surface water
budget components, particularly streamflow (Linde et al., 2008; Livneh et al., 2011). These have been extensively used to
model streamflow in catchments with different hydro-climatic regimes around the world (Arnold et al., 1999; Beck et al.,
2013; Livneh and Lettenmaier 2013; Linde et al., 2008). To date, the existing studies of physically-based hydrologic models
on Java have only focused on single rivers; these include lumped streamflow and sediment modeling on the Lesti River
(381 km?) in East Java (Apip et al,, 2012) and streamflow modeling on the Upper Citarum Basin (~1821 km?) in West Java
(Harlanet al., 2010; Julianet al., 2013).

With the above motivation, we apply the Variable Infiltration Capacity (VIC) LSM (Liang et al., 1994) to simulate watershed
hydrology in Java in this paper. The VIC model has been widely applied in numerous hydrological studies across a range
of hydro-climatic environments (Nijssen et al.,, 2001, 2014; Linde et al., 2008; Liang et al,, 1994, 1996; Sheffield and Wood,
2007; Sheffield et al., 2006; Shukla et al., 2013; Zhao et al,, 2011). The VIC model has also been used to simulate global soil
moisture and drought severity (Sheffield and Wood, 2007; Sheffield et al., 2006). The first goal of this study is to collate and
describe the available hydrometeorological data and to apply a screening procedure to deal with data scarcity and quality
issues. The second goal is to evaluate VIC model simulations of daily and seasonal hydrology and their variability, consisting
of model calibration and validation in unique time periods. Overall, this analysis aims to identify key processes and data
issues, representing an important first step towards building a sub-seasonal and multi-decadal hydrologic projection system
geared towards water resources management and natural disaster mitigation in Java.

The paper is organized as follows. The study region and data sources are first described, with essential data screening
steps, resulting in a set of watersheds for analysis in this study. The model is then briefly described together with the
sensitive parameters used for calibration. The results section describes model performance in calibration and validation
modes; seasonal and temporal performance of the model and insights into the physical processes. The paper concludes with
summary and discussion of the results.

2. Study region and data sources

Javaislocated in the southwestern part of Indonesia. [ts mountains have decreasing slope from the center to the south and
north coasts (Fig. 1a). The mountain range is made up of a series of quasi-circular volcanoes in the central mountains with the
exception of western Java where the mountains are continuously linked (Fig. 1a). Consequently, precipitation over theisland

drained to the north and south coastal zones through a series of basins. The spatial and temporal variability of rainfall in
ava is influenced by the movement of the Inter Tropical Convergence Zone (ITCZ) across the equator, creating distinct dry
(May-0ct) and wet (Nov-Apr) seasons ((Qian et al., 2010). In addition, the inter-annual variability of rainfall during the dry
season in Javais comparatively larger than during the wet season (Yasunari, 1981). Moreover, the spatiotemporal variability
of rainfall in this island is associated with atmospheric circulation patterns driven by the El Nifio Southern Oscillation
(ENSO). Anomalously low rainfall years correlate well with the warm phase of ENSO while cold phases of ENSO correlate
with anomalously high rainfall years (Gutman et al., 2000). The interannual and multidecadal variability of Indonesian rainfall
is documented in recent study by Yanto et al. (2016a). The land cover of the island consists mainly of tropical forest, as well
as agriculture and urban settlements with significant spatial variability (Fig. 1b). Table 1 summarizes the hydro-climatic
environment of Java.

To apply the VIC model for Java we specifically need soil parameters, vegetation, and meteorology inputs, each from
disparate sources. Soil parameters were downscaled from Nijssen et al. (2014 ) from 0.5” x 0.5" to 0.125” x 0.125 resolution
using Inverse Distance Weighting (IDW) method, while the vegetation covers were directly derived from the University
of Maryland's 1km Global Land Cover product (Hansen et al., 2000). Four meteorological fields: daily total precipitation,
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Fig. 1. Topography (a)and land cover overlaid by the model grid (b) of the Java Island. Mountain ranges extend across the middle of island from west to
east where agricultural areas d ominate.

maximum and minimum temperature, and average wind speed on a0.125° x 0.125° grid running from 1985 to 2014 were
obtained from Yanto etal. (2016b). The precipitation in this dataset was exclusively developed from large number of ground-
based observations. To assess and improve the model performance through calibration, observed streamflow was obtained
from the Center of Water Resources Research and Development, Ministry of Public Works, Indonesia, the dominant source
of ground-based precipitation used in this study.

2.1. Quality control: screening of watershed data

Most tropical hydrological studies are data limited (Cook et al., 1998), often with access to only poor quality data. Akey
challenge in this study is that streamflow data are provisional whereby data quality information is unavailable. The first
step therefore was to screen the study region for watersheds that possess physical consistency between precipitation and
streamflow with at least 7 years of streamflow, from among the 19 potential watersheds shown in Fig. 4. To this end, we
applied the following quality control steps:

(1) Streamflow Length. For stable model calibration, we selected watersheds with at least 7 years of streamflow data, as
mentioned above, and less than one month of missing data.

(2) Physical Consistency check. The consistency between rainfall and streamflow data was investigated using the long-term
water balance and relationship among climatological features. The climatology of precipitation and streamflow for each
watershed is shown in Fig. 2 along with their respective runoff ratio (RR),

RR = (1)

|

where Q and P are the mean streamflow and rainfall, respectively. Boxplots of rainfall and streamflow are shown in Fig. 3
to illustrate the long-term mass balance and data distribution. In humid tropical environments across a range of land cover
types, the runoff ratio varies from ~10% to ~60% (Dettinger and Diaz, 2000; Dubreuil, 1985; Munoz-Villers and McDonnell,
2012). The runoff ratio can be used to characterize the soil parameters and vegetation cover of a watershed. A watershed
with impervious surfaces (e.g. settlement, pavement, roads) will have a higher runoff ratio than one with more pervious
surfaces(e.g. forest, agriculture). Considering the dominant land cover of Java (Table 1), we selected watersheds with similar
patterns of rainfall and streamflow climatology and similar long-term mass balance. Based on these criteria, we selected CT,
PG, BG, GD and BD shown in color in Fig. 4 and listed in Table 2. The smallest watershed (GD) and the largest watershed




130

Unit (mm/month)

100 200 300

Yante et al. / fournal of Hydrology: Regional Studies 9(2017) 127-139

(2]

g1 BR 1. RJ
" 21"
= RR=039 .| =] -RR=067
N- I. ! . nl s
4 g e L
8_ : ’ a H_'_\-.._______,,/
- /‘\_/ i " -
— 1 =4m - =49 S
TTTTTTITTITTTT TTTTTTTITTTITT TTITTTTITTITTT TTTTTTTITTITTT TTTTTTTTTTITT
Jan May Sep Jan May Sep Jan May Sep Jan May Sep Jan May Sep
[=]
g . =5 =
I~ ¢l I T ST oY - BD
4 A RR=066 | B |\ RR=0.73 2] ®Rr=035 |Z{ . RR=07
- ~ S \ . N B -1 i
- ‘ o g
o =5
= =
| = .
b = 411 = r
TTTTTITTIT 1T TTTTTTTTTTITT TITTTTITITTT TTTTTTTITTTT] TTTTTTTTITTITT
Jan May Sep Jan May Sep Jan May Sep Jan May Sep Jan May Sep
D S —= = T
. ©cs |&f.. ct | I~ P6 |g{~ &b |g[ sP
1 RR=059 . |g | " RR=0.67 ; ﬁ— RR =049 1 RR=0.7 @ | “RR=035
4 EE . ; B . §- . 1 -
1— ils AP VN P v
1 SN2 ' '8-'/\_5/ g -S-"Aw
Je ol o1k -]o s s
TTTTTTITTITTT] TTTTTTTTTTITT TITTTTITTITTT TTTTTTTTT 1] TTTTTTTTTTITT
Jan May Sep Jan May Sep Jan May Sep Jan May Sep Jan May Sep
T..~cMm g4 BG g4% LR
|~ RR=066; o | RR=049 . 8_ “RR=0.56
™ &1~ |81 °
. e4 8-
i _ ] 11 =/ | ]P
TTTTTTTTTTTT T C T T
Jan  May Sep Jan May Sep Jan May Sep Jan  May Sep
— Flow - Rainfall

Fig. 2. Climatology of rainfall and streamflow of 19 watershed s covering Java, each of which has at least 7 years of data. A runoff ratio (RR) is computed for
each watershed as mean precipitation divided by mean flow over the entire period of record and shown in the panels. Watersheds selected for this study

are indicated in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2

Characteristics of the five watersheds over Java selected for this study. Land cover type A, F, S and W represent agriculture, forest, settlement and water
body respectively with bold font indicating the dominant land cover.

Watershed Outlet Outlet Mean Streamflow  Area (km®)  Meanrainfall  Land cover Runoff
Lon/Lat (*) Elevation stream-flow record (mmyyr) Ratio (Q/P)
(m) (mm yr) period
Citarum (CT) 107.53(-6.95 668 1351 1990-1997 1675 2739 A(59),F(27), $(13)W(1) 050
Progo (PG) 110.26(-7.67 180 1115 1996-2002 1676 2412 A(15), F(79),5(5), W(1) D48
Bengawan (BG) 112.17/-7.10 11 885 1990-2002 16286 1993 A(56), F(34), S[9),W(1) 044
Grindulu (GD) 111.14(-8.14 39 1094 1990-2002 2236 2238 A(58), F(42), S5(0), W(0) 056
Bedadung (BD)  113.58/-8.23 44 1322 1991-2001 696 2504 A(21), F(74),5(5), W(0) 050

(BG) receive contributions from 9 and 102 grid cells respectively, such that the application of the model in this basin can be
considered distributed.

3. Hydrologic model

VIC (Liang et al,, 1994) is a physically-based, fully-distributed model that independently solves the energy and water
balances at the land surface. Subgrid-scale variability is user specified for land cover, soil texture, and soil moisture storage
capacity. Two canopy layers represent the interaction of moisture with vegetation - i.e. evapotranspiration (ET), interception
and through-fall, while the uppermost soil layer characterizes the dynamic response of soil to variable infiltration rates of
incoming rainfall. The bottom soil layer is used to coarsely represent groundwater and baseflow processes. The middle soil
layer contributes diffusion of water to uppermost layer when the middle layer is wetter. Details about VIC model structure
and formulations can be found in Liang et al. (1994, 1996).
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Fig 3. Boxplot of monthly precipitation and streamflow for the 19 watersheds covering Java. The period and length of record for each watershed are
different as presented in Table 2 Watersheds selected for this study are marked in red. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 4. The 19 watersheds covering Java with at least 7 vears of data. The five watersheds shown in red were selected for this study after the screening
process. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

In this study we used a standard implementation of 3 soil layers and 2 root zones such that upward transport of moisture
from roots is represented by two top soil layers. The model was run in water balance mode using a 24-h (i.e. daily) time step
ona0.125 % 0.125° grid. The model was forced with daily precipitation, maximum and minimum temperature and wind
speed.
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Fig. 5. Scatterplots of NSE versus soil parameter values from a Monte Carlo sampling of the parameter space. A local polynomial smoother through the
scatterplot is shown as solid line. Results are used to determine sensitivity of NSE to changes in soil parameters, and choose soil parameters for model
calibration.

3.1. Parameter estimation - calibration and validation

Model calibration is a process of identifying parameters that most accurately simulate observed behavior (Refsgaard,
1997). We followed standard calibration practice, under the assumption that observations were error free (Moriasi et al,,
2007). Parameter calibration and validation were conducted on a daily time step comparing VIC simulations with historic
streamflow observations. The Nash-Sutcliffe Efficiency (NSE) metric was used to evaluate the performance of model param-
eterizations (Eq. (2)). Although the NSE tends to be sensitive to extreme values (Gupta et al., 2009; Legates and McCabe,
1999), it is widely used as a representative function to quantify the overall fit of a hydrograph (Moriasi et al, 2007; Sevat
and Dezetter, 1991). According to Mash and Sutcliffe (1970), NSE is defined as:

D —e;)z
T (- o)

where Qf and Q! are observed and simulated daily streamflow at time t respectively, Q5 is the mean of observed streamflow.
The range of NSE extends from —oo to 1 and NSE<0 indicates that the mean flow is a better predictor than the model
simulations. Following Motovilov et al. (1999 ) the model performance at daily time step is generally judged as satisfactory
when NSE > 0.36, however “good"” performance requires NSE > 0.65.

Identifying parameters is critical in hydrologic modeling. Fitting the model using too many parameters (over-
parameterization) increases predictive uncertainties associated with them (Jakeman and Hornberger, 1993). Beven (1989)
suggested that 3 to 5 parameters in physically-based models should suffice to effectively model a range of hydrologic pro-
cesses. Accordingly, we performed preliminary analysis to identify the most sensitive parameters from among the broader
set of eight soil parameters: baseflow parameters (Ds, Dspqy, Ws), infiltration shape parameter b, exponent used in base flow
curve ¢ and the thickness of soil layer (thick,, thicks and thicks). To obtain the set of most sensitive model parameters, we
conducted the following steps:

NSE =1 (2)

(1) We generated 2000 sets of the above eight parameters using a Monte Carlo approach, assuming each parameter is
uniformly distributed within the respective range of values suggested by Xie et al. (2001 ) and Yang et al. (2010).

(2) The VIC model was driven using these soil parameter sets and the NSE was computed for each set; this was done for
each of the five study watersheds.

(3) We produced a scatterplot of each soil parameter and the corresponding NSE for each watershed in Fig. 5.

Sensitivity was assessed using visual inspection of these scatterplots (Wagener et al., 2001). A sensitive parameter will
exhibit noticeable changes in its NSE values as a function of changes in the soil parameter. For example, the c parameter in
Fig. 5 has a "flat” response, suggesting that the NSE is not sensitive to changes in the value of . [n contrast, a parameter such
as Ds exhibits noticeable nonlinear relationship with NSE - across all the watersheds - indicating that changesin value of Ds
result in substantial changesin NSE. Afterexamining Fig. 5, parameter b, Ds, thick; and thicks were determined to be the most
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Table 3
Description of calibration parameters, their ranges and the values obtained from optimization for the five watersheds.
Parameter b Ds thick; thicks v D
Description infiltration curve fraction of maximum thickness of soil thickness of soil flow velocity flow diffusivity
shape parameter baseflow where layer 2 layer 3
controlling surface nonlinear baseflow
runoff begins
Unit NA NA m m m/s m? s
Range >0-1 =01 0.1-3 0.1-3 0.5-3 200-4000
Optimal values
CcT 0.99 0.99 0.30 0.30 299 200
PG 0.48 0.29 2.99 2.99 299 200
BG 0.86 0.01 0.32 2.99 299 204
cD 0.99 0.52 0.30 0.45 299 200
BD 0.55 0.99 0.30 0.87 299 200

sensitive and hence, selected for calibration. This result is in agreement with a previous, more exhaustive sensitivity analysis
(Demaria et al,, 2007) that also found b and thick; to be the most sensitive soil parameters. The description of calibration
parameters is presented in Table 3.

Running and assessing VIC model at daily time step require a routing scheme to take into account for dynamic partial con-
tributions of each grid within a watershed to downstream total flow. As routing model is considered as VIC post-processing,
it requires a separate parameter estimation. For this, we followed the calibration procedure outlined by Lohmann et al.
(1996, 1998). Accordingly, we additionally calibrated flow velocity (1) and flow diffusivity (D) of the routing model (Table 3).

After the sensitivity analysis was completed, we conducted the calibration using the four most sensitive parameters
illustrated in Fig. 5 and two routing model parameters shown in Table 3. When setting up the calibration procedure, we
sought to use an automatic procedure that is typical of the state of the practice in hydrologic modeling: an automatic
simulation-optimization approach that is connected directly to the VIC model. We selected the Borg Multiobjective Evolu-
tionary Algorithm (Borg MOEA) (Hadka and Reed, 2013) which has been applied to calibration problems previously (Reed
etal, 2013), and features diversity throughout search, adaptive population sizing and local optima escape facility. The Borg
MOEA was used in a single objective mode for model calibration in this study to provide a simple and straightforward cal-
ibration procedure that yields a single best parameterization for each watershed. The six selected model parameters were
estimated by optimizing the NSE over the first half (~5 years) of the streamflow record (Table 3). To evaluate the calibrated
model in a predictive mode - i.e., validation (Refsgaard, 1997) - the model was validated against the second half of the
record and the results are presented in the following section.

4. Results

In this section we present the model performance, infer processes using hydrologic metrics and investigate the variability
in performance relative to climate regimes (wet and dry).

4.1. Model performance

The observed and simulated streamflow for each watershed in the calibration (Fig. 6, left column) and validation period
(Fig. 6, right column) are shown as time series (monthly) and scatterplots along with the NSE values (daily). Inthe calibration
period, NSE values range from 0.31 to 0.89, with three of them exceeding 0.36, indicating that the calibrated model perfor-
mance in all the watersheds ranges between satisfactory and good (Motovilov et al., 1997). The simulations consistently fit
the rising limb, peak and recession limb of the observed hydrograph during the calibration period (Fig. 6, left panel). [n all
watersheds, the validation NSE values are lower ranging from 0.07 to 0.79 with two basins perform satisfactorily. Although
the validation NSE values are expected to be lower, the marked drop of NSE values in PG and GD are unexpected.

To reconcile the low NSE scores in validation, we compared the observed rainfall hyetograph with the observed hydro-
graph during those periods where they do not correspond well — shown in boxes in Fig. 6, right panel - particularly in
watershed PG where in 2 out of 3 years in the validation period the observed streamflow peak lags the rainfall. These lags
between monthly rainfall and streamflow could be the result of upstream flow regulation: we note that only the BG water-
shed has known regulation upstream of the gauge. Alternatively, disparity could result from cases where extreme events
occur close to the start or end of the month - i.e. a high rainfall event may occur at the end of the month and high streamflow
is recorded and reported in the following month. Lastly, these disparities could result from measurement errors. In all these
cases, VIC produces high streamflow in correspondence with the peak in rainfall, but the observed flow remains low, thus
resulting in poor skill.

The model soil and vegetation parameters remain unchanged over the simulation period. It is therefore expected that the
runoff ratio between calibration and validation periods should be similar, i.e. constant hydrologic elasticity. However, this is
not the case as demonstrated in Fig. 6. This discrepancy certainly contributes to the significant drop in model performance
in the validation period inwatersheds PG, GD and BD. To understand the cause of this difference, we calculated the change
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respectively. The boxes in the validation figures show the periods where the greatest errors occur, typically manifested in the lack of a comresponding
observed hydrograph peak with precipitation input, or where there is a lag between monthly rainfall and observed streamflow peaks.

in mean rainfall and streamflow between the calibration and validation periods (Table 4). The percent changes between
rainfall and streamflow differ substantially in almost all the watersheds. In particular, nearly all study watersheds exhibit
more than a 10% change in runoff ratio. This could be due to shifts in climate, or conversely due to errors in streamflow
measurement, and/or biases in the gridded rainfall as is likely the case in watershed GD in December 2000 (Fig. 6)where the
observed streamflow exceeds the maximum rainfall input. VIC cannot adequately capture this change in elasticity through
time as is apparent in the validation. Overall, the mechanism responsible for the change in elasticity through time cannot
be conclusively attributed to either climate or sensor errors exclusively.
Soil moisture content exerts an important control on the amount of rainfall partitioned into direct runoff, baseflow and
ET with higher soil moisture content corresponding with greater direct runoff. Important changes in soil moisture content
emve been noted from daily to annual time scales in this region (Krave et al,, 2007; Kumagai et al., 2009). It is therefore of
interest to understand the seasonal performance of VIC related to the state of the system, wet versus dry. We computed NSE
for the dry and wet seasons separately. Dry and wet seasons were defined as the months with rainfall below and above the
annual mean respectively (Yantoet al., 2016a) - defined as Nov-Apr for wet and May-Oct for dry season. Table 5 shows NSE
in dry and wet seasons for the five watersheds. The substantial difference of model performance exists in all watersheds
except in basin PG. We suspect this is due to the nature of the NSE whereby model skill can be over-estimated particularly
in basins with high seasonal variability such as in Java (Gupta et al., 2009).
Although no direct measurements exist of ET, it is worthwhile exploring the characteristics of simulated ET since it is
an important component of the water balance. We compared the VIC-simulated ET with the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) MOD16 global ET product (Mu et al., 2007) for the overlapping time period 2000-2010.

Table 4

The change of mean rainfall and streamflow in the calibration and validation periods. The change in runoffratio is computed as percentage change of mnoff
ratio in the validation period from it is in the calibration period.

Watershed Daily mean stream flow {mm) Daily mean rainfall (mm) Change in runoff ratio (%)
Calibration Validation Change (%) Calibration Validation Change (%)

CcT 3.87 3.44 ~11.m 532 624 17.29 —24.19

PG 245 3.42 16.12 6.67 6.66 ~0.09 16.22

BG 237 227 —4.03 5.00 5.06 1.19 ~5.15

cD 2.83 4.03 42,38 5.15 5.00 —2.88 46.61

BD 3.14 3.82 211 494 5.46 10.45 10,19
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MSE values for all watersheds in dry and wet season.

Watershed Dry Season NSE Wet Season NSE
cT 0.12 0.07

PG 0.18 0.18

BG 0.74 0.81

GD 0.31 0.25

BD 059 0.26

Validations of 8-day MOD16 ET with flux tower measureﬁents across climate regions have shown underestimation of high
ETand overestimation of low ET values on the order of 20% (Kimetal, 2012; Ruhoffetal., 2013; Tanget al.,2015). Ruhoffet al.
[2013) identified the misclassification of land cover as the major source of error in the MOD 16 algorithm. Furthermore, since
MOD16 ET estimates are not constrained by a water balance they can result unrealistically high values during dry conditions
(Livneh and Lettenmaier, 2012; Ferguson et al., 2010). Fig. 7 shows the standardized monthly ET anomalies from VIC and
MOD16. We standardized the data by subtracting the period mean and dividing by the respective standard deviation, as it
was expected that the dynamic range of the two products may differ given the lack of water (mass) balance constraint on
the MOD16 product. Model simulations reproduce the temporal pattern of the MOD16 ET well except in basin CT. MOD16
ET tends to be an overestimate for higher values and an underestimate for lower values compared to VIC ET. MOD16 annual
ET in basins CT, PG, BG, GD and GD is higher than VIC ET by 48%, 19%, 34%, 61% and 41% respectively. This level of error
in MOD16 is therefore in agreement with aforementioned findings (Kim et al,, 2012; Ruhoff et al,, 2013; Tang et al,, 2015)
limiting the ability to critically evaluate VIC ET here.

To understand the mismatch between the two ET estimates for basins CT we investigated the season of minimum ET
for each watershed. The minimum simulated ET consistently occurs between July and October for all watersheds which is
consistent with MOD16 in PG, BG, GD and BD and also follows the temporal distribution of temperature. On the other hand,
minimum ET from MOD16 in basin CT frequently occurs between January and April, which is out of phase with temperature.
Our analysis suggests that it is more likely this result reflects an issue with MOD16 data rather than with ET simulations
from VIC which is unlikely to produce inconsistency between temperature and ET.
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Fig 7. Time series of normalized evapotranspiration (divide each anomaly by standard deviation of the data) from the model simulation and MOD16 for
the period 2000-2010.
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Table 6
Water balance and calibrated soil parameters in the selected watersheds organized from west to east. The water balance was computed for calibration

period. BFI is calculated as ratio of long-term baseflow to total streamflow.

Variable Unit CcT PG BG GD BD
Water balance
Rainfall Total (mmyr ') 1942 2434 1826 1960 1805
Coefficient of Variation (CV) 1.02 117 123 1.39 1.57
Evaporation Total (mmyr 1) 1010 1149 926 1043 902
Coefficient of Variation (CV) 0.54 0.35 054 0.749 0.84
Direct runoff Total (mmyr 1) 499 569 588 414 425
Coefficient of Variation (CV) 1.34 1.39 146 1.81 2.08
Base flow Total (mmyr 1) 433 666 304 504 476
Coefficient of Variation (CV) 1.02 0.33 119 1.12 1.18
Baseflow Index 4 46 54 34 41 53
b 0.99 0.48 086 0.99 0.55
Ds 0.99 0.29 00 0.52 0.99
thicks m 0.30 299 032 0.30 0.30
thicks m 0.30 299 299 0.45 0.87

4.2, Variability of water balance and hydrologic processes

This section explores key characteristics of the simulated hydrology including the partitioning of baseflow and direct
runoff. Understanding the contributions from these streamflow components and the streamflow generation process in
general is important for skillful hydrologic prediction (Eckhardt, 2008; Gonzales et al,, 2009).

To understand the spatial variability (e.g., west to east) of streamflow generation processes in the selected watersheds,
we compared coefficient of variation (CV) of monthly streamflow, direct runoff and baseflow, shown in Table 6. In addition,
we computed the Base Flow Index (BFI: the ratio of baseflow to total streamflow in the calibration period) to isolate the
roles of soil and geology (Beck et al., 2013; Longobardi and Villani, 2008). In Table 6 it is shown that rainfall variability,
indicated by the CV of precipitation, increases moving eastward on the island. The temporal variability of surface runoff in
all the watersheds is higher than their corresponding rainfall. The higher temporal variability of runoff compared to rainfall
is a consequence of streamflow dependence on soil moisture content and soil permeability (Munhoz-Villers and McDonnell,
2012). Rainfall-runoff response in humid tropical mountainous areas is expected to be dominated by baseflow from within
the hillslopes (Mufoz-Villers and McDonnell, 2012). This is confirmed by lower CV values of baseflow in comparison to that
of surface runoff and precipitation. The variability in rainfall, direct runoff and baseflow show a general increase from west
to east over the island. The ratio of CV of direct runoff and baseflow is 1.31,4.21, 1.23, 1.62 and 1.76 for the watersheds CT,
PG, BG, GD and BD respectively. As shown in Table 6, this pattern is consistent with that of the calibrated thickness of soil
layer 2, thicks. Also, both the ratio of CV of direct runoff and baseflow and thick; are highly correlated, exhibiting a R? score
of 0.97.

The distribution of BFI over the watersheds shows a low degree of variability ( ~0.34-0.54) - consistent with the fact that
the watersheds all have similar geology. In addition, the BF is highly correlated with 1/b (R? of 0.62) - a key variable in the
infiltration capacity equation used by the model (Liang et al., 1994). This intuitive result confirms that the soil characteristics
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Fig. 8. Flow durationcurve of monthly simulated streamflow in the wettest, average and driest year chosen from the calibration period of each watershed.
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Table 7
NSE of the driest, average and wettest years in the watersheds.

Watershed Driest year NSE MNormal year NSE Wettest year NSE

CcT 0.33 0.38 0.25

PG 0.41 0.09 0.27

BG 0.84 0.88 0.89

CD 0.24 0.30 0.52

BD 0.62 0.30 0.48

in the top layer have a strong influence in transferring the rainfall into both direct runoff and baseflow and consequently
the BFI.

4.3. Sensitivity to climate regimes

Understanding the hydrologic response of watersheds to different climate regimes, here defined as the inter-annual
variability of precipitation forcings, is of great interest especially as it would pertain to managing resources in a changing
climate. We compared the simulated flow duration curves of surface runoff and baseflow for each watershed for the driest,
average and wettest years, shown in Fig. 8. These years were selected on the basis of annual rainfall in eachwatershed. Runoff
and baseflow are deemed sensitive if their flow duration curves in the driest and wettest year are clearly separated from the
average. Fig. 8 demonstrates that surface runoff tends to be more sensitive to climate variability than baseflow, particularly
during high flow periods. High flows occur during the wet season when the soil moisture content is typically high (Krave
et al., 2007), thereby quickly saturating the soil during rainfall events and resulting in rapid overland flow. In comparison
baseflow is less sensitive, with the eastern basins (BG, GD and BD) showing slightly higher sensitivity than western basins
(CT and PG) during the wettest year. We computed the NSE scores for these three years (Table 7) indicating that the model
performances are spatially comparable during the wettest and driest years.

5. Summary and discussion

Java is the most populous Indonesian island, plagued by flooding, water shortages, and landslides. These natural disasters
underscore the need for understanding and modeling the hydrologic processes in space and time in order to aid in mitigating
the events. However, there are critical challenges for hydrologic modeling in Java: complex climate dynamics near the
equator, the island's diverse topography, as well as issues with scarce and limited quality hydrologic and meteorological
data.

This study presented one of the first attempts to model the hydrologic processes over multiple watersheds of the Java
[sland, specifically using the VIC modeling system. Data were assembled for 19 watersheds and after screening for physical
consistency between precipitation and streamflow as well as missing data, five watersheds were selected for detailed study.
Four sensitive soil parameters were calibrated for these watersheds. The optimal parameters were selected by maximizing
NSE over the calibration period ( the first half of the data period) using a single-objective optimization with the Borg MOEA.
The model was validated on the second half of the data record.

In the calibration period, model performance varied from satisfactory to very good with NSE ranging from 0.31 to 0.89. The
NSE of the validation period was lower than expected with skill between NSE=0.07 to NSE=0.79. Inspection of the rainfall
and streamflow observations revealed data quality issues, both for precipitation and discharge, whereby streamflow peaks
did not follow rainfall peaks or where peak flows greatly lagged the rainfall enough to lower the skill. Furthermore, significant
differences in runoff ratio between calibration and validation periods in most of the watersheds were also observed. The
marked drop in performance between calibration and validation periods is indicative of ‘overfitting’ model parameters to
the calibration period. The NSE for dry and wet seasons remained steady except in the watershed BD, which has a negative
skill during the dry season. The dependency of model performance on the flow magnitude and soil moisture properties was
deemed responsible for the seasonal variability of model performance. The BFI and 1/b, the parameter in the infiltration
equation of the model, are highly correlated, indicating that the surficial soil properties play an important role in both
the direct runoff and baseflow. Direct runoff is more responsive to climate variability compared to baseflow, especially
in high flows. Overall, the modeling framework developed in this study offers an important first step towards systematic
understanding of hydrologic processes for Java and the potential for a skillful hydrologic forecast modeling system.
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