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Abstract Recently, we have seen the phenomena in use of partial differential equations (PDEs) especially in fluid dynamic
area. The classical approach of the analysis of PDEs were dominated in early nineteenth century. As we know that for PDEs the
fundamental theoretical question is whether the model problem consists of equation and its associatedffEle condition is well-posed.
There are many ways to investigate that the model problems are well-posed. Because of that reason, in this paper we consider the
R-boundedness of the solution operator families for Navier-Lamé equation by taking into account the surface tension in a bounded
domain of N- dimensional Euclidean space (N > 2) as one wa}n: study the well-posedess. We investigate the R- boundedness
in half-space domain case. The R-boundedness impl{f§ not only the generation of analytic semigroup but also the maximal L,-L,
regularity for the initial boundary value problem by using Weis’s operator valued Fourier multiplier theorem for time dependent
problem. it was known that the maximal L,-L, regularity class is the powerful tool to prove the well-posesness of the model
problem. This result can be used for further research for example to analyze the boundedness of the solution operators of the model
problem in bent-half space or general domain case.

Keywords 7R-scctoriality, Navier-Lamé equation, Surface Tension, Half-space

1 Introduction

Let u and Q be a velocity field and a bounded domain in N-dimensional space RV (N > 2), respectively. The formula of
Navier-Lamé equation in bounded domain with surface tension is written in the following:
Au—aAu— AVdiva=f in Rl
(aD(u) — (8 —a)divul)n — o(Afpn=g on RY, (1
Ap+a-Vp—u-n=d on R},

where 2’ = (ay,...,ay_1) € RN"landa’ - V'y = E}\:ll a;d;n. Assume that
la’| < ag (2)
for some constant ag > (. Let R}f and R[}’ be a half—spaﬁnd its boundary, respectively. Namely,
R:"\‘: = {'1" = (T1,...,TN) € R‘N | TN = O}~

RY ={z=(21,...,25) € RN | zy = 0},
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andn = (0,...,0,—1) be the unit outer normal to Rf?", D{u),u = (u1,...,un), the doubled deformation tensor whose (i, j)
components are [;;(u) = diu; + du; (J; = 0/dx;), I'the N x N identity matrix, o, & are positive constants (o and (3 are the
first and second viscosity coefficients, respectively) such that 3 — o > 0.

Meanwhile, Ar, is the Laplace-Beltrami operator on Ar,. Let Rl and Rf?] be a half-space and its boundary, respectively.

Namely,
'IS
N o N
RY ={z=(11,...,25) € R | 2§ > 0},

RY ={z=(21,....,25) e RV |2y =0}

Letn = (0,...,0, —1) be the unit outer normal to Rf}'" We consider the following problem:

Au— aAu— Vdiva=f in Rf,
(aD(u) — (f —a)diva)n —ag(Arpin=g on RY, (3)
AM—n-u=d on &Y,

where o is uniformly continuous function with respect to.r € R;’}_", which satisfy the assumptions:

pif2 < afz) < 2p,. “
The aim of this paper is to derive a systematic way proving the existence and the R-boundedness solution operator of the resolvent
problem for the equation sysm of Navier-Lamé (3) with surface tension in half-space. By using the Weis operator ued Fourier
multiplier theorem [19], the existence of the R-boundedness solution operator of the problem (1) implies not only the generation
of analytic semigroup but also the maximal L,-L, regularity. The Navier-Lamé (NL) equation is the fundamental equation of
motion in classical linear elastodynamics [7]. Sakhr [13] investigated the Navier-Lamé equation by using Buchwald representation
in cylindrical c@inatcs, The R-sectoriality was introduced by Clément and Priili[5]. In 2009, Cao [2] investigated the Navier-
Stokes and the wave-type extension-Lamé equations by using Fourier expansion. And also investigated the flag partial differential
cql.ﬂons by using Xu’s method.

In this paper, we investigate the derivation of the R-sectoriality for the model problem in the whole space and half-space by
applying Fourier transform to the model problems. In the other side, Denk, Hieber and Priifi[4] proved the R -sectoriality for BVP
of the elliptic equation which holds the Lopatinski-Shapiro condition.

Recently, there are many researchers who concern to study R-boundedness case. In 2014, Murata [8] investigated the R-
boundedness of the Stokes operator with slip boundary condition. Another researcher who investigated the R-sectoriality is Maryani
[10, 11]. She studied the maximal L,-L, regularity class in a bounded domain and some unbounded domains whicmllisfy some
uniformity and global well-posedness in the bounded dolml case, respectively using the result of R-bundedness of the solution
operator of the model problem of the Oldroyd-b model. The main purpose of this paper is to investigate the R-boundedness of
the solution operator families for the Navier-Lamé equation with surface tension in half-space problem. A further result in favour
of focusing on the main problem is finding the characteristic of 1 and creating the Laplace- Beltrami operator on I'. This kind of
investigation becomes considerable benefit in studying fluid mechanics.

Several mathematical analysis approach of fluid motion with m'ace tension have been undertaken in recent years. In 2013,
Shibata [15] investigated the generalized resolvent estimates of the Stokes equations with first orderfiffdindary condition in a general
domain. Later year, Shibata and Shimizu [18] studied a local in time solvability of free surface problems for the Navier-Stokes
equations with surface tension. According to those phenomena, it is such an interesting subject to analyze fluid flow of the non-
Newlonaompressible type especially model of the Navier-Lamé equations.

The main aim of this study is to prove the existence of the R-bounded solution operator families for Navier-Lamé equations
with surface tension in a bounded domain for the resolvent problem (1) in half-space for o > Om.l a = () case. This topic becomes
important reference for someone who is concerned with not only local well-posedness but also global well-posedness of Oldroyd-B
model fluid flow. And lhn applying the definition of R-sectoriality and Weis” operator valued Fourier multiplier theorem in [19],
automatically we obtain the generafin of analytic semigroup and the maximal L,-L, regularity for the equation (3). In 2017,
Maryani and Saito [12] investigated R-boundedness of S(Jll.m] operator of two phase problem for Stokes equations.

To state our main results, at this stage we introduce our notation used throughout the paper.

38
Notation [M denotes the sets otural numbers and we set My = M U {O} C and R denote the sets of complex numbers, and real
numbers, respectively. For sets of all N x N symmetric and anti-symmetric matrices, we denote Sym(R") and ASym(RY),
Epectively. Let ¢’ = q/(q — 1), where ¢’ is the dual exponent of g with 1 < g < oo, and satisfies 1/¢g + 1/¢' = 1. For any
multi-index & = (k1,...,6y) € NY, we write || = k) + -+ + sy and O = 9} - @y with x = (x1,... 7). For scalar
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function f and N-vector of functions g, we set

Vfi=(f,. E?Nf],

Vg =(dig; | 1,0 =1,...,N),

Vg = {00k | i.j.k =Ly .., N}.
g={2i9gx | 1,5, ﬁ N}

L(X,Y ) denotes the set of all bounded linear operators from X into Y, for Banach spaces X and Y and Hol (U, £(X, Y)) the set

ofall £(X,Y) valued holomorphic functions defined on a domain U in C. L,(D), W (D), B; (D) and Hj(D) denote the usual

Lebesgue space, Sobolev space, Besov space and Bessel potential space, respectively, for any domain D in BY and 1 < p,gq < oc.
Whilst, || - {|z, o) |- ||W;‘{DJ» I| - ”B-,';_J,{DJ and || - ||H,-:{DJ denote their respective norms. For # € (0,1), Hg(R,X) denotes the
standard X -valued Bessel potential space dgfined by

HY(R,X) = {f € Ly(R.X) | [l i) < o0},

1/p
g <o) = (L IF 0+ 2P PF IO )

We set W“(D) = Lg(D) and Wi (D) = Bj (D). C*(D) denotes the set all ™ functions defined on D. Ly((a,b), X) and

H’” .b), X) denote the usual Lebesgue space and Sobolev space of X-valued function defined on an interval (a,b), while
[| - ||L ((a,5),X) .md [ ||u,’£..{(ﬂ‘b)‘xJ denote their respective norms.Moreover, we set

b Lip
”emeLp({a‘b)‘XJ — (/ (en:Hf(f)Hx)Pdf) forl < p < nc.

The d-product space of X is defined by X% = {f = (f,...,fa) | fi € X (i = 1,...,d)}, while its norm is denoted by || - || x
instead of || - || x-« for the sake of simplicity. We set

WD) = {(f.8. H) | f € W;"(D),

g c H'!rf[D)Nr H < L_t_fqm(D)Nx N},

I(f. g, H)||wr;u-¢'(g:1 =|I(f.H) ||w"l{m T ||g||wr;{§1

Lp (R, X) = {f(t) € Lpc(R, X) | 7 f(t) € Lp(R, X))},

Ly o(BX) ={F(t) € Ly, (R,X) | f(£) =0 (t <0},
W (R, X) = {f(t) € Ly, (R, X) | e 8] f(1) € L, (R, X)

P
(j=1....m)}
H!;;”rl [}(Rr X) u!‘r;”rl n LP,‘rl‘[}(Rr X)

Let f,, = F and }_{_ L= 1 denote the Fourier transform and the Fourier inverse transform, respectively, which are defined by

=R = | e rwas
51 R'l _
7o) = gy [ e a6
23

We also write f = Fu[f](€). Let £ and £7" denote the Laplace transform and the Laplace inverse transform, respectively,
which are def‘med by

LI = [ e ol = 5= [ Moty

with A =~ +i7 € C. Given s € [ and X-valued function f(t), we set
ASF(B) = LT NLIAN)@)
We introduce the Bessel potential space otévalued functions of order s as follows:

HE . (R, X)={f € L,(R,X) | e AL [f](t) € L,(R, X)

P

for any v > ‘rl}
Hy o oRX)={f € Hy, (R, X) | f(t) =0 (t <0)}.
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Forx = (z1,....20) and ¥ = (Y. - - ,y,;),@ seLX -y =< X, ¥ >= Z;;l x;y;. For scalar functions f, g and NV-vectors
of functions k, g we set (k,g)p = @kg dr, (k.g)p = [pk-gdz, (k.g)r = [pkgdo, (k.g)r = [p k- gdo, where o is
the surface element of I'. For N x N matrices of functions F = (F};) and G = (Gy;), we set (F,G)p = fD F : G dxr and

1/2
(F,G)r = fr‘ F: Gdo, where F : G = Z:‘j:l FijGij and |F| 2@23:1 f'}-jf'}j) . Moreover, x - F means vectors with

components ", a,F;;. Let C5°(G) be the set of all C™ functions whose supports are compact and contained in . The letter
(' denotes generic constants and the constant C', 3, depends on a, b, . ... The values of constants C' and C,, ; _ denote a positive
constant which may be different even in a single chain of inequalities. We use small boldface letters, e.g. u to denote vector-valued
functions and capital boldface letters, e.g. H to denote matrix-valued functions, respectively. But, we also use the Greek letters, e.g.
p. B, 7, w, such as to denote mass densities, and elastic tensors in case the confusion m@ccur, although they are N x N matrices.
Research methodology of this paper is literature review. In this article, we consider the R-Boundedness of the operator solution
of the Navier-Lamé equation with surface tension in half-space case. The procedures of to prove the purpose of the article
are explained in the following. First of all, we define half-space and its boundary, then by using the partial Fourier transform and
inverse partial Fourier transform of resolvent problem of (1) in whole and half-space, we get new solution formula of velocity and
also density of Navier-Lamé equations. In the end, we use Weis’s operator valued Fourier multiplier for time dependent problem.

2 Result and Discussion

2.1 Main Theorem

Before stating our main result, firstly, we introduce the definition of R-boundedness and the operator valued Fourier multiplier
theorem due toé'cis [19]. The following theorem is obtained by Weis [19].

Theorem 2.1. Let X and Y be two UMD Banach spaces and 1 < p < oc. Let M be a function in C* (R\{0}, £(X,Y')) such that

YM(r)|teR{0})<k<oo (£=0,1)
with some constant x. Then, the operator deﬁned in (5) is extended to a bounded linear operator from Ly(IR, X') into L,(IR,Y").
Moreover, denoting this extension by Ty, we have

d
TR~y R
mx,}’;({(TdT

@l Dol 2(Lp 2 x, Lo vy < Ck

r some positive constant C' depending on p, X and Y.
4
Definition 2.2. A family of operators T C £(X,Y) is called R-bounded on L(ZE}Y"), if there exist constants C' > 0 and p € [1. o0}
such that forany n € N, {73}/, C T, {f;}j=1 C X and sequences {r;}_, of independent, symmetric, { -1, 1}-valued random
variables on [0, 1], we have the inequality:
74
Lip

1 n 1 n 1/p
{/ ||er(1;)n;rj||§id1;} < ({[ ||er(u);rj||‘f§(du} .
- 0 O

The smallest such C'is called R-bounded of T, which is denoted by Rz (x yv(7).

Let D(IR, X ) and S(R, X) be the sct of all X valued C'> functions having compact support and the SchwaifZpace of rapidly
decreasing X valued functions, respectively, while §'(R, X) = £(S(R,C), X). Given M € L1 10.(R\{0}, X). we define the
operator Tyy : F'D(R, X) — S'(R,Y) by

Tap = F HMF[¢]], (Flé] € D(R, X)). (5)

Remark 2.3. For the definition of UMD space, we refer to a book due to Amann [1]. For 1 < g < oo, Lebesgue space L,(§2) and
Sobolev space W ({2) are both UMD spaces.
We (%e a proposition [4], which tell us that R-bounds behave like norms.
Lemma 2.4. Let X, Y and Z be Banach space and T and S be R-bounded families -
11 57

1. If X and Y be Banach spaces anf{&} T and S be R-bounded families in L(X.Y). Then T + S ={T +S|T € T.5 € S}is
also an R-bounded family in L(X.,Y) and

Rex ) (T +8) < Reox vy (T) + Rexv) (S)
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2. If X, Y and Z be Banach spaces andg} T and S be R-bounded families in L(X,Y) and L(Y,Z), respectively. Then
ST ={ST|T € T.5¢e S}isalsoan %unde’dﬁzmﬁy in L(X, Z) and

Rex,z)(TS) < Rex vy (TR ex, vy (S)
Definition 2.5. Let V be a domainin C,let Z = V x (RN =1\ {0}), and let m : £ — C; (), £') = m(\, ') be C! with respect to
T, where A = 4 + it € V, and C* with respectto & € RV—1\ {0}.
1. m(A, &) is called a multiplier of order s with type 1 on Z, if the estimates:
|0 m(X, €] < Cur (N2 + 1€/,
108 (T8,m(X. €))] < Crr (N2 + |¢'])* ¥
hold for any multi-index x € N and (A, £') € = with some constant C, depending solely on &’ and V.
2. m(A, ) is called a multiplier of order s with type 2 on =, if the estimates:
08 m(A €] < Cur N2 4+ 1)*[¢) 7,
185 (ra,m(\,€))| < Cur(IA]V2 + 1€'1) 16|~
hold for any multi-index x € Nf?" and (A, £') € = with some constant C depending solely on « and V.

Let M. (V') be the set of all multipliers of order s with type  on E fori = 1,2. Form € M, ;(V), we set M(m,V) =

max|,.| <y ()

Let }_{T ! be the inverse partial Fourier transform defined by

1 ot g
1 o if"-£ ! N '
P o @) = gy [, € K€ de.
Then, we have the following two lemmas which have proved essentially by Shibata anwimizu [17, Lemma 5.4 and Lemma 5.6].
Lemma 2.6. Lete € (0,7/2), g € (1,00) and Ay = 0. Givenm € M _, (2, », ), we define an operator L(X) by

oo

(L) = [ Fo' &)X 2em Bty yy))
]

() dyn.
Then, we have
R (L, mY) W -J{Rh]h]({(rar) IR0 LN LA e B )
<rp(Ao) (£=0,1),(7 =0,1,2).
where T denotes the imaginary part of A, and r,(A\q) is a constant depending on M(m, X, 5 ), € Ao, N, and q.

Lemma 2.7. Let1 < g <00, 0< Faﬂ;{Q dan Ay = 0. Letm (A, &) be a function defined on ¥, , and m € M_oo(X, 5, ) such
that for any multi-index = N[} Y there exists a constant Clr such Ihat

k' a ¥ ! —2—|k'
0 {75 mA €D} < Curl A2 + [g/| 7271
(t=0,1) ©)
forany (A, &) € X, . Let W;(A) (j =1,...,4) be operators defined by

W f= [ Fa'lmng)Be PUNte) FUf](E yn)]
0

(') dyx.

VoW f= [ Fo'lmA&)BM(zn +yn)Fur )€ yn)]

0

(') d?}v
WA f = F Hm(X E)AB M(xy +yn)For[fI(E yn)]
(") dym.

V(AN f = Fatm(A€)B*M(xn + yn ) For 1€ yn)]
0

(z') dyy.
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Then, we have

d e~ : Y
RE{L,,{R;‘;'J__LQ{R;‘:;S'J({(TEJ (GATi(A) |A X 51 £C
t=011i=1,234)
with some constant C. Here and heredfter, C'.: denotes a generic constant depending on v/, €, Ao.
The proof of the Lemma can be seen in [6], [3] and [8].

Lemma 2.8. Ler 1 < q < oo and ler A be asetin C. Let m = M (A, £) be a function defined on A x (R{O}) which is infinitely
differentiable with respect to £ € RN A\ {0} for each X € A. Assume that for any multi-index v € Nf?' there exists a constant C,,
depending on v and A such that

08m(A,©)] < Cale| e ™)
forany (A, €) € A x (BN \ {0}). Let K, be an operator defined by
Kxf = F - m\OF £ ()
Then, the family of operators {K | A € A} is R-bounded on £(Ly(RN)) and

Rew ey {En [ A €AY <Cy N l(_‘rlggggrla.\ 9

for some C,  depending only on q and N.
The following theorem is the main theorem of this article.
Theorem 2.9. Letl < g < oo, 0 < e <7w/2and N < r < oco. Assume that r > max(q,q') and A € X, ,. Set
Z,RY) ={(f.g.d) | f € Ly(RY),g € W (RY)Y,
d e WE(RY)},
(RY) ={(F1.F2, F5, Fy)[Fy € L,(RY)Y, F € Ly(RY)™,

Fs € Ly®Y)"", Fi e Wi/ 9(RY)}.

Z

9

Then, there exists a Ao > 1 and an operator family R(\) and Ry (\) with

R(\) € Hol(S, 5, L(Z4(EY), Wi(RY)))
Ri(X) € Hol(E 5, £(Z4(RY), W3 I(RY))) (10)

such that for any (f,g,d) € Zr’,(Rf) and A € ¥, 5, u = R(AN(f, A 2g V. d) and n = Ry (N)(f, A% g, Vg, d) are unique
solutions to problem (3). Moreover, there exists a constant ry, such that

R (zymywi-i@yym) ({70 (WERON)) | A € Bea)) <7
(t=0,1,j=0,1,2),

R ({(rar) (A*Ry(N) [ A €eX, b <m

L{Z(RY), WS 5 (RY)

(=01, k=0,1), (1)
with A =~ + 1.
Remark 2.10. The F,, F,, F5 and F} are variables corresponding to f, \'/2g, Vg and d. respectively.

The resolvent parameter A in problem (3) varies in 3, », with
Eoa, ={AeC||argh| <7 —e [N = Mo}
- (€ € (0.7/2), X > 0). (12)
81
The following section discusses the R-boundedness of the solution operator in the whole space problem.
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2.2__ On the R-boundedness of the solution operator in RY

In this section, we consider the R-boundedness of the solution operator of the Navier-Lamé equation:

Au — alAu — gVdiva=f inQ (13)

where o and /7 are positive constants. Applying div to (13), we have
(A—(a+ 3)A)divu =divf (14)

Substituting (14) to (13) we have the formula of u, that is
u=(A—alA) '+ BV[(A—ad) '\ - (a+5)A) 'divE] (15)

By the Fourier transform and the inverse Fourier transform for £ = (fy, ..., fi) we have Sy(A)f = (uq, ..., uy) then we can write
equation (15) to be

P e e a6)
(A+ afgP) (A + (a+ 3)|€2)
Related to the spectrum, we know the following lemma which is proved by Shibata and Tanaka [14].
Lemma 2.11. Let 0 < € < % ¥, x, as defined in (12) Then we have the following assertion
1. Forany A€ X.and £ € RN we have
o A+ [6?] = sin(3) (o AL+ [¢P) (17)

2. Forany Ay > 0 we have

The following theorem is the main result of this section.

larg(a™'A\)| < 7 —e

Theorem 2.12. Let | < q < 0o, 0 < € < 7/2 and we assume that o« > 0, o + 3 > 0. Let So(\) be the operator defined in 16.
Then, Sy(X) € Hol(S, 5, L(Ly(RY)N  WZ(RY)N)). Forany f € Ly(RY)Y and ) € 3, 5, u = Sy(Mf is a unique solution to
the problem (13) and we have

9

R

d . ,
£(La @) Ly ({(T) (GaSo(V) [ A € B, }) < C

(t=0,1) (18)

for A = 5 + it and some constant C depends solely on €, Ay, 7, g and N, Gyu = (Au,~u, A2, V).

2.3m()n the R-boundedness solution operator in &%; o > 0, a = 0
In this section we consider the following generalized resolvent problem of the equation (3) which can be written in the following:
Au— adu— gVdiva=f in R:f,

(aD(u) — (3 —a)divul)n — o(Arpin=g  onRY, (19)
AM—u-n=d on kY.

where n = (0,..[@0. —1) € RY and A'p = ZJ\;—IL & /ox?.

Furthermore, we consider the following equation system:

A — afAu — AVdiva =10 in 02,
(aD(u) — (8 — a)divul)n— o(Arp)n=0  onT, (20)
An+a -Vp—u-n=d on R,

Then, we shall prove the following theorem
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Theorem 2.13. Let 1 < g < 00,0 <€ < w/2and A > 0 and operator families U(\) and V() with

U(A) € Hol(c »,, L(Z4(RY), W2(RY)))
V(A) € Hol(Ec 5. £(Z(RY). WE(RY)))

such that for any d € H-"r;f(Rf)N. u = U(N)d and 1 = V(A)d are unique solutions of equation (20). Moreover, the following
estimate holds:

Rz, mywe- @y ({07 (VU)X € Bex}) Sm(h)  (€=0,1, j=0,1,2),
Rz, @y wi-tme ) (O V) [A €Dy, P < (M) (€=0,1, k=0.1).

We have Theorem 2.9 immediately with help of the Theorem 2.13.
First of all, applying the partial Fourier transform to equation (20), we have for x > 0 for first and second equation in the
following

Toa 4+ dyty) =0,

ala A+ |2 — addiy — Bi€; (i€
ala A+ | iy — addin — BON (i - 4" + dniy) = 0,
a(Onity +i5UN) | p=0 = 0, (21
20dyiy + (8 — oS - & + Oniiy) |syco= —0|€'%h
X+ i [emo =
with i€ - @' = Z;:ll i€y, € = (E1,....En—1) and f = f(€', = [pn-1€ —i"-€' ¢(3' 2 n)dz'. Here and hereafter, j runs
from 1 to N — 1. Since (A — mﬁ)( — (o + ﬁ)ﬂ)ﬁ = () as was seen in (14)_ we have (9% — AZ)(af B?)a = 0 with

(a+ B IA+ | B=a A+ [
‘We look for a solution a = (i, ..., uy) of the form
ﬁ!‘ — UJ!? s Qf)ﬁ_BIN _ ije—/lz;.\' (22

fort=1,....N
First of all, by substituting (22) into (21) and equating the coefficients of e~**~ and e~ 5%~ we have

a(B? — A%)P, — i€, (i€ - P' — APy) =
a(B% — A%)Py + BA(i€ - P — APy) =
i - Pl +ig - Q B(Py+Qn) =
a((B = A)P; + BQ; —i§QN) =
(e + B)(B(Py +@QN) — x‘UJ: ) = Big" - Q' = ol "7

(23)

withif" - R' = Z&_l i&. Ry for R = P and (). We consider i€’ - ()" and () as two unknowns to solve the linear equations (23).
Then by the second and the third equation in (23), we have

o2
P | ’
§-r= W i€ - Q' — BQn),
Py = A€ Q- BQy) 4
£ AB — |cr|2 "’
Since i’ E'(0) = a((B— A)ie - P'+ Bit' - Q')+ a|€'|2Qx ) as follows from the fourth equation of (23), combining this formula
with the last equation in (23) dl‘]d (24) and setting
QA(B — [€'])
fu= N
ofg[F(24B — [€'|* - B?)
LLQ = A o
B¢ q
20A(B - A) - (8 — a)(42 - [€])
f = T
v+ 3)B(A? — |¢|?
Loy — (o + B)B( 1€1%) (25)

AB—¢T?
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we have a linear system:

i£'Q)’ 0
i o |- ot | 20
with Lopatinski matrix
_ | L Lip 2
L*[Lm Lo | @7

The analysis of the Lopatinski determinant can be seen in Gétz and Shibata [3].
If det L # 0 at (A, &) € X, »,, then it follows from (26) that

ie . P = LM
h (det L)(AB —[€']?) ~
Py = meﬂj (28)
with M = —(L1o4+ 5Ly, )o|E'|*n. By (28), we have
it - P — APy = Mﬂf, (29)

(det L)(AB — €T%)

so that by (23) we have
BiE (2 - 4D
afB?— A?)det L{AB — |£']?)
P BA(I€® — A2) (
VT (BT = A)(det L)(AB = [€'])

. £ g 2 - 2
Q, - i€ [ BT — A7) (Lia+ BL1y) e

9.
Py =- |

Lisyre,, ol |0

Lisyer,, ol

T BdetL|a(A+ B)(AB —|£']2)

+Lu |ol€']*q

Lll 2.
P— =
@ dmL”"’ Y

Thus, combining (23) and (30) and setting w = 3/, we have

w(i&) (Lo + BLyy) |€)? — A2
B(B+ A)det L. AB— |¢']?
(BM(z) — e~ 5% o€

(25 ) L —Buyn |2
BderL® €l

wi(f,zn) =—

and,

an (€. zx) ~wA(Li2+ BL1y) €7 — A?
NS EN =T B T A)det L AB — |2

Ly —Buyn |25
+ ——e T . 31
A (3D

M(zx)ol¢' %

e~ Bay _ E_AI N

withM(zy) =

B-A
Inserting the formula of 4 (&', 2 )4, =0 into the last equation of (21), we have
- Ly 12 3
A+ £ =d
Uaepra il A
which implies that
det L -
= d 32
ij e (32)

with
G = (Adet L + Lyyol¢'|). %)
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Lemma 2.14. Let 0 < € < w/2 and G be the function defined in (33). Then, there exist A1 > 0 and C' > ( such that the estimate:

|G| = C(IM + €D N2+ |€))? (34)

holds for (A, €') € Xe n, x (RN {0}).

Proof. Firstly, by using Lemma 5.1 in [3] and technique of the proof of the Lemma 2.14 which can be seen in Shibata [16] we can
proof the Lemma 2.14. O

Thus, by substituting the solution formula (33), the equation (31) can be written in the following

P w(i&;)(L1p + BLyy) €7 — A? N
u;(&eN) = BB A) A5 |£,|2(BM(.1.N)

G

— B gl ?

| (i&)Ln
B

o d

—Brn | ¢f)2
€ alf'|*=
Sl

and,

. JA(Ly, + BLy) €2 — A2 ,d

(€ an) =2AE 1) 1 M(zy)ol¢' 2=

(&) = deer AB— e Nl
+ Ml Bav e (35)

By using the Volevich trick

Dy N (p(€, 2y +yn)q(€ yn))dyn

f“‘ )
]

=< ap ., ,
—— ¢ zn +yn )€ yn))dyy
A e (& an +yn)al€ yn))dyy

= 7]
—f (€2 x + yn )= (€, yn))dyn
0

Y

N-1 .
Az £k
and the identities 1= é)\% - E E—Zif;. and OyM(zy) = —e BEv — AM(z ).
o
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In view of equation (35) The solution formula for u; = U4;(A)d and uy = U (A)d can be written as follow

V[ e [wlig)(Lae + BLy) €' — A 0B
a‘”m_ﬁ ;f'[ B(B+4) AB-[¢F G

AM (zx + yn) FA')(E, ?)’N]:I (') dywn

_fx Fol w(i€;) (Lo + BLyy) |2 — A? 0B
o ¢ B(B+A)  AB-[¢]? G

e BNt FIA) (€, yn )} (') dyn

7/1' Fol w(Liz + BL11) |€)? — A?
o Y| B(B+A) AB-—|[¢]

al&'|*BM (xn +
G

_ /x Fol w(i&;)(L1o + BLyy) €2 — A® aB

o ¢ B(B+A)  AB-[¢]2 G

yv) Flo;0nd) (€, yn :I(.l.‘*)dyN

e~ Blaxtun) FIA') (', yn :I(.l.")dyN

/ }- w(lys + BLyy) EF|2 — A? l'J‘|€|2
0 B(B+A) AB-|¢? G

_B‘“ﬂ"’]}_[r} Ind) (&' yn) :I (z") dyn

oo .
€L, 0B
_ Fol|ais T
ﬁ € [ B G

e~ Blowtun) [A d] JYUN) :I (") dyn

o L, oB|E)?
3 72 1[ 11 |~',|
] (

e‘B“N*WNJf;wajaNduftyNJMdoyN

e (w(Lys + BL g2 — A% oB
Un(z) = — }_;1 w(Lis 11) €] —ZZ
0 " B(B+4) AB-[EP G

AM (zy +yn)F[A'd) (€ yn) :I (z") dyx

o £ (w(Lio + BLi1) [€'] — A2 0B
o Y| BB+4) AB-['? G

e~ Blentun VFA)(E yn :I V(2" dyn

" /OC 7ol _W(Lw + BLqy) |~C,F|2 -
o ¢l BB+4) AB-[¢')

o|l¢|PBM(xy +yn

\r [Ond](€, ym-)} (z') dyy

G
* __[lueB _pu.
_ i }_{.,l f:’;e Blantun) }- [& d] JUN :I
(r’)dym
Ly O’B| | —Bixn :
o 1 s B{zx+un)
i 5,[ L.

For[Ond](€", yn )](x" ) dyn

(36)

(37)

where we have used F[A'd|(E", yn) = —|&"12d(&", yx). We have UiNd=u;, j=1...,N —landUy(A)d = uy. By Lemma
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2.14 and Lemma 2.15, we have
Rc{u--‘,f{R;‘;‘J__wf‘”{ﬁ;‘;‘”({(787) ()‘& ’2“ [ Ae X
<r(M) (=01, k=0,1,2),
where (A1) is a constant depending on mg, m1, m2 and A1. Analogously, we have
cowzenywz zy) {TOT) O FUNN) | X € S })

<m(M) (£=0,1,k=0,1,2).

R

Furthermore, we construct the formula of 7. Let ¢(xy ) be a function in C§° such that ¢ () = 1 for |zy| < 1 and ¢(zy ) = 0 for
|zx| = 2. We define n by
) [ 4 detL s
n(z) = pla) Fa't [e Aow—==d(g, 0)] ().

By the Volevich trick, we have

n(z) = — d(zx) A N a..vf;l[e—"“ﬁ-ﬂﬁ'ﬂd‘%d( NG (m}
(z') dyn
=<-ﬁ(:rN)f 7 [—"“*"”Af;mrf(c yn)® (v»)}
(2) dyn
~ ot [ x}”gl[e"‘““‘*‘“"d: L o (e yn)o (vm)}
(z) dyx

= - Adet L
=d(xy J-__,]' 9_/1‘1;‘\""!-‘,\'}‘7'
) [ G+ [EP)

F(1 - &’)d](sf’..:!m)c-ﬁ(ym)] (z") dyy

o : det L
—¢lzy) ] Fot [e—/liw,\'+r.r:~.'l —
o), T G+ e

N-1
(r')m(ff(c yn)o(yn)) Z?s&aw (F'|owd) (&', yn)e (U\))H
k-1

(2') dy

Let V(A)d |, ,.—o= 1 and recall the definition of 7 in (32).
By the Volevich trick, we have

V(\)d
o det L -, , ,
= —p(zn) ﬁ INFe' [e’/“""“"""?d(«f YN )BlyN J} (') dyn
0

-P_A{""‘-'"'-‘-“‘-'Jm i
. =

=d(zy) [ Fo' d(g', 3};\')@(3}:\;)} (2') dyn
0

- detL_ . , , ,
- c-ﬁ(:rN)f Fot|emMeatun) 0( Ay (d(€ ..yw)cv(ym))}(:r ) dyn
1] T
o [ Adet L
= ¢(zN) }__,l e—/liw,\'+r.r,\',1 : :
) e G+ EF)
Fl(1—ANd|(€, yw)aﬁ(ym')} (') dyy
e ; det L

— o) Fol|e—Alextun) - .
o ¢ G(L+[E%)

N-1

(r‘)N(rf(E’..ym) dlyn)) — Y i€dn(F'[Ord)(€ vw)c-ﬁ(rim))ﬂ(:r’)dym

k—1
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Let V(N d = ¢ (zn ) {VH (N)d + VZ(A)d} with

Adet L

o
VYA = e AMentyn) _ 2
) A ¥ [9 el

Fl1- &’Jd](‘f’,y.w)c-ﬁ(yw)} (') dyn
‘ - det L
V(A d:_f J'_,—_al[__/“i.\-+rf.\',17|
" o L GL+1EP)

(a.\, (d(€", yn)o(yn))

N-1
— > iGOn(F[Brd) (€, :w)c-ﬁ(:am))ﬂ

k—1

(z") dyn
To treat 77, we use the following lemma which had been proved by Shibata [9].

Lemma 2.15. Let X be a domain in C andlet 1 < g < 0. Let ¢p and 1) be two C§°((—2,2)) functions. Givenmg € M »(X), we
define an operator Lg(A) and L7(A) actingon g € L, (R " by

-
[L[, q] (1 \‘] / }_{_,l [e—/\{z-.\--l-_\’!.\-,]m_“()\.‘fﬂ']
1]
(& yn v (yn )} dyn,
[Lz(Ng)(z) = ¢(zN) f Fe! [Ae’”“‘-‘ Frdmg (A, €)
1]

Gl yn ) (yn )} dyn.

Then,

T\",C{L,!{R;:JJ({(Taf]fiﬁl-(/\] | A€ X)) <n
for some constants k = 6,7, { = 0,1 and ry, depending on X, 5,

Proof. The lemma 2.15 of the model has been proved by Shibata [16]. Moreover, for (j, o', k) € By x Nf?"_ L% Ny with Jtlef+k| <
Jand j = 0,1, we write

Ma% ok viNd = Z() " G(xn))

n=I}
(Mo ak V(A d
+ Mo a5V (N\)d)
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and then

Moz akvi(Ad

:/o‘; }__ [AP_AU\+U\J)‘ (i€ —€])" det L
0 1—|~f’|

Fla- A’)d](f'-ym')c-ﬁ(:w)}
BEAVEIONY

= . MdetL
- [ % 1[6"“*‘“*””—; on(d(¢, v»)'(w))}(-lr’]dyw
0

T

Moo kv (Nd

e '

e Y (i€ det L

— Fol|e Alewtun Jiw
/U ¢ [ G(1+1¢?)

—1 5
(em&(c yN)$(yn) ZT’T" v(f’[ag-d](f,’,:mca(:m)ﬂ
o

k1
(z")dy~ (38)

for |a'| +n > 1, and we use the formula

L+l 1 —‘Z €] i,
L+[E2 1+[gR “=1+[g)2le

j=1

for the third equation of (38).

We can see that for the multipliers in the equation (38) hold Lemma 2.15, then we have

R MY [Aesa ) <n

covzey),wi— ey LT
(k=0,1).

This completes the proof of Theorem 2.13. |

Proof. Furthermore, we prove Theorem 2.9. Let (f,g.d) € Zr’,(Rf) and (u, 1) be solutions of the equation (3). Setting I{(A) =
(LA (A), ... ,Un(X)), by Theorem 2.13 we see that u = U{(A)d and n = V(\)d are unique solutions of equation (3), then we can
see that given € € (0, w/2), there exists A > 0 and operator families i and 1, satisfying (10) such that u = R{ m‘ )\l'zg Ve, d)
and n = V(A)(g, )\L'zk Vk,d) are unique solutions of equation (3). Moreover, the estimate (11) holds. This completes the
proof of Theorem 2.9. In fact, in view of Definition R-boundedness solution operator, for any n € [N, we take {)\j}}‘:l C I,

{g9; }_?:1 C Lr’,(IH{;f) and rj(u) (7 = 1,...,n) as Rademacher functions. By the Fubini-Tonelli theorem, we have

1 n
A||Z’“.r'(")Lu()'j)!}.s||r,{q{R,:Jdﬂ
[ [ f (u)La(N)g;|% dy' day du
o Jo  Jmw- _.:
:/ (] ||Zrj(u]L“()\j]gj||;{qm‘\._”du) dry.
0 (Nt
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For any zx = 0, by Minkowski’s integral inequality, Lemma 2.15 and Holder’s inequality, we have

1 n 1/q
( / ||Zr_f(u)Luw)gj||1qm~_uafu)

i=1

1 oo n
0 0

i=1

1/q
mo(X;; )35 (€, yn)l (W) (yn)dynl], ma-1) du)
1 o n i
< |<a(.a;.\¢-)|( f ( f 1F M3 (e Aentum)
0 0 o
. q 1/q
mo (A, €)g; (€ yn) (Y (N )dyn ||, @y -1y dyw) du)

o 1 n
< |<-ﬁ(.m|f (] [Fa D ryu)emAlentym)
0 0

J=1
1/q
mo (A, €035 (€ yn WO, vy du) [y )| dyn

< |o(zn)
o 1 n 1/q
[ (17T 0ol oy )
i=1

[ (yw )| dyne
< lo(zy)

oo 1 n 1/g
% M ||f51[zr_,(u).r;v_?-(-,yN)]||1q{R~_,JdudyN)
J=1

5 , 1/q"
( / [(yw)|? dyN)
)

P 1 n 1/q
<l [ ( ||f;1[zr.f(u).arf(-,:am)1||1MJdu)

=1
o 1/q'
( ] [(yw)]? dyw) .
)

In fact since,

|98 (e AN TN m (A, €1)| < Cyrle’| 71

forany zy > 0,yy = 0, (M E) € ¥ x (RN {0}).and o' € NN~1 by Lemma 2.8 we have

1 n
/ 1S 7 ()
1]

i=1

Fo [e—’“*"‘+-“'ﬂmu(z\j,E*Jﬁj(s*, yn )| (WO, -1y du

1 n
S A SO —
] -
=1
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Putting these inequalities together and using Holder’s inequality gives

1 n
LIS L0 1y

i=1

e 1 n
< [Tl [ 13 ri g, dude
1] 1]

a=1

oo q/q
( f [y )[* dym‘) .
1]

and so, we have

I Z ri(u)Lg(A;)g; ||Lq{{u__1;__Lq{RfJJ
j=1

mn

< Ol @ 1l Ly @11 D 3Gl 2y (0.0), @3 )

J=1
This shows Lemma 2.15. O

By using Lemma 2.6 and 2.15, we can show Theorem 2.13. These complete the proof of Theorem 2.9.

3 Conclusions

Partial Differential Equation (PDE) can describe the phenomena in our daily life. The aim otE problem is well-posedness
properties of the model problem. One property of well-posedness is regularity of the solution of the model problem. The R-
boundedness of the solution operator families of model problem is one of the methods to get the regularity. Therefore, the R-
boundedness of Navier-Lamé equation with surface tension can be used to investigate well-posedness properties of model problem.
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