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ABSTRACT 

The research discussed the graphically analyzed of the cumulative distribution function (cdf), and the power function 

of hypothesis testing on the binomial distribution. In this research, we also showed (derived) the formula of the power 

function on special case of binomial such us Negative Binomial and the Geometric distribution. The result showed that 

the degree of freedom, bound of the rejection area, and parameter shape significantly affect to the curves of the power 

function. The curves of the power are sigmoid and they increase quickly to be one on the small parameter shape and 

large degree of freedom.  
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1. INTRODUCTION 

Here, we interested to study the use of the power and 

size in testing the hypothesis parameter and their 

graphically analyse for improving the inference 

population (Pratikno, [2]). Following, Wackerly, et. al. 

[5], we note that there are three definitions related to the 

hypothesis testing, namely a probability error type I (), 

a probability error type II () and a power function.  In 

addition, the power is defined as a probability to reject H0
 

under H1 in testing hypothesis, H0 :   = 0 versus H1 :  

 0, for parameter , as a statistical technique to 

investigate the population inference.  Moreover, the size 

is then defined as the probability to reject H0 under H0. 

We then choose the maximum power and minimum sizes 

as the theoretical concept to compare the testing. 

Many authors such as, Pratikno [2], Khan [12-14], 

Khan and Saleh [15,16,17, 20, 21], Khan and Hoque [19], 

Saleh [1], Yunus [6], and Yunus and Khan [7-10], 

already studied the power and size of the tests on the 

hypothesis testing. Furthermore, we noted from the 

previous research some authors studied the power in 

testing intercept with non-sample prior information 

(NSPI), such as Pratikno [2], Khan and Pratikno [20] and 

Khan [12]. They used the probability integral of the 

cumulative distribution function (cdf) to compute the 

power and size. Moreover, Pratikno [2] and Khan et al. 

[9] used the formula of the power to compute the cdf of 

the bivariate noncentral F (BNCF) distribution in 

regression models. Others authors have also contributed 

to the research of the power in the context of the 

hypothesis testing, such as Khan [12-14], Khan and Saleh 

[15,16,17, 20, 21], Khan and Hoque [17], Saleh [1], 

Yunus [6], and Yunus and Khan [7-10]. Due to the 

complicated and hard computational, Pratikno [2] and 

Khan et al. [9] used the BNCF distribution to compute 

the power using R-code (see Pratikno [2] and Khan et.al. 

[18]. 

The research methodology for investigating the 

power and size as follows: (1) we have to determine the 

sufficiently statistics, (2) we then create the rejection area 

using uniformly most powerful test (UMPT) to derive the 

formula of the power of the geometric distribution, and 

(3) we finally compute and figure the graphs using R-

code. 

In this paper, Section 1 presented the introduction. 

The graphically analyzed of the cdf of the Binomial, 

Negative Binomial and Geometric distributions, and the 

power function are given in Section 2.  The conclusion is 

given  in Section 3. 

2.  THE GRAPHYCALLY ANALYZED OF 

THE PDF, CDF, AND THE POWER-SIZE 

OF THE BINOMIAL AND GEOMETRIC 

DISTRIBUTION 
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2.1. The cdf Graphs of the Binomial, Negative 

Binomial and Geometric Distributions 

Following Pratikno et al. [4], the general probability 

mass function (pmf) of the Binomial distribution with Xi 

Bernoulli trials with parameter p, and number of trial n, 

is given as 
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Similarly, the probability mass function of X as 

random variable of the Negative Binomial distribution of 

success on n Bernoulli trials, with r success on x, 

X~BN(r,p), is then presented as 
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  (2) 

For r =1, the distribution of the random variable  X  will 

be Geometric distribution, X~BN(1,p)=Geo(r=1,p), with 

pmf  is given as  
1( ) ( ) (1 ) , 1,2,3,xp x P X x p p x      (3) 

Using the equation (1), (2) and (3), we presented the 

graphs (curves) of the cdf of the three distributions, 

P(X≤x) at Figures 1, 2, and 3, respectively. 

 

 

 

Figure 1.  The graphs of the cdf of the binomial 

distribution on several n and p. 

 

Figure 2. The graphs of the cdf of the Negative binomial 

distribution on several n and p. 

   

Figure 3.  The graphs of the cdf of the Geometric 

distribution on several p. 

From Figure 1, 2, and 3, we see that the all the curves 

are nonlinear (sigmoid). They increase as for small n and 

they increase as the p increase. They are going to be one 

(quickly) for large p (p increases). It means that both n 

and p really significant affect to the skew-ness of their 

curves.   

 

 2.2. The Graphs of the Power Functions 

To derive the formula of the power function, we set 

the join distribution of the random variable, X1, … , Xn.  

Furthermore, we find sufficiency statistics and rejection 

area to define the power and size.  Here, we then got the 

sufficiency statistics 𝑆 = ∑ 𝑥𝑖
𝑚
𝑖   that follows to specified 

distribution.  In this case, we then find the rejection area 

using most powerful (MP) test. Due to the similarity of 

the distribution among Binomial, Negative Binomial and 

Geometric distribution, we then obtained the general 
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power function of the Binomial distribution to testing   H0 

: p  = p0 versus H1 : p > p0 as 
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Using the equation (4), we then produce the graphs of the 

power and size function on Binomial, Negative Binomial 

and Geometric distribution at the Picture of the bottom. 

 

 

 

 

 

 

 

Figure 4. The power of the Binomial distribution with 

the rejection area 4 on several n  

We see from Figure 4., the curves are sigmoid and 

tend to be quickly to be one for large n and small p. 

 

 

 

 

 

 

 

 

Figure 5. The power of the Negative Binomial 

distribution with the rejection area 6 on several n 

From Figure 5., we see that the curves of the power 

are also sigmoid, and they are quickly to be zero for small 

n and p. 

Furthermore, we noted that the graphs on Figure 6 

are produced using the formula of the power  
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in testing H0 : p  = 0.3 versus H1 : p > 0.3 with the m values 

are 3 and 4.  

 

Figure 6. The power and size of the Geometric 

distribution with 𝑅𝑅 = {(𝑥1, 𝑥2, … , 𝑥𝑚)|𝑠 ≥ 6}
 

We see from Figure 6., it is clear that the power and 

size increase for small (lower) m and they decrease as the 

m increase. Note that the curve of the power function is 

sigmoid, but the size is constant. To evaluate the values 

of the size, we presented the manually computation form 

the power function 
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under H0 when p0=0.3 and m=3, 
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p0 = 0.3 and m = 4,  =(0.3) = 0.07, respectively.
 

3. CONCLUSION 

There several steps to derive the power function on 

distributions. The important step is finding the rejection 

area using UMPT test. The result showed that the power 

function is depended n and p, and they tend to be sigmoid 

and quickly to be one for large p (except on Binomial 

distribution) 
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