Identification and expression of two types of chicken GnRH-II genes in mature hard-lipped barb, Osteochilus hasselti

by Gratiana E Wijayanti

Submission date: 09-Apr-2023 12:11PM (UTC+0700)

Submission ID: 2059374102

File name: 326-Article_Text-342-2-10-20160902_Norman.pdf (771.83K)

Word count: 4816
Character count: 25679

Volume 17, Number 2, October 2016

Pages: 523-530

Identification and expression of two types of chicken GnRH-II genes in mature hard-lipped barb, Osteochilus hasselti

N.A. PRAYOGO¹□, G.E. WIJAYANTI², I. SULISTYO¹, P. SUKARDI¹,3

Fisheries and Marine Science, Universitas Jenderal Soedirman, Jl. Dr. Soepamo No. 61, Purwokerto, Banyumas 53122, Central Java, Indonesia. T 23 x.: +62 281 642360, Email: norman_s2biologi@yahoo.com

²Postgra Sate Program of Magister Biology, Faculty of Biology, Universitas Jenderal Soedirman, Purwokerto, Banyumas 53122, Central Java, Indonesia.
³Centre for Maritime Bioscience Studies, Institute for Research and Community Service, Universitas Jenderal Soedirman, Purwokerto, Banyumas 53122, Central Java, Indonesia

Manuscript received: 14 April 2016. Revision accepted: 20 June 2016.

Abstract. Prayogo NA, Wijayanti GE, Sulistyo I. Sukardi P. 2016. Ident 16 titon and expression of two types of chicken GnRH-II genes in mature hard-lipped barb, Osteochilus hasselti. Biodiversitas 17: xxx. Gonadotropin-releasing hormone (GnRH) is synthesized in the brain and ac 60 the anterior pituitary to stimulate the release of gonadotropins in fishes as well as in other vertebrates. Genomic DNAs and cDNAs of two chicken-type GnRH-II genes of hard-lipped barb, namely cGnRH-II type 1 and type 2, were cloned. The length of cloned genomic DNA of cGnRH-II type 1 was 580 bp and cDNA was 206 bp. The length of cloned genomic DNA of cGnRH-II type 2 was 570 bp and cDNA was 10 p6 bp. The cGnRH-II type 1 and type 2 cDNAs encode precursors of 68 and 63 amino acids, respectively. Those precursors consist of a signal peptide, cGnRH-II decapeptide and a GnRH-associated 45 ptide (GAP) linked by a Gly-Lys-Arg proteolytic site. Using quantitative Real Time-PCR, expression levels of these two cGnRH-II genes were detected in the brain 1 liver and gonad of hard-lipped barb. Expression of the GnRH-II type 1 gene was found only in the prain and liver, on the other hand, expression of the CGnRH-II type 2 gene was found 63 he gonad, in addition to the brain and liver. The expression of the cGnRH-II might act as an autocrine or paracrine regulator.

Keywords: cGnRH-II, type 1 and 2, Real Time-PCR, amino acid

INTRODUCTION

Gonadotropin-releasing hormone (GnRH) is a conserved neuro-decapeptide family, which plays a crucial role in regulating gonadal development and coracilling the final sexual maturation in vertebrates (Gibson et al. 1997; Sayed et al. 2010; Gharaei et al. 2011). The GnRH decapeptide is synthesized by neuro-secretoragells in hypothalamus and secreted into portal vessels 21 ansported to the pituitary gland where it stimulates secretion of luteinizing hormone (LH) and follicle-stim 25 ing hormone (FSH) from pituitary gonadotrophs (Yaron et al. 1995).

The presence of either two or three forms of GnRH in teleost fishes has been well documented (Kah et al. 2007). The so-called GnRH-I system is regarded as a species pecific form and includes mammalian GnRH (mGnRH). seabream GnRH (sbGnRH), chicken GnRH-I (cGnRH-I), and pejerrey GnRH 20 GnRH) (White and Fernald 1998; Morgan and Millar 2004; Kah et al. 2007; Sayed et al. 2010). The GnRH-I system is generally localized in the forebrain and is considered to 59 ert the neuroendocrine control over LH secrezan. Another form of GnRH designated as GnRH-II (Sherwood et al. 1993; Sealfon et al. 1997; Volkoff and Peter 1999) has been reported in all major vert 62 ate groups, including mammals and is mainly expressed in the midbrain (Sherwood et al. 1993). GnRH-II appears to have direct effects on sexual behavior in mammals, birds, and fish (Rissman et al. 1997; Muske 1998; Russell and Richard 1999; Troskie et al. 1998; Wang and Lin 1998), and this effect is believed to be its 130 nary function. Finally, GnRH-III is represented by salmon GnRH (sGnRH) (Sherwood et al. 1983; Adam et al. 2002) and is found in the forebrain either alone or together with GnRH-I depending on the species (Adam et al. 2002; Morgan and Millar 2004). GnRH peptides are also reported in the ovary and testis of fish and in the ovary, 149 s, mammary gland and placenta of mammals (Sherwood et al. 1993). cGnRH-II exists in the brain tissues of all the fishes, in which cDNA sequences of GnRH have been characterized, and are distributed mainly in the midbrain. Both the function of cGnRH-II and the cycle variations of expression levels during gonad development are still control poversial.

Hard-lipped barb (Osteochilus hass 3 C.V.) species is an indigenous tropical fish and is synchronous batch spawner fish (Prayogo et al. 2008), which is capable of spawning several times during the peak of the spawning period. This fish, a familiar economical freshwater fish in Indonesia, is used as the model of endocrine regulation of freshwater fish (Prayogo et al. 2012). In our laboratory, cGnRH-II cDNAs have been cloned from hard-lipped barb brains for the first time, and all of them are encoded by two different gene loci. This studs reports the isolation and identification of two differing cGnRH-II c 27 As and genes in the hard lipped barb. Expression levels of the cGnRH-II genes are assayed in the brain, liver and gonad by real time-PCR. The research results offer novel evidence for two types of cGnRH-II genes for understanding further the

function and regulation mechanism of cGnRH-II genes in the HPG axis in hard-lipped barb.

MATERIALS AND METHODS

Brass liver and gonad collection

Total RNA and genomic DN3 were isolated from brain, liver and gonad. Total of 30 sexually mature female Hard-lipped Barb weighing of 100 g in average were purchased from local market in Banyumas District, Central Java, Indonesia. Fish brains were removed, snapped frozen, and stored at-150°C with liquid nitrogen until the time for RNA and genomic extraction. Isolation, cloning, and sequencing of two cGnRH-II genes were conducted at the Laboratory of Molecular Biologi, Universitas Jenderal Soedirman, Purwokerto, Banyumas, Indonesia.

Genomic DNA isolation

Total genomic DNA was extracted from whole brain, liver and gonad. The tissue was mixed with 400 µL TNES (Tris, NaCl, EDTA, 426 SDS), and 0.5 µL RNAse and 3 µL Proteinase K were added to the sample. The sample was incubated in 37°C for 2 hour and then centrifuged for 15 minutes. Then the sample was extracted with phenol chloroform followed by centrifugation for 5 minutes. D24 in the water phase was precipitated with ethanol. The integrity of the DNAs was verified by agarose gel electrophoresis and staining with ethidium bromide.

RNA isolation and RT-PCR

Total mRNA was extracted from whole brain, liver and gonad using Blue Sepasol R-RNA super 1 reagent (nacalaitesque) based on etherol-phenol-chloroform extraction method. The precedent RNA was treated with RNase-free DNase (Takara). The quality and concentration of RNA were assayed by denaturing agarose gelelectrophoresis and optical density reading at 260 and 280 nm. The RNA was aliquoted in batches and frozen at-70° C. Total RNA samples (1.5 ng each) were reversely transcribed using cDNA synthesis kit (PrimeScript™ Reverse Transcriptase) from Takara.

Amplification of GnRH-II genomic DNA and cDNA

The primer pairs, Cyprinidae cGnRH-II Type 1F containing an *EcoR*1 site and Cyprinidae cGnRH-II T1 R containing a *Xho1* site were designed based on cGnRH-II cDNA sequences of Cyprinidae (*Cyprinus carpio*

AY189961.1) and *Carassius auratus*, U30386.1. The primer pairs, Cyprinidae cGnRH-II Type 2 F containing an *EcoR1* site and Cyprinidae cGnRH-II t2 R containing a *Xho1*site were designed from cGnRH-II cDNA sequences of *Carassius auratus* (AB017271.1), and *Cyprinus carpio*, (AF521130.2). The sequences were aligned with MultAlin to identify the conserved sequences in the ORF region. The primers to amplify the cGnRH-II type 1 and type 2 cDNAs are designed using Primer 3 software (Table 1). The same primer pairs were used to amplify cGnRH-II type 1 and type 2 genes of hard lipped-barb (Table 1).

PCR for both genomic DNA and cDNA was carried out using a thermal cycler a obocycler, Stratagene) according to the following cycle; 95°C for 2 min, 35 cycles at 95°C for 30 s, 55°C for 30 s, 72°C for 60 s, followed by a 5 min extension at 72°C. After amplification, the PCR products was electrogeretically separated on a 1.5% agarose gel and stained with ethidium bromide.

Cloning and Sequencing of PCR Products

PCR amplified fragments of genomic DNA and cDNA were separated by agarose gel electrophoresis. DNA was extracted from the incised gels using the DNA gel extraction procedure (Green and Sambrook 2012.). The desired DNA fragments were subcloned into BSKS Eco R1/Xho 1 vector (1029) (Takara) using ligation with T4 ligase. The plasmid was transfected into E. coli and the bacteria were spread on LB medium plates (Mohamed et al. 2008). The recombinant positive colonies were screened using ampicillin. Plasmid DNAs were purified from positive colonies with mini scale plasmid preparation. DNA sequences were determined using the Big Dye version 3.1 sequencing method with specific primers. Primers used for sequencing of cGnRH-II type 1 were Cyprinidae F cGnRH-II T1 and Cyprinidae R cGnRH-II T1, and those for cGnRH-II type 2 were Cyprinidae F cGnRH-II F2 and Cyprinidae F cGnRH-II R2 (Table 1). The sequence data were automatically collected on the ABI PRISM 3100 Genetic Analyzer (PE Applied Bio-systems).

Sequence analysis

The genomic and cDNA sequences or two cGnRH-II genes were analyzed using BLASTN (http://www.ncbi.nlm.nih.gov/BLAST/) with default settings on the complete, non-redundant GenBank database nucleotide sequences. The genomic and cDNA sequences were aligned using CLUSTALW software to identify introns and exons.

Table 1. The primers used to amplify the two cGnRH-II genes and cDNAs and to sequence their PCR products.

Primer	Code	Sequences	Tm	PCR Product
F cGnRH-II T1	F2	TGGGGATGTTGCTGTGTCTA	64.18	580 bp
R cGnRH-II T1	R2	TCTTTTGGAAATCCCGTATG	57.55	•
F cGnRH-II T2	F3	GGTGATGGGGATGTTGATGT	59.28	580bp
R cGnRH-II T2	R3	TCTTTTGGAAATCCCGTATG	58.43	

Phylogenetic analysis

For phylogenetic analyses, hard-lipped barb cDNAs of cGnRH-II type 1 and type 2 were compared to cDNA sequences of cGnRH-II from nineteen fish species. All sequences were retrieved from NCBI GenBank (Appendix 1). The relationship between hard-lipped barb GnRH and other teleost GnRH was generated with CLUSTAL W with scoring method percent, and the unrooted tree was generated using Treeview version 1.5.2. (Magdy et al. 2007).

Quantitative Real Time analysis

The primers were designed using the Primer 3.0 software. The used primers were as follows: type 1 cGnRH-II forward, 5-TGGGGATGTTGCTGTGTCTA-3; type 1 cGnRH-II reverse, 5-TCTTTTGGAAATCCCGTATG-3; type 2 cGnRH-II forward 5-GGTGATGGGGATGTTGATGT-3; type 2 cGnRH-II reverse, 5-TCTTTTGGAAATCCCGTATG-3. Goldfish actin (GenBank accession number B039726.2), used as endogenous control, was amplified using the following primers: actin forward, 5-GAGCTATGAGCTCCCTGACGG-3; actin reverse, 5-AAACGCTCATTGCCAATGGT-3, and were seed to normalize variations in RNA. After optimization, PCR was performed in a 10 μL solution containing 2 μL cDNA, 5 μL 35 BR mix (Applied Biosystem), 0.3 µL forward primer, μL reverse primer and 2.4 μL DDW using the following 37 nditions: 95°C for 45 s, 45 cycles of 95°C for 15 s and 60°C for 1min, then 95°C for 15s, 60°C for 15s and 95°C for 15s. The results were analyzed using the standard curve mode, according to the manufacturer's recommendations (Applied Biosystems).

Dat 51a nalysis

The mRNA levels for each sample were expressed as the ratio of cGnRH-II mRNA to actin mRNA. The data were subjected to ANOVA followed by Turkey's multiple-comparisons tests. Differences were considered significant when *P*<0.05.

RESULTS AND DISCUSSION

Cloning of Genomic DNA and cDNA of two cGnRH-II genes in Hard Lipped Barb

The two types of cGnRH-II genes of the hard-lipped barb were successfully amplified from genomic DNA and cDNA. The agarose gel electrophoresis of PCR products from the two types of cGnRH-II genomic DNAs showed specific bands, approximately 580bp in size, which were designated as cGnRH-II type 1 (JN867722) and cGnRH-II type 2 (GenBank accession 1697609) (Figure 1). The genomic sequences of the two cGnRH-II genes were analyzed with BLAST and we found that they were different from each other and also different from GnRH genes of other species. The nucleotide sequence identity of cGnRH-II type 1 cDNAs was 92% with cGnRH-II of carp (Cyprinus carpio, AY189961.1), 90% with goldfish (Carassius auratus, U30386.1), 92% with roach (Rutilus rutilus, U60668.1), and 90% with grass (Ctenopharyng odonidella, EU981284.1).

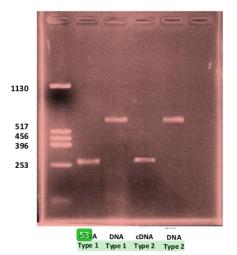


Figure 1. PCR products amplified from genomic [34], using the primer sets designed for each of the two cGnRH-II genes of hard-lipped barb (Osteochilus hasselti C.V).

The nucleotide sequence identity of cGnRH-II type 2 cDNAs was 94% with cGnRH-II of carp (Cyprinus carpio AY189961.1), 92% with goldfish (Carassius auratus, U30386.1), 94% with roach (Rutilus rutilus, U60668.1), and 92% with grass carp (Ctenopharyng odonidella, EU981284.1). These results indicate the presence of two different genes and cDNAs encoding cGnRH-II in the brain of hard-lipped barb for the first time.

The nucleotide sequence identity of cGnRH-II type 2 cDNAs was 94% with cGnRH-II of carp (Cyprinus carpio AY189961.1), 92% with goldfish (Carassius auratus, U30386.1), 94% with roach (Rutilus rutilus, U60668.1), and 92% with grass carp (Ctenophar odonidella, EU981284.1). These results indicate the presence of two different genes and cDNAs encoding cGnRH-II in the brain of hard-lipped barb for the first time.

Gents Structure of cGnRH-II

The two cGnRH-II genes share the same basic structure. The genomic DNA fragments both contained 3 exons (coding region) and 2 introns (non coding region). The first exon encoded a signal peptide (17 amino acids for type 1 and 13 amino acids for type 2), GnRH-II decapeptide, the proteolytic cleavage recognition site (3 amino acids for both types) and N-terminus of GnRH-associated peptide (GAP) (first 9 amino acids for both types). Exon 2 encoded the central portion of GAP and exon 3 encoded the C terminus of GAP (Figure 2). All intronexon boundary sequences conformed to the GT-AG rule.

Structures for two types of cGnRH-II had a high similarity in length for exon 1 and 2, but the intron sizes of cGnRH-II type 1 were different from cGnRH-II type 2 (Figure 2). The level of similarity in the coding sequences can be seen as the distance at the phylogenetic tree (Figure 6). The greatest differences within the preprohormone are within the GAP coding sequences. The striking contrast

between the conservation of the GnRH coding sequences and the lack thereof in the GAP coding sequences is the evidence of differential selective pressure to hin the gene (Figure 5). This is evident in cases where the identity and similarity of the GnRH and GAP coding sequences have been compared for mRNAs of GnRH-II genes from different species (Figure 4) (White and Fernald 1998; Russell and Richard 1999).

Phylogenetic analyses

Phylogenetic analyses were performed to establish an evolutionary context for the two cGnRH-II genes. Genetic distances (measured as substitutions per site) showed moderate low values, and the topology was well supported by strong bootstrap values. As expected, two types of cGnRH-II in hard-lipped barb were included within a subcluster of the *carp* (*Cyprinus carpio*, *Carassius auratus*) with high bootstrap values (Figure 6).

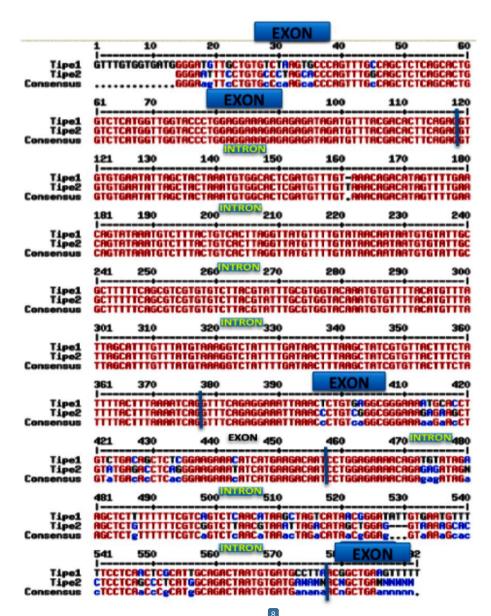
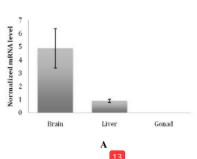



Figure 2. Nucleotide sequences and exon/intron structure of two cGnRH-II genes in hard-lipped barb

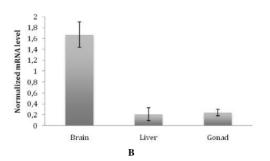


Figure 3. Expression of two types of CGnRH-II mRNA in the brain, liver and gonad of mature female hard-lipped barb. (A) Expression of cGnRH-II type 1 mRNA. (B) Expression of cGnRH-II type 2 mRNA

Expression of two cGnRH-II genes in the brain, liver and 32 nad of mature fish

Total RNA was isolated from the brain, liver, and gonads of mature female hard lipped barb, and the reverse transcription products of total RNA were amplified by primers F2 and R2 for cGnRH-II type 1, and primers F3 and R3 for cGnRH-II type 2 (Figure 3). The results of qRT-PCR analysis showed that two types of cGnRH-II genes were coext 50 sed in the brain of mature hard-lipped barb. cGnRH-II type 1 mRNA was expressed in the liver and gonad, and type 1 mRNA was expressed in the liver, bt 23 not in the gonad. The expression levels of the two types of cGnRH-II mRNA in the brain were much higher than those in the liver and gonad. It is also reported that two types of cGnRH-II mRNAs were expressed in the liver of common carp, but only cGnRH-II type 2 mRNA is expressed in the gonad (Lin et al. 2003).

Discussion

This paper reports for the first time that hard-lipped barb had two forms of cGnRH-II namely cGnRH-II type 1 and cGnRH-II type 2, similar to Cypr 7 is carpio (Lin and Lin 1994; Wang and Lin 1998), and goldfish (Kim et al. 1995; Lin and Peter 1996; Chik et al. 1997; Yu et al. 1998). The two cGnRH-II genes and cDNAs cloned in this study are missing 5' and 3' sequences, due to the design of the PCR primers. Our analyses hence have limitation, but still give deep insights into the evolution and physiological functions of these genes. The newly identified hard-lipped barb type 1 and type 2 genes show a high conservation with other GnRH-II genes previously reported (Figure 4). The nucleotide sequence of cGnRH-II type 1 cDNA shows, based on BLAST search, 96, 95, 94, 94% similarity to cGnRH-II cDNAs of carp (Cyprinus carpioAY189961.1), goldfish (Carassius auratus, U30386.1), roach (Rutilus rutilus, U60668.1), and grass carp (Ctenopharyng odonidella, EU981284.1), respectively. The nucleotide sequence of cGnRH-II type 2 cDNA is also very similar to other cGnRH-II cDNAs, 95, 94, 92, 92, 91% similarity to cGnRH-II of goldfish (Carassius auratus, AB017271.1), carp (Cyprinus carpio, AF521130.2), roach (Rutilus rutilus, U60667.1), grass carp (Ctenopharyng odonidella, EU981295.1) and zebrafish (Danio rerio, AY557019.1), respectively (Figure 5). The structural characteristics of GnRH-II type1 and type 2 genomic loci in hard lipped barb are similar with GnRH genes in other species. The results show that GnRH-II genes might evolve from a common ancestral molecule.

The hard-lipped barb cGnRH-II type 1 and type 2 precursor peptides are composed of, as predicted from the partial cDNA sequence, at least 68 101 64 amino acid residues, respectively, which consist of a signal peptide, cGnRH-II 61 apeptide, and a GAP linked by the highly conserved processing site (Gly-Lys-Arg) (Figure 5). signal peptides and GAP are only partially cloned. The amino acid sequences of the precursors were compared with previously identified fish GnRH-II precursors including roach (Rutilus rutilus), goldfish (Carassius auratus), carp (Cyprinus carpio), grass carp (Ctenop 58 vng odonidella), zebrafish (Danio rerio) (Table 2). The results show that the amino acid homology of GnRH-II type 1 precursors within Cypr 311 ds is 85-92%, but only 50-71% among other teleosts. The amino acid homology of the cGnRH-II type 2 precursor within Cyprinoids was 83-96%, but only 50-64% among other teleosts (Table 2).

The decapeptide is the minimal structural requirement for gonadothropin releasing activity (Raymond et al. 1986). The processing site (Gly-Lys-Arg) is essential for releasing GAP. The decapeptides and processing sites of the two hard-lipped barb GnRH-II precursors were entirely conserved in vertebrate evolution. However, signal peptides that direct the transport of proteins and GAP are diverged between the two cGnRH-II precursors as well as among other teleosts. The amino acid divergence in the signal peptides and GAP was much higher between the two types of cGnRH-II than between those of neighboring species. It is presumed therefore that the cGnRH-II type 1 and type 2 precursors could have different functions obtained through adapting to natural selections during evolution.

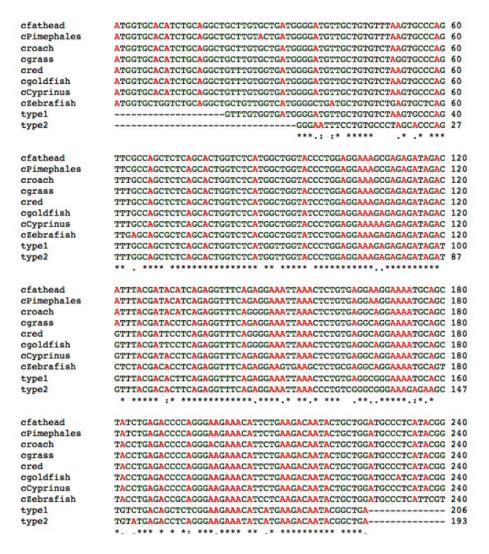


Figure 4. Nucleotides alignment of two types of cGnRH-II cDNA of hard-lipped barb with those of other teleosts

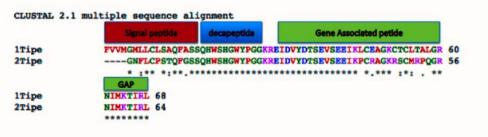
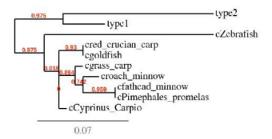



Figure 5. Amino acids alignment of cGnRH-II type 1 and type 2 of hard-lipped barb.

Smeeter	Ty	Type 1		pe 2
Species	Accession no.	Homology (%)	Accession no.	Homology (%)
Cyprinus carpio	AY189961.1	92	AAO39975.2	94
Carassius auratus	U30386.1	91	BAB18904.1	92
Ctenopharyng odonidella	EU981284.1	90	ACH78254.1	91
Pimephales promelas	EF672264.1	90	ABV45418.1	88
Rutilus rutilus	U60668.1	90	AAR18405.1	83
Danio rerio	AY094357.1	85	NP_878307.2	90
Oncorhynchus mykiss	AF125973.1	71	AAK82957.1	58
Coregonus clupeaformis	AY245102.1	71	ABP04042.1	96
Anguilla japonica	AB026990.1	61	AAR20401.1	64
Anguilla marmorata	GQ422803.1	61	ACN88548.1	56
Thunnus thynnus	EU239502.1	68	ABX10868.1	50
Oreochromis niloticus	AB101666.1	69	AAD02425.1	51
Mugil cephalus	AY373451.2	50	AAQ83268.1	54
Gadus morhua	GU332294 1	59	ADD92007 1	62

Table 2. Amino acid homology of hard-lipped barb cGnRH-II type 1 and type 2 with those of other species

Figure 6. Phylogenetic relationship of hard-lipped barb cGnRH-II type 1 and type 2 precursors with known GnRH. The relationship was generated with CLUSTAL W and the unrooted tree was generated using 136 view version 1.5.2. The scale bar represents the estimated evolutionary distance as 0.1 amino acid substitutions per site

The 44 sent study is the first to describe the two types of cGnRH-II genes in hard-lipped barb, and provides new evolutionary information on this gene family. The cGnRH-II type 1 and type 2 genes in hard-lipped barb can be grouped together with other teleost cGnRH-II genes in the phylogenetic tree, suggesting a common ancestor for both groups of genes. Phylogenetic analysis showed that the cGnRH-II type 1 gene is highly homologous to cGnRH-II genes of goldfish (Carassius auratus), carp (Cyprinus carpio), red carp, and the cGnRH-II type 2 is highly homologous to that of zebrafish (Danio rerio) (Figure 6).

The distributions of cGnRH-II peptides and the expression pattern of cGnRH-II genes in brain regions of teleost fishes has indicated that cGnRH-II mainly acts as a neurotransmitter and/or neuromodulator. mRNAs of two goldfish cGnRH-II genes are detected not only in brain regions, but also in the ovary and testis (Lin and Peter 1996; Y 45 al. 1998). In hard lipped barb, the two cGnRH-II genes are expressed in the brain and liver. The cGnRH-II Type 2 gene, but not the type 1 gene, is expressed in the ovary, although at much lower levels than in the brain.

cGnRH-II should mainly work as the neurotransmitter and neuromodulator and therewith, operate in the regulation of the GnRH release. The expression of the cGnRH-II genes in the liver and gonad suggests that cGnRH-II stimulate the release of 41 er hormones, such as estradiols and testosterone, in an autocrine or paracrine manner

In summary, the present study has revealed the genomic and cDNA sequences of two cGnRH-II variants namely cGnRH-II type 1 and cGnRH-II type 2 in hard-lipped barb. The phylogenetic analyses support the idea that the two cGnRH genes share the same basic structure with other teleost cGnRH-II genes. It means that the two cGnRH-II genes of hard-lipped barb are conserved, assuming a similar function with other teleost cGnRH-II genes.

37 ACKNOWLEDGEMENTS

This work was supported by the RISIN Grant from Universitas Jenderal Soedirman, Purwokerto, Banyumas, Central Java Indonesia. Also thanks to Mega Dissa and Diah from their assistance and knowledge.

APPENDIX 1

Accession numbers of the GnRH sequences from teleost fishes, downloaded from GenBank.

GnRH II clade: Anguilla japonica: AB026990; Carassius U30386; auratus: Clariasgariepinus: X78047: Coregonusclupeaformis: AY245102; Cyprinus carpio: AY147400; Danio rerio: AF511531; Dicentrarchuslabrax: Micropogo-AF224281: Macacamulatta: AF097356; niasundulatus: AY324669; Monopterusalbus: Moronesaxatilis: AF056313; Mugilcephalus: Odontesthesbonariensis: AY744687; Oncorhynchusmykiss: AF125973; Oreochromisniloticus: AB101666; Oryziaslatipes: AB041330; Rutilus rutilus: U60668; Sci-aenopsocellatus: AY677171; Sparus aurata: U30325; Suncusmurinus: AF107315; Trichosurusvulpecula: AF193516; Tupaiabelangeri: U63327; Typhlonectesnatans: AF167558; Veraspermoseri: AB066359.

REFERENCES

- Adams BA, Vickers ED, Warby C, Park M, Fischer WH, Craig AG, Rivier JE, Sherwood NM. 2002. Three forms of gonadotropin-releasing hormone, including a novel form, in a basal salmonid, Coregonus clupeaformis. Biol Reprod 67: 232-239
- Chik CC, Chow CH, Lin XW, Dong KW, Peter RE, Yu KL. 1997. Characterization of two chicken GnRH-II genes in goldfish.In "13th International Congress of Comparative Endocrinology, Yokohama, Japan," Abstract P 4-72.
- Gharaei A, Abdolali R, Mostafa.G. 2011. Induced Spawning of Schizothorax zarudnyi (Cyprinidae) By Using Synthetic Hormones (Ovaprim and HCG). World Journal of Fish and Marine Sciences 3 (6): 518-522
- Gibson MJ, Wu TJ, Miller GM, Silverman AJ. 1997. What nature's knockout teaches us about GnRH activity: Hypogonadal mice and neuronal grafts. Horm Behay; 31: 212-20.
- Green MR, Sambrook J. 2012. Molecular Cloning (a laboratory manual). Cold Spring Harbor Laboratory Press. Cold Spring, New York
- Guilgur LG, Orti G, Strobl-Mazzulla PH, Fernandino JI, Miranda LA, Somoza GM. 2007. Characterization of the cDNAs encoding three GnRH forms in the Pejerrey fish (Odontesthes bonariensis) (Atheriniformes) and the evolution of GnRH precursors. J. Mol. Evol 64: 614-627.
- Kah O, Lethimonier C, Somoza G, Guilgur LG, Vaillant C, Lareyre JJ. 2007. GnRH and GnRH receptors in metazoa: A historical, comparative, and evolutive perspective. Gen Comp Endocrinol 153: 346-364.
- Kim ME, Oka Y, Amano M, Kobayashi M, Okuzawa K, Hasegawa Y, Kawashima S, Suzuki Y, Aida K. 1995. Immunocytochemical localization of sGnRH and cGnRH-II in the brain of goldfish, Carassius auratus. J Comp Neurol 356: 72-82.
- Lin XW, Lin HR. 1994. In vitro studies of the effect of salmon GnRH on the growth hormone secretion by the pituitary of common carp (Cyprinus carpio L.). Acta Zoological Sinica 40 (1): 30-38. [Chinese]
- Lin XW, Peter RE. 1996, Expression of salmon gonadotropin-releasing hormone (GnRH) and chicken GnRH-II precursor messenger ribonucleic acids in the brain and ovary of goldfish. Gen Comp Endocrinol 101: 282-296.
- Magdy Z, Mattar, Elsayed EH, Gamal A, Al-Ameri, Sobhi HEN. 2007.
 Phylogenetic relationships among enterotoxigenic clinical Staphylococcus aureus isolates. Global J Mol Sci 2 (2): 45-56.
- Mohamed SA, Shabeb, Magdi AM, Younis, Nour-Eldein MA. 2008. Cloning and induction of E. coli pyruvate kinase by IPTG Global J Mol Sci 4 (2): 96-102.
- Morgan K, Millar RP. 2004. Evolution of GnRH ligand precursors and GnRH receptors in protochordate and vertebrate species. Gen Comp Endocrinol 139: 191-197.

- Muske LE. 1998. Evolution of gonadotropin-releasing hormone (GnRH) neuronal systems. Brain Behav Evol 42: 215-230.
- Prayogo NA, Sulistyo I, Wijayanti GE. 2008. The dynamic of ovarian activity of the hard-lipped barb (Osteochilus hasselti C.V.) under different photoperiod regimes. Biosfera 25 (3): 141-147.
- Prayogo NA, Wijayanti GE, Murwantoko, Kawaichi M, Astuti P. 2012. Effect of Photoperiods on Melatonin Levels, Estradiols Level and the Expression of cGnRH-II and sGnRH genes, in Hard-lipped Barb (Osteochilus hasselti C.V.). J Global Vet 8 (6): 591-597.
- Raymond C, Milton D, Wormald PJ, Wolf B, Robert M. 1986. The defineation of a decapeptide gonadotropin-releasing sequencein the carboxyl-terminal extension of the human gonadotropin-releasing hormone precursors. J Biol Chem 261 (36): 16990-16997.
- Rissman EF, Li X, King JA, Millar RP. 1997. Behavioral regulation of gonadotropin-releasing hormone production. Brain Res Bull 44: 459-464
- Russell DF, White RB. 1999. Gonadotropin-releasing hormone genes: Phylogeny, structure, and functions. Front Neuroendocrinol 20: 224-240.
- Sayed AM, Mohammad YF, Froud BK. 2010. Effect of GnRHa (D-ala6, des-gly10 mGnRHa) LHRHa (des-gly10, D-ala6 LH-RH Ethylamid) and carp pituitary in artificial propagation of Gattan, Barbus xanthopterus (Heckel,1843). World J Fish Mar Sci 2 (4): 280-284.
- Sealfon SC, Weinstein H, Millar RP. 1997. Molecular mechanisms of ligand interaction with the gonadotropin-releasing hormone receptor. Endocr Rev 18: 180-205.
- Sherwood NM, Eiden L, Brownstein M, Spiess J, Rivier J, Vale W. 1983. Characterization of a teleost gonadotropin-releasing hormone. Proc Natl Acad Sci USA 80: 2794-2798.
- Sherwood NM, Lovejoy DA, Coe IR. 1993. Origin of mammalian gonadotropin-releasing hormones. Endocr Rev 14: 241-254.
- Troskie B, Illing N, Rumbak E, Sun YM, Hapgood J, Sealfon S, Conklin D, Millar R. 1998. Identification of three putative receptor sub-types in vertebrates. Gen Comp Endocrinol 112: 296-302.
- Volkoff H, Peter RE. 1999. Actions of two forms of gonadotropin releasing hormone and GnRH antagonists on spawning behavior of the goldfish Carassius auratus. Gen Comp Endocrinol 116: 347-355.
- Wang L, Lin HR. 1998. Distribution and variations of sGnRH in discrete brain areas from common carp (*Cyprinus carpio* L.) of different ages and gonad conditions. Zool Res 19 (3): 197-202. [Chinese]
- White R, Fernald R. 1998. Genomic structure and expression sites of three gonadotropin-releasing hormone genes in one species. Gen Comp Endocrinol 112: 17-25
- Yaron Z. 1995. Endocryne control of gametogenesis and spawning induction in the carp. Aquaculture 129: 49-73.
- Yu KL, Sherwood NM, Peter RE. 1998 Differential distribution of two molecular forms of gonadotropin-releasing hormone in discrete brain areas of goldfish (*Carassius auratus*). Peptides 9: 625-630.

Identification and expression of two types of chicken GnRH-II genes in mature hard-lipped barb, Osteochilus hasselti

	ALITY REPORT	ire hard-lipped k	Jai b, Oscociii	us Hasselti	
SIMILA	9% ARITY INDEX	10% INTERNET SOURCES	16% PUBLICATIONS	% STUDENT PA	PERS
PRIMAR	Y SOURCES				
1	"Expres Hormor Tissues	Okubo, Hiroaki sion of Two Gor ne (GnRH) Precu of the Japanese Zoological Scier	nadotropin-Re rsor Genes in Eel and Evolu	leasing Various	1%
2	WWW.NC	bi.nlm.nih.gov			1 %
3	journal. Internet Sour	bio.unsoed.ac.io	d		1 %
4	academ Internet Sour	icjournals.org			1 %
5	WWW.SC Internet Sour				1 %
6	characto CD8@b	"Molecular clo erization of carp and CD4-like ge n Immunology, 2	c (Cyprinus car enes", Fish and	•	1 %

- J. Shaik Mohamed, Peter Thomas, Izhar A. Khan. "Isolation, cloning, and expression of three prepro-GnRH mRNAs in Atlantic croaker brain and pituitary", The Journal of Comparative Neurology, 2005
- <1%

Publication

"MOLECULAR CLONING OF GONADOTROPIN HORMONES I (GtH-I) AND II (GtH-II) GENES IN THE HARD-LIPPED BARB (Osteochillus hasseltii) AND THE EFFECT OF PHOTOPERIODS ON THE GENES EXPRESSION", BIOTROPIA, 2019

<1%

Publication

11

Biga, P.R.. "The isolation, characterization, and expression of a novel GDF11 gene and a second myostatin form in zebrafish, Danio rerio", Comparative Biochemistry and Physiology, Part B, 200506

<1%

Okubo, K.. "Gonadotropin-Releasing Hormones (GnRHs) in a Primitive Teleost, the Arowana: Phylogenetic Evidence That Three Paralogous Lineages of GnRH Occurred Prior to the Emergence of Teleosts", General and Comparative Endocrinology, 200111

<1%

Purnama Sukardi, Rita Eka Rosita, Asrul Sahri Siregar, C Sonny Januar et al. " The effect of endosulfan (insecticide) on expression of vitelogenin gene in female silver sharkminnow C. V.) ", IOP Conference Series: Earth and Environmental Science, 2019

Publication

P. P. Wang, T. Shi, W. B. Zhuang, Z. Zhang, Z. H. Gao. "Determination of genotypes and isolation of four novel genes in Japanese apricot (Sieb. et Zucc.) native to China ", The Journal of Horticultural Science and Biotechnology, 2015

<1%

Publication

Sethu Selvaraj, Hajime Kitano, Masafumi Amano, Mitsuo Nyuji, Kensuke Kaneko, Akihiko Yamaguchi, Michiya Matsuyama. "Molecular characterization and expression profiles of three GnRH forms in the brain and pituitary of adult chub mackerel (Scomber japonicus) maintained in captivity", Aquaculture, 2012

<1%

Publication

www.slideshare.net

<1%

Lin, X.W.. "Cloning and Expression Pattern of a Second [His^5Trp^7Tyr^8]Gonadotropin-Releasing Hormone (Chicken GnRH-II) mRNA in Goldfish: Evidence for Two Distinct Genes",

<1%

General and Comparative Endocrinology, 199708

Publication

Publication

- Kyoung-Bok Min, Jin-Young Min. "Exposure to environmental noise and risk for male infertility: Apopulation-based cohort study", Environmental Pollution, 2017
 Publication
- www.coursehero.com
 Internet Source

 17
- Christian Klausen, David L. Severson, John P. Chang, Hamid R. Habibi. "Role of PKC in the regulation of gonadotropin subunit mRNA levels: interaction with two native forms of gonadotropin-releasing hormone", American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2005
- Sethu Selvaraj, Hajime Kitano, Yoichiro Fujinaga, Masafumi Amano et al. "
 Immunological Characterization and Distribution of Three GnRH Forms in the Brain and Pituitary Gland of Chub Mackerel () ", Zoological Science, 2009

Yousefian Mehdi, Ehsan Mousavi Seyed. "The mechanism of reproduction and hormonal

<1%

<1%

<1%

function in finfish species: A review", Scientific Research and Essays, 2011

21	complete.bioone.org Internet Source	<1%
22	eprints.ulm.ac.id Internet Source	<1%
23	repository.ung.ac.id Internet Source	<1%
24	Pyla, R., N. Poulose, J. Y. Jun, and L. Segar. "Expression of conventional and novel glucose transporters, GLUT1, -9, -10, -12, in vascular smooth muscle cells", AJP Cell Physiology, 2013. Publication	<1%
25	R.E. Peter, T.A. Marchant. "The endocrinology of growth in carp and related species", Aquaculture, 1995 Publication	<1%
26	Tominari Kobayashi, Satoshi Mikami, Shigeyuki Yokoyama, Hiroaki Imataka. "An improved cell-free system for picornavirus synthesis", Journal of Virological Methods, 2007 Publication	<1%
27	patentimages.storage.googleapis.com Internet Source	<1%

R Millar, D Conklin, C Lofton-Day, E Hutchinson, B Troskie, N Illing, SC Sealfon, J Hapgood. "A novel human GnRH receptor

Publication

<1%

homolog gene: abundant and wide tissue distribution of the antisense transcript", Journal of Endocrinology, 1999

34	Yuli Andriani, Ibnu Dwi Buwono, Ujang Subhan, Arini Mandhasia. "Genetic Kinship of Nilem Fish Strains (Osteochillus hasselti)", Asian Journal of Biochemistry, Genetics and Molecular Biology, 2020 Publication	<1%
35	doclib.uhasselt.be Internet Source	<1%
36	pubmed.ncbi.nlm.nih.gov Internet Source	<1%
37	serval.unil.ch Internet Source	<1%
38	www-museum.unl.edu Internet Source	<1%
39	Aquatic Genomics, 2003. Publication	<1%
40	Busby, Ellen R., Satoshi Soeta, Nancy M. Sherwood, and Stephen D. Johnston. "Molecular Analysis of the Koala Reproductive Hormones and their Receptors: GnRH, FSHβ, and LHβ with Localization of GnRH", Journal of Neuroendocrinology, 2014. Publication	<1%

David Sánchez Peñaranda. "Study of male reproductive physiology and sperm conservation in the european EEL (Anguilla anguilla, L.)", 'Universitat Politecnica de Valencia', 2015

<1%

Internet Source

Eline A. Dubois, Matthijs A. Zandbergen, Jan Peute, Jan Bogerd, Henk J. Th. Goos.
"Development of three distinct GnRH neuron populations expressing two different GnRH forms in the brain of the African catfish (Clarias gariepinus)", The Journal of Comparative Neurology, 2001

<1%

Publication

Gopurappilly, Renjitha, Satoshi Ogawa, and Ishwar S. Parhar. "Functional Significance of GnRH and Kisspeptin, and Their Cognate Receptors in Teleost Reproduction", Frontiers in Endocrinology, 2013.

<1%

Publication

Haitao Nie, Ruidong Zhang, Xiaoqin Yu, Yuqian Zhang, Peng Yan, En Li, Renping Wang, Xiaobing Wu. "Molecular cloning, immunological characterization, and

<1%

immunological characterization, and expression analysis of gonadotropin-releasing hormone (GnRH) in the brain of the Chinese alligator during different stages of reproductive cycle", Gene, 2021

45	Hiroaki Suetake. "Two salmon gonadotropin- releasing hormone genes and their differential expressions in the goldfish Carassius auratus", Fisheries Science, 2/2000 Publication	<1%
46	Jithine Jayakumar Rajeswari, Suraj Unniappan. "Nesfatin-1 suppresses fish reproductive axis and gonadal steroidogenesis", Reproduction, 2020 Publication	<1%
47	M. Ohkubo. "Molecular cloning and brain distribution of three types of gonadotropin-releasing hormone from mummichog <i>Fundulus heteroclitus</i> ", Journal of Fish Biology, 02/2010 Publication	<1%
48	Ramakrishnappa, N "GnRH in non- hypothalamic reproductive tissues", Animal Reproduction Science, 200508	<1%
49	Rodríguez, L "Effects of photoperiod on pituitary levels of three forms of GnRH and reproductive hormones in the male European sea bass (Dicentrarchus labrax, L.) during testicular differentiation and first testicular recrudescence", General and Comparative Endocrinology, 200403 Publication	<1%

50	Štefan Starčević, Petra Brožič, Samo Turk, Jožko Cesar, Tea Lanišnik Rižner, Stanislav Gobec. "Synthesis and Biological Evaluation of (6- and 7-Phenyl) Coumarin Derivatives as Selective Nonsteroidal Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1", Journal of Medicinal Chemistry, 2011 Publication	<1%
51	Xinwei Lin, Carla J. Otto, Richard E. Peter. "Expression of Three Distinct Somatostatin Messenger Ribonucleic Acids (mRNAs) in Goldfish Brain: Characterization of the Complementary Deoxyribonucleic Acids, Distribution and Seasonal Variation of the mRNAs, and Action of a Somatostatin-14 Variant*", Endocrinology, 1999 Publication	<1%
52	scholars.unh.edu Internet Source	<1%
53	ubir.buffalo.edu Internet Source	<1%
54	www.jri.ir Internet Source	<1%
55	Aya Jodo, Hironori Ando, Akihisa Urano. "Five Different Types of Putative GnRH Receptor Gene are Expressed in the Brain of Masu	<1%

Salmon (Oncorhynchus masou)", Zoological Science, 2003

Publication

56

G. Dhinakar R, T.M. Chozhavel, K. Kumanan ., S. Elankumara. "Expression Profile of Toll-Like Receptor mRNA in an Indigenous Aseel Breed of Chicken in India", International Journal of Poultry Science, 2009

<1%

Publication

57

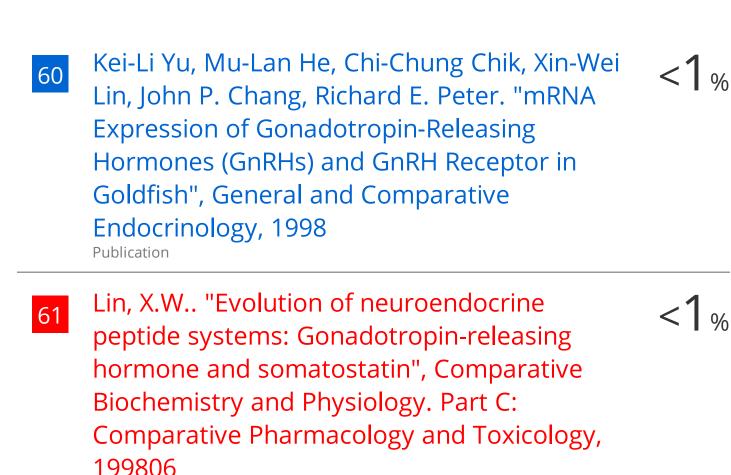
Hu, W.. "Antisense for gonadotropin-releasing hormone reduces gonadotropin synthesis and gonadal development in transgenic common carp (Cyprinus carpio)", Aquaculture, 20071003

<1%

Publication

58

K. W. Cheon. "Expression of the second isoform of gonadotrophin-releasing hormone (GnRH-II) in human endometrium throughout the menstrual cycle", Molecular Human Reproduction, 05/01/2001


<1%

Publication

59

K.R von Schalburg, W.L Harrower, N.M Sherwood. "Regulation and expression of gonadotropin-releasing hormone in salmon embryo and gonad", Molecular and Cellular Endocrinology, 1999

<1%

Publication

Matsuda, K.. "Inhibitory effect of chicken gonadotropin-releasing hormone II on food intake in the goldfish, Carassius auratus",

Hormones and Behavior, 200806

Publication < 1%

<1%

Okubo, K.. "Molecular Cloning and Tissue-Specific Expression of a Gonadotropin-Releasing Hormone Receptor in the Japanese Eel", General and Comparative Endocrinology, 200008

Exclude quotes On Exclude matches < 5 words

Exclude bibliography On