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ARTICLE INFO ABSTRACT

Keywords: The effect of hydroxyapatite on structure, particle size, and band gap energy of silver orthophosphate (Ag:PO.)
Defect sites have been investigated. The hydroxyapatite as a source of phosphate ion was prepared using the coprecipitation
IIydmxyapf\tlte of CaCl; and KHzPO,. To produce the product of AgsP0O,, the as-synthesized hydroxyapatite was suspended in
prhatt:l ion water and quickly added to a silver nitrate solution. The obtained photocatalysts were characterized using XRD,
p_ tocatalyst , DRS, and XPS. The high crystallinity of single phase AgsPO, was easily produced using the hydroxyapatite.
Silver orthophosphate . - . . . . -
otocatalytic activities of the product were evaluated using RhB decomposition under blue light irradiation.

The hydroxyapatite as a source of phosphate ion dramatically decreases the particle size and increases the
absorption in the visible region. This obtained photocatalyst significantly improves the photocatalytic activity.
The mechanism of reaction works in the following order: holes = superoxide radical = hydroxyl radical.

1. Introduction

Recently, the Ag;PO4-based photocatalysts have a ed attention,
because they have a low band gap and possessing high activities under
visible light irradiation. The modification of these catalysts into the
homojunction construction [1], Z-Scheme composite design [2], and
defect generation [3] has enhanced their catalytic activity. Many re-
searchers have mainly focused on Ag-based heterojunction infER:PO,
photocatalyst improvement. For example, the incorporation of reduced
graph xide (RGO) into the BiPO4/Ag/AzsPO,4 heterojunction im-
proved the charge transfer and suppressed the recombination of elec-
tron/hole pairs [4]. The Z-scheme heterojunction and surface plasmon
resonance effect could also be generated by the design of Ag,PO,/Ag/
Ag.MoO, [5]. This impressive design enhanced the photocatalytic ac-
tivity and stability. Another photocatalyst, TiO,, could also be im-
prov y forming the Ag quantum dots on TiO.. This modification
could generate the surface plasmon resonance effect that improves the
visible light photocatalytic activity [6]. However, the formation of
metallic Ag could decrease the stability, for instance, the addition of Ti
(IV) co-catalyst on AgBr decreases the stability because the accumu-
lated electron in CB promotes the reduction of Ag* ions into metallic
Ag [7]. This problem could be improved by surface modification using
Fe(lll) as an electron co-catalyst. The photocatalytic activity was not
only affected by the Ag nanoparticle but also affected by phosphate ion.
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The grafting of phosphate on the surface-phase junction structure of
twinned BiPO, affected the position of energy band and improve the
redox ability [8].

The outstanding properties of Ag;PO, could be generated by mod-
ification of the starting material. The high activity of {111} facet could
be created using the starting material of AgNO; and H;PO, in ethanol
[9,10]. The cauliﬂoq—like spheres Ag;PO, prepared by starting ma-
terial of (NH4)3PO,4 showed high photocatalytic activity under visible
light irradiation [11]. This preparation method decreases the particle
size and suppresses the OH-related defects. AgsPO4 nanoparticlgl tet-
rahedrons, trisoctahedrons, and tetrapods could be designed by the
synergetic reaction of Ag nanocrystals, phosphate anions and hydrogen
peroxide (H,0,) [12]. The oxidizing a| of H,0, affected the mor-
phology and could be adjusted by the ity and alkalinity of the re-
action solution. The addition of tartaric acid to starting material could
also shape the hollow microspheres that possess high surface area [13]
and improve the catalytic activity. The approach of starting material
modification is very challenging to obtain the properties of high cata-
lytic activity. Therefore, it is possible that the new starting material of
hydroxyapatite (HAP) is used as starting material for Ag; PO, prepara-
tion.

In the photocatalysts, the HAP compound has been used as a com-
posite material that enhanced catalytic activity. For instance, the HAP
in TiO,/HAP composites inhibit the phase transformation from anatase
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to rutile of TiO; and prevented the formation of large TiO, agglomer-
ates, leading to the higher dispersion of TiO, nanoparticles [14], con-
sequently, the catalytic activity could be enhanced. The TiO,/
HAP composite could also enhance the capacity and weaken the in-
tensity of HCHO adsorption [15]. The HAP,/Ti0O, composite thin films
prepared by sol-gel processes lead to the particle size of 10-25 nm [16].
Photocatalytic degradation of adsorbed aureomycin hydrochloride was
also effective using the modified graphene oxide/nano-hydroxyapatite
(CMGO/nHA) composite [17]. This band gap of graphene oxide in-
creased from 1.7 to 2.8 €V by surface modification and compaosite for-
mulation. The ZnO/HAP nanocomposites improved the rates of sorp-
tion of ciprofloxacin and ofloxacin [18]. The use of HAP in these
photocatalyst designs reflected that HES® has a significant role.

The HAP could also be utilized to improve the catalytic activity of

3P0y through the composite design. The Ag;POs/HAP composite
prepared by a facile in-situ ion exchange method significantly improved
the sepa of the photogenerated electron-hole pairs [19]. This
excellent catalytic performance may be related to the vacancy of HAP
and Z-scheme mechanism that generated in the composite. A new HAP/
N-doped carbon dots/Ag.PO, composite prepared by a hydrothermal
method could improve the photocatalytic performance [20]. This high
activity originated from the synergetic effects of HAP, carbon dots and
the Aggp04.

The new approach of HAP application in the AgsPO, synthesis has
been proposed in this work. HAP is not only used in the composite
design but also as an agent for particle size control. Here, HAP was used
as a source of phosphate ion in AgsPO4 synthesis. The HAP synthesized
by CaCl, and KH,PO, was suspended in water and added to a silver
nitrate solution to form the yellow crystalline of Ag,PO,. This new
method successfully decreases the particle size and generates the defect
sites on the surface that improve the photocatalytic activity. The main
species of mechanism was changed from the superoxide ion radical to
the holes mechanism.

2. Experimental
@ Synthesis of HAP

36

The hydroxyapatite (Ca, ,(PO,),(OH),/HAP) was gthesized using
the co-precipitation method of CaCl, and KH,PO, [21]. The pH of the
CaCl, solution (1 M) and KH,PO, solution (0.6 M) were maini at8
using the ethylenediamine. An amount of 100 mL of KH,PO, solution,
was stirred at room temperature, then added with 100 mL of CaCl,
solution dropwise for in to obtain the white solid of HAP. This
suspension was aging %h, and the precipitate was filtered and
washed with water three times and dried in the oven at 60 °C for 12 h.

2.2, Synthesis and characterization of AgsPO,

The AgsPO,4 was prepared with two different phosphate ion sources
of HAP and KH;PO,. The AgsPO, synthesized using HAP as a source of
phosphate ion were namely 4 /HAP. Typically, in amounts of
0.3 g of HAP were added to the 20 mL of water (and stirred for 5 min to
obtain HAP suspension). The AgNO; solution (1.0195g) in 10 mL of
water) was quickly added to the HAP suspension (and stirred 30 min to

in the yellow precipitate of catalyst). The product was filtered,
washed with water then dried in the oven at 60 °C for 2 h. The sample
without was also prepared. Typically, at the amount of 0.245 g of
Kligp{é:added to 20 mL of water. The AgNO; solution (1,0195 g} in
10 mL ol watwas added quickly to the KH,PO, solution. The product
was filtered, washed with water then dried in the oven at 60° for 2 h.
The sample of AgsPO4 and AgsPO,/HAP were characterized using the
XRD (Shimadzu 7000), DRS (JASCO V-670), and SEM (JEOL JSM

OLA). The core level of Ag;PO,/HAP was investigated using XPS

erkin Elmer PHI 5600).
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2.3. Photocatalytic evaluation

The photocatalytic acti were evaluated under blue light irra-
diation [3]. The amount of 0.1 g catalysts was added to 100 mL of RhB
solution (10 mg/L) and equilibrated for 20 min. The photocatalytic re-
gion was done under the blue light irradiation (Duralux, 3 Watt). The

mL of sample was taken out and centrifuged to separate the solution
from the catalyst and the concentration of RhB was determined by the
spectrophotometer (Shimadzu 1800). The stability of the catalyst was
also evaluated up to 4 cycles of photocatalytic reaction.

2.4. Mechanism of photocatalysis

The three tions of 10 mg,/L RhB with the volume of 100 mL were
each added by 1sopropyl alcohol (IPA), ammonium oxalate (AQ) and p-
benzoquinone (BQ), respectively [3]. Their concentration was designed
at 0.1 mmol/L. Under magnetic stirring, an amount of 0.1 g catalysts
added to the solution. T hotocatalytic reaction was carried out
under blue light irradiation and the concentration of RhB was measured
by the spectrophotometer.

3. Results and discussion

The AgsPO, photocatalyst was successfully synthes using the
HAP as a source of phosphate ion. The structure of the body-centered
cubic structure (JCPDS No. 06-0505) was observed in both the Ag PO,
and AgsPO4/HAP (Fig. 1) [22]. The strongest three peaks of 33.307°,
36.591°, and 55.028" found in the sample of Ag,PO, (without HAP)
originated from the (2 1 0), (2 1 1), and (3 2 0) crystal planes, re-
spectively. In the sample of Ag;PO,/HAP, the strongest three peaks
were shifted to 33.326°, 36.609 and 55.040 for the crystal plane of (2 1
0}, (211),and (3 20), respectively. At the peak of (2 1 1) crystal plane,
the FWHM of 0.081" was observed in AgsP0, and 0.121° in AgsPO4/
HAP. The shift of 2theta and higher of FWHM in Ags;PO./HAP sample
might be the effect of calcium doping in the lattice. The crystallinity of
AgiPO4/HAP ( %) is higher than that of AgsP04 (95.3%). No others
XRD peak was observed on the samples, indicating that the samples
were single phase. From these results, it could be concluded that the
HAP did not form a composite with the Ag,PO,. The HAP was only
providing the phosphate ion in the synthesis of AgsPO,.
@’ig_ 2 showed the absorption of AgsPO4 and AgsPO./HAP. They

orb solar energy with a wavelength shorter than —~530nm. The
higher absorption above 500 nm was found on the Ag;PO./HAP, in-
dicating that the defect site might be formed on the surface. The band

Ag,PO,/HAP
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Fig. 1. XRD profile of Ag:PO, (synthesized using KH2PO,) and Ag-PO,/HAP
(synthesized using hydroxyapatite).
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Fig. 2. DRS of AgsPO; (synthesized using KHzPO,) and AgzPO./HAP (synthe- o
sized using hydroxyapatite). catp,,
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gap of 2.43 eV and 2.40 €V was obtained in the sample of Ag,PO, and % *:3.
Ag,PO,/HAP, respectively. § E

The morphology and particle size of AgsPO,4 and AgsPO4/HAP were
investigated using SEM (Fig. 3). The large particle of 3-5um was ob-
tained when AgyPO, synthesized using KH,PO, as a source of phos- 282 200 8 285 284 282 260 B/ 3 MO M3 ME M 30
phate ion. When the HAP was used as a source of phosphate ion, the Binding Energy (s} Bring By (4
smalqlticle of 0.4-1.2 pm was obtained, indicating that the use of Fig. 4. XPS survey (a), Ag3d (b), P2p(c), Ols (d), Cls (e), and Ca2p (f) of
HAP as the precursor is a crucial factor to form a smaller particle size. AgsPO/HAP sample prepared by hydroxyapatite before photocatalytic reac-

After adding with AgNO,, the suspension of HAP changed into the tion.
yellow crystalline. It indicates that the phosphate in HAP reacted with
Ag" ionresulting in AgsPOy. The Ca* of HAP dissolved to the solution doped on the surface of AgsPOs. It indicates that the composite of
and can be cleaned by washing treatme?lt. . . Ag PO /HAP was not created, only Ca doping might occur on the
The core level of Ag ; AP was investigated using the XPS and sample. [t is consistent with the XRD results. The HAP acted as a source
the results were shown mn Fig. 4. The element of Ag, P, O was clearly of phosphate ion in the AgzPO, formation and has a significant role in
detected and shown in the survey of XPS (Fig. 4(a)). The bmlg energy controlling the growth particle.
(BE) of 373.8 eV and 367.8 eV were assigned to the Ag3d;» and Ag3ds, Fig. 5 showed the photocatalytic activity of Ag;PO, and AgsPO.,/
2 .respectlve.ly (Fig. 4(b)). The BE of 132.9eV was assigned to P2p HAP. The photomytic activity has followed the pseudo-first-order
(Fig. 4(c)). There are two types of oxygen on Ag;PO,/HAP (0-1 and O- kinetics with the rate constant of 0.109 min~ ! and 0.384 min~* found
2) (Fig. 4(d)). The BE of 530.5¢eV (0-1) suggested that the oxygen in the Ag;PO, and Ag,PO,/HAP, respectively [3]. The AgsPO, syn-
originated from the non-bridging (P=0) f))::ygen atoms  of A$3Pf)“’ thesized using HAP showed high photocatalytic activity, around 3.5
whereas at the BE of 532.4, the oxygen originated from the bridging es higher compared to the Ag;PO, synthesized using the KH,PO,.
oxygen atoms (P-0-Ag) [23]. The carbon impuriti re observed in e high photocatalytic activity might be caused by smaller particle
AgsPO4/HAP (Fig. 4(e)). The BEs of 284.4 eV (C1) and 285.1eV (C2) size that has a relatively higher specific surface area [25]. The higher
assigned to sp2 and sp3 hybridized C atom, respectively, whereas the
small peak energy of 286.6 eV (C3) and 288.5eV (C4) might be origi- 12
nated from C—0 and COOH, respectively [24]. These types of carbons

appeared due to a synthesis of samples under air condition. The as- Dark Light

synthesized HAP might have an impurity of ethylenediamine that 10+ e,
generates the sp2 and sp3 hybridized C atom on the surface of AgsPO,. _\“""—--

These phenomena occur during the coprecipitation reaction of phos- 8-

phate ion and silver ion. A small concentration of Ca2p (4.2%) was
detected in the XPS measurement (Fig. 4(f)), indicating that the calcium

—+— Photolysis
—=—Ag,PO,
—e—Ag,PO, /HAP

2 \

0 T T T T "-‘I'_.
0 5 10 15 20 25 30
Time (min)

RhB (mg/L)
o

N

Fig. 3. SEM images of Ag;PO, (a) prepared by KHzPO, and AgsPO./HAP (b) Fig. 5. Photocatalytic activity of Ag:PO, (synthesized using KH:PO,) and
prepared by hydroxyapatite as a source of phosphate ion. Ag.PO,/HAP (synthesized using hydroxyapatite).
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Fig. 6. Recycle experiments of RhB degradation by the Ag PO, (synthesized
using KHzPO,) and AgsPO,/HAP (synthesized using hydroxyapatite).

the photocatalyst surface area, the higher the absorption that con-
tributes to the photocatalytic reaction [26]. It is also possible that the
AgsPO has a defect site due to having a high absorption above
500 nm as shown in Fig. 2. The previous results showed that the native
defect of silver vacancy was observed in the sample that has high ab-
sorption in the visible region [3]. The defect sites might act as capture
centers for the photoexcited electron that effectively suppress the re-
combination of electron and holes.

To evaluate the stability, the recycl riments of RhB degrada-
tion up to 4 times were done (Fig. 6). The photocatalytic stability of
AgiPOs/HAP wa reased significantly. However, the ability of
photocatalysis at@slf(m‘u) is higher than that of Ag,PO, for all
cycle catalytic reaction. To investigate the effect of photocatalytic re-
action, the photocatalyst of Ag,PO,/HAP after 4 cycles test was ana-
lyzed using the XPS. The results were shown in Fig. 7. The deconvo-
lution of Ag3d showed that the BE of 374.2 eV and 368.5 were observed
(Fig. 7(a)), indicating that the Ag® was formed on the surface [27]. This
formation was generated by the photoreduction of Ag”* to Ag” during
the photocatalytic reaction. The decreased BE of P2p (132.1eV) was
also observed after photocatalytic reaction suggesting that the chemical
environment of P2p has changed 7(b)). The peak of Ols was de-
convoluted into three of 5eV, 531.2eV, and 533.1eV
(Fig. 7(c)). The BE of 529.5eV was asdf@hed to the lattice oxygen atom
of Ag,PO, [28], whereas the BE of 531.2eV and 533.1 eV were assigned
to the 0=C—0H and C— O, respectively [29]. The high intensity of
531.2 eV might also be coincident with the chemisorbed water or sur-
face hydroxyl group [30,31]. These suggested that the catalyst after
mic test might adsorb the product of RhB degradation. The BE of
284.4 eV, 285.6 ¢V, 286.9 ¢V, and 288.2 eV at Cls assigned to sp”, sp®
hybridized C atom, C— 0, and COOH respectively (Fig. 7(d)) [19]. The
concentration of Cls after the cyclic test was higher compared to before
cyclic test, suggesting that the carbon compounds from the RhB de-
gradation highly adsorbed on the surface of AgsPO,/HAP (Table 1). The
N1s and Cl2p were also identified in the sample (Fig. 7(e,f)), indicating
that the products of RhB degradation contain nitrogen and chlorine
adsorbed on to the surface of AgsPO, The peak with the BE of
3099.7 t N1s was assigned to C-N configuration [32,33]. The BE of
197.5eV and 199.5 eV were assigned to Cl 2ps,» and 2p, . spin-orbit
doublet [34], respectively.

The mechanisms of photocatalytic m evaluated using the sca-
vengers of IPA, BQ, and AO to trap the species of *OH, *0, , and h*,
respectively. The results were shown in the Fig. 8. The different me-
chanism of the two samples was observed. In the Ag;PO4 system, the
BQ scavenger strongly suppresses the photocatalytic reaction,

Solid State Sciences 86 (2018) 1-5

fa) Agid,, i

sl 1321 8v

A, mmzw
. /

38 38 34 I 3 368 366 364

Intensiy (.}
Inbensfy fau}

i€

Inmtensity (3

[r——

538 5% 534 532 53 B8 53 292 280 288 286 284 282 280
Binding Energy ieV) Binding Enargy {aV)

His 6.7 oV oy

187 5o

Intensfy (aub

Inbensity {3.u)

a0 404 402 400 8 5 384 e e 200 88 198 194

Binding Energy (sV) Binding Erwegy (nV)

Fig. 7. The XPS analysis of Ag3d (a), P2p(b), O1s (¢), C
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Table 1
Atomic concentration of AgsPO./PAH before and after the cyclic test.

Treatment Atomic concentration (%)

d P 2p 01s Cls Nls Cl2p CaZp

Before cyclic test  25.89 1105 4268 1697  0.00 0.00 0.41
After cyclic test 10.20 2.30 2223 6044 433 0.50 0.00

0.4

(b)

0.08

0.06

0.04

Rate Constant (min™)
Rate Constant (min™")

0.02

00 ]
Blank P,

Scavenger

AO ““Blank IPA BQ AO
Scavenger

Fig. 8. Mechanism of photocatalytic activity in the system of AgsPO, (a) pre-
pared by KH2PO4 and AgsPO,/HAP(b) prepared by hydroxyapatite as a source
of phosphate ion.

indicating that the reaction mostly works via *0, , whereas in the
A33P04/l-a> system, the AO scavenger strongly suppresses the photo-
catalytic reaction, indicating that the h* is the main role of its
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mechanism. The mechanism of active species in the AgsPO4 works in
the following order: *0,~ = h* = +OH and it was changed into the
following order: h* = +0,~ = +OH in the Ag;PO,/HAP. The different
mechanism might be caused by the diffi properties of the Ag,PO,
surface. Due to the higher carbon on the ace of the sample after the
photocatalytic reaction (Table 1), the interaction of RhB — holes might
be dominant in the reaction. It was consistent with the mechanism
study that was dominated by holes. This interaction subsequently en-
hances the photocatalytic activity.

4. Conclusions

The single phase of Ag,PO, was successfully synthesized using the
hydroxyapatite (HAP) as a source of phosphate ion. The preparation of
AgsP0y using the (AgsP0,/HAP) decreases the particle size and
generates the high absorption in the visible region. The photocatalytic
activity of AgsPO4/HAP increases up to 3.5 times higher compared to
the AgsPO4. The mechanism of primary active species in the AgsPO,
system works in the following order: 0.~ > h™ > «OH and it was
changed into the following order: h* = +0, = «OH in the AgsPO,/
HAP.
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