
Bukti “komunikasi” dengan panitia ICASMI untuk revisi artikel yang di submit ke IOP 
Proceeding Internasional 

 



















Paper Review Form 
 

Number  : MATH_07 

Title  : Solution formula of the compressible fluid motion in three dimension Euclidean space 

    Using fourier transform 
 

A.  Evaluation Points: 
Yes No Cannot 

decide 
 

1.  Is the content of this paper original?   

v 
 

 

 
 

 

 
 

2.   Does the title of the paper represent the overall contents of the paper?  

v 
 

 

 
 

 

 
 

3.   Does the Abstract describe the contents of the paper?  

 
 

 

 
 

 

v 
 

4.   Do the keywords indicate the scope of the study?  

v 
 

 

 
 

 

 
 

5.  Are the approaches and methodologies for solving the problem well explained?  

 
 

 

v 
 

 

 
 

6.   Is the data used valid and appropriate?  

 
 

 

 
 

 

v 
 

7.   Does the use of tables and figures help in the explanation of problems and 

discussions? 

 

 
 

 

 
 

 

v 
 

8.   Is the discussion or analysis related to the results of the research produced?  

 
 

 

v 
 

 

 
 

9.   Is the reference used relevant?  

v 
 

 

 
 

 

 
 

 

                                                                                                                     

Very 

Good 

Good Moderate Poor 

 

10. Contribution to Science   

 
 

 

v 
 

 

 
 

 

 
 

11.Originality   

 
 

 

 
 

 

v 
 

 

 
 

12. Systematics  

 
 

 

 
 

 

v 
 

 

 
 

13. Language  

 
 

 

 
 

 

v 
 

 

 
 

14.  Quality of writing  

 
 

 

 
 

 

v 
 

 

 
 

 

 

B.  Recommendation 

             Yes       No 
i. This paper represents as significant new contribution and should be publisher.   

 
 

 

 
 

ii. This paper is publishable subjects to minor revision. Further review is not needed 

(MINOR REVISION). 

 

 
 

 

 
 

iii. This paper is probably publishable, but major revision is needed. (MAJOR REVISION)   



v 
 

 
 

iv. This paper is not recommended because it does not provide feasible data, material or 

result. (REJECTED). 
 

 

 
 

v. This paper is not recommended because it is poorly written (REJECTED).  
 

 
 

vi. While the paper is good and publishable, a more appropriate journal is recommended 

such as…......... (REJECTED) 
 

 

 
 

   

   

 

 

C.  Comments to Author  (this will be shown to the author/s). 

 

 

 

 

 

 

 

 

 

 

 

 Language need to be check through the paper.  

 There are some writings that are not in accordance with the template format. Write notations or 
symbols consistently, especially vector notation. 

 In Section 0 “Abstract”: Will be good if include some background of the problem.  
 In the introductory section, the state of the art has not yet been reflected in the topics studied in the 

article. So that the novelty element of this article is not clearly illustrated. The results of previous 
studies are still too lacking. 

 The references need to be added, especially the latest articles that can support the novelty offered in 
the article. In addition, the cited references do not include the article title or do not fit the format on 
the template. 

 How to cite in paragraphs not according to format. The order of the articles in the reference according 
to the order in which they appear in the citation process. 



Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Solution Formula of the Compressible Fluid Motion in Three Dimension
Euclidean Space using Fourier Transform
To cite this article: A H Alif et al 2021 J. Phys.: Conf. Ser. 1751 012006

 

View the article online for updates and enhancements.

This content was downloaded from IP address 36.73.35.161 on 01/02/2021 at 12:15

https://doi.org/10.1088/1742-6596/1751/1/012006
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuVF-31IsQSKCU5Bda8Smw8WBRF4IwyFxNz3OxjuE0zXhOksgOJcBPBAupUigjhiu0THHL9-bmbC24Z7-S92QC-aiFxZjeBcjK_A90634_1HbE9aTi7MA5CZ2RicAVacev59Xouds67jxQ5abR5YPMGel3fyZL924tKAG33d3b4QM6DuJf_jrDwTJLJ30_ZCk-JhsZzpl8LCtIy8-lJbe_EPhrh5kczhj-tVje-WDGXs1t87Yehve4xtigchrkkL_J1qU1pCgnEiZW29GcuZvbb&sig=Cg0ArKJSzBESdI8qX6Wv&adurl=http://iopscience.org/books


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ICASMI 2020
Journal of Physics: Conference Series 1751 (2021) 012006

IOP Publishing
doi:10.1088/1742-6596/1751/1/012006

1

 
 
 
 
 
 

Solution Formula of the Compressible Fluid Motion in Three 

Dimension Euclidean Space using Fourier Transform 

A H Alif1, S Maryani2, S R Nurshiami3  

1,2,3 Department of Mathematics, Faculty of Mathematics and Natural Sciences, Jenderal 

Soedirman University, Jl. Dr. Soeparno No 61, Purwokerto, Indonesia 

 

email: abiyyualif7@gmail.com1, sri.maryani@unsoed.ac.id2, siti.nurshiami@unsoed.ac.id3 

 

 

Abstract. We derive a detailed determination of the solution formula for the compressible viscous 

fluid flow in three dimensional Euclidean space using Fourier transform. For the further research, 

we can not only generalized the model problem to the N-dimensional Euclidean space (N>3) but 

also we can estimate the solution operator families of the model problem. 

Keywords: compressible, viscous fluid, Euclidean space, Fourier transform. 

1. Introduction 

In this paper, we consider the solution formula of the linearized for compressible fluid flow which 

described as follows: 

                                         {
ρt + γdiv 𝐯 =  0                                 ,
𝐯𝐭 − μΔ𝐯 − ν∇div 𝐯 + γ∇ρ = 0.     

                                                  (1)                               

      

 

with the initial data are v|∂Ω = 0, (ρ, 𝐯)|t=0 = (ρ0, v0) and 𝐯 = 〈 v1, v2, v3 〉
T is velocity and 

〈 v1, v2, v3 〉
T is the transpose of 〈 v1, v2, v3 〉 . We know that density and velocity are written as ρ =

ρ(x) and 𝐯 = 〈 v1(x), v2(x), v3(x) 〉
T, respectively. Moreover, μ and γ are positive constants, and ν is a 

constant such that μ + ν > 0 and μ and ν are the viscosity coefficients. The domain Ω is a three 

dimensional Euclidean space ℝ3. This result can be generalized to ℕ-dimensional case and also we can 

estimates the solution operator families of the model problem which investigated by [2] in 2016. 

To introduce our main result, first of all we introduce the notation. For a scalar-valued function u =

u(x) and vector-valued function 𝐯 = 𝐯(x) = 〈v1(x), v2(x), v3(x)〉
T, we set for ∂k =

∂

∂xk
, (k = 1,⋯ , N) 

∇u = (∂1u, ∂2u, ∂3u)T,      Δu = ∑k=1
3 ∂k

2u,     Δ𝐯 = 〈Δv1, Δv2, Δv3〉
T, 

div 𝐯 = ∑k=1
3 ∂kvk,     ∇v = { ∂kvℓ ∣∣ k, ℓ = 1,2,3 },   ∇2𝐯 = { ∂k ∂ℓvm ∣∣ k, ℓ,m = 1, 2, 3 }. 

The set of all natural number is denoted by ℕ and ℕ0 = ℕ ∪ {0}. We set, 

Wp
k,m(Ω) = { 𝕌 = (ρ, 𝐯) ∣∣ ρ ∈ Wp

k(Ω), 𝐯 ∈ Wp
m(Ω) }. 

Before we state the main result, first of all we introduce the definition of Sobolev space Wq
m(Ω). 

 

Definition 1.1 (Adams and Fournier, [1])  

Let k ∈ ℕ ∪ {0} and p ∈ [1, ∞) then the Sobolev Space Wq
m(Ω) is defined by  
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Wq
m(Ω) ≔ {𝐮 ∈ Lq(Ω) ∣ Dα𝐮 ∈ Lq(Ω), ∀ α with |α| ≤ m} 

Next, we state the main result of this paper. 

 

Theorem 1.2 Let λj(ξ), 𝑗 = 1,… , 4 be the roots of det[λ𝕀 + 𝕄̂(λ)] = 0, where 

 λ3(ξ) = λ4(ξ) = −μ|ξ|2. Then for λj(ξ), j = 1,2, we have the following assertions: 

i. For |ξ| ≥
2γ

(μ+ν)
, we have λj(ξ), j = 1,2 as follows: 

λ1 =
−(μ + ν)

2
|ξ|2 +

1

2
|ξ|√(μ + ν)2|ξ|2 − 4γ2 

λ2 =
−(μ + ν)

2
|ξ|2 −

1

2
|ξ|√(μ + ν)2|ξ|2 − 4γ2. 

ii. For |ξ| ≤
2γ

(μ+ν)
, we have λj(ξ), j = 1,2 as follows: 

λ1 = λ2
̅̅ ̅ 

−(μ + ν)

2
|ξ|2 +

i

2
|ξ|√4γ2 − (μ + ν)2|ξ|2,   i = √−1. 

iii. For |ξ| ≠
2γ

(α+β)
, we have the solution formula of ρ̂(ξ, t) and 𝐯̂(ξ, t) as follow 

ρ̂(ξ, t) = (
λ2(ξ)eλ1(ξ)t−λ1(ξ)eλ2(ξ)t

λ2(ξ)−λ1(ξ)
) ρ̂0(ξ, t) − i (

eλ2(ξ)t−eλ1(ξ)t

λ2(ξ)−λ1(ξ)
) ξ𝐯̂0(ξ), 

 

𝐯̂(ξ, t) = iγξ (
eλ2(ξ)t − eλ1(ξ)t

λ2(ξ) − λ1(ξ)
) ρ̂0(ξ, t) + e−μ|ξ|2t𝐯̂0(ξ)  

                                      +(
λ2(ξ)eλ2(ξ)t−λ1(ξ)eλ1(ξ)t

λ2(ξ)−λ1(ξ)
− e−α|ξ|2t)

ξξT𝐯̂0(ξ)

|ξ|2
. 

This paper is organized as follows: the next section introduce a reduced system for (1) and shows 

that Theorem 1.2 follows from the main result for the reduced system. In third Section, we calculate 

representation formulas for solutions of the reduced system by using the Fourier transform with respect 

to 𝐱 = 〈 x1, x2, x3〉 and its inverse transform. Section 4 proves our main theorem for the reduced system 

by results obtained in Section 3. 

 
2. Reduced System 

In this section, we consider the resolvent problem of eqaution system (1). Set uj = vj (j = 1,2,3), then 

𝐯 = 〈v1, v2, v3〉
T satisfies  

{
λρ + γdiv 𝐯 =  f ̃                                  in Ω,
λ 𝐯 − μΔ𝐯 − ν∇div 𝐯 + γ∇ρ = 𝐠̃     in Ω.

                                                 (2) 

First of all, we can write the equation system of (2) in the following 

(𝜆 + 𝕄)𝕌 = 𝔽              𝑖𝑛 𝛺                                                (3) 

where, 

𝕌 = (
𝜌
𝒗 

) = (

𝜌
𝑣1
𝑣2

𝑣3

) ,      𝕄 = [
0 𝛾𝑑𝑖𝑣
𝛾𝛻 −𝜇𝛥 − 𝜈𝛻𝑑𝑖𝑣

] ,   𝑎𝑛𝑑      𝔽 = (
𝑓 ̃
𝒈̃  

).                     

We can also write the equation system of (2) in a matrix form 

𝜆 (
𝜌
𝒗 

) + [
0 𝛾𝑑𝑖𝑣
𝛾𝛻 −𝜇𝛥 − 𝜈𝛻𝑑𝑖𝑣

] (
𝜌
𝒗 

) = (
𝑓 ̃
𝒈̃ 

), 

or we can write in the form 
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𝜆 (
𝜌
𝒗 

) + [
0 𝛾 ∑ 𝜕𝑘

3
𝑘=1

𝛾𝛻 −𝜇𝜕𝑘
2 − 𝜈𝜕𝑘 ∑ 𝜕𝑗

3
𝑗=1

] (
𝜌
𝒗 

) = (
𝑓 ̃
𝒈̃  

).                                   (4) 

In addition, for the time derivative, we can write the equation system of (1) in the following 

{
𝜌𝑡 + 𝛾𝑑𝑖𝑣 𝒗 =  0                                 𝑖𝑛 [0,∞) × ℝ3,

𝑣𝑡 − 𝜇𝛥𝒗 − 𝜈𝛻𝑑𝑖𝑣 𝒗 + 𝛾𝛻𝜌 = 0    𝑖𝑛 [0, ∞) × ℝ3.
                                  (5) 

Furthermore, we consider the equation (5). For the simplicity, we can write the equation (5) to be  

𝕌𝑡 + 𝕄𝕌 = 0    𝑖𝑛 [0, ∞) × ℝ3,   𝕌 ∣𝑡=0= 𝕌0   𝑖𝑛 ℝ3,                                (6) 

with domain 𝐷(𝕄) = { 𝕌 = (𝜌, 𝒗) ∈ 𝑊𝑝
1,2

∣∣ 𝒗 ∣𝜕𝛺= 0 }, 𝕌0 = (𝜌0, 𝒗0). Then, by taking Fourier 

transform to (6) with respect to the 𝑥 variable and solving the ordinary differential equation with respect 

to variable 𝑡, we have  

𝕌𝑡 = 𝔼(𝑡)𝔽 = ℱ−1 (𝑒−𝑡𝕄̂(𝜉)𝔽̂(𝜉)),     

where we define the Fourier transform 𝑓of 𝑓 = 𝑓(𝑥) with respect to 𝒙 = 〈𝑥1, 𝑥2 , 𝑥3〉 and its inverse 

transform as follows: 

𝑓 = ℱ𝑥[𝑓] (𝜉) = 𝑢̂ (𝑥) = ∫ 𝑒−𝑖𝑥⋅𝜉

ℝ3
𝑓(𝑥)𝑑𝑥 

ℱ𝜉
−1[𝑔](𝑥) =

1

(2𝜋)3 
∫ 𝑒𝑖𝑥⋅𝜉

ℝ3
𝑔(𝜉)𝑑𝜉 

where 𝜉 = 〈𝜉1, 𝜉2, 𝜉3〉 ∈ ℝ3.  

 Next, we consider the resolvent problem of equation system (5) then applying Fourier transform, we 

have 

λ𝕌̂ + 𝕄̂(ξ)𝕌̂ = 𝔽̂ 

 

[λ + 𝕄̂(ξ)]𝕌̂ = 𝔽̂ 

𝕌̂ = [λI + 𝕄̂(ξ)]
−1

𝔽̂(ξ) 

𝕌 = ℱ−1 {[λI + 𝕄̂(ξ)]
−1

𝔽̂(ξ)}                                               (7) 

 

with det[λI + 𝕄̂(ξ)] ≠ 0 and [λI + 𝕄̂(ξ)]
−1

 is inverse of [λI + 𝕄̂(ξ)]
 
. 

Furthermore, by using adjoint of the matrix, we can determine the inverse of matrix [λI + 𝕄̂(ξ)]
 
, 

[λI + 𝕄̂(ξ)]
−1

=
1

det[λI+𝕄̂(ξ)]
adj[λI + 𝕄̂(ξ)].                                              (8) 

 

3. Representation formulas for solution 

 In this section, following [4, section III], we compute representation formulas for solutions of (2). 

First of all, applying the Fourier transform to matrix 𝕄 in equation (3) yield the following matrix 

𝕄̂(𝝃) =

[
 
 
 
 

𝟎 𝒊𝜸𝝃𝟏 𝒊𝜸𝝃𝟐 𝒊𝜸𝝃𝟑

𝒊𝜸𝝃𝟏 𝝁|𝝃|𝟐 + 𝝂𝝃𝟏
𝟐 𝝂𝝃𝟏𝝃𝟐 𝝂𝝃𝟏𝝃𝟑

𝒊𝜸𝝃𝟐

𝒊𝜸𝝃𝟑

𝝂𝝃𝟐𝝃𝟏

𝝂𝝃𝟑𝝃𝟏

𝝁|𝝃|𝟐 + 𝝂𝝃𝟐
𝟐

𝝂𝝃𝟑𝝃𝟐

𝝂𝝃𝟐𝝃𝟑

𝝁|𝝃|𝟐 + 𝝂𝝃𝟑
𝟐]
 
 
 
 

 

where |𝝃|𝟐 = 𝝃𝟏 
𝟐 + 𝝃𝟐 

𝟐 + 𝝃𝟑 
𝟐  and 𝒊𝟐 = −𝟏. Then we also have 
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[𝝀𝑰 + 𝕄̂(𝝃)] =

[
 
 
 
 

𝝀 𝒊𝜸𝝃𝟏 𝒊𝜸𝝃𝟐 𝒊𝜸𝝃𝟑

𝒊𝜸𝝃𝟏 𝝀 + 𝝁|𝝃|𝟐 + 𝝂𝝃𝟏
𝟐 𝝂𝝃𝟏𝝃𝟐 𝝂𝝃𝟏𝝃𝟑

𝒊𝜸𝝃𝟐

𝒊𝜸𝝃𝟑

𝝂𝝃𝟐𝝃𝟏

𝝂𝝃𝟑𝝃𝟏

𝝀 + 𝝁|𝝃|𝟐 + 𝝂𝝃𝟐
𝟐

𝝂𝝃𝟑𝝃𝟐

𝝂𝝃𝟐𝝃𝟑

𝝀 + 𝝁|𝝃|𝟐 + 𝝂𝝃𝟑
𝟐]
 
 
 
 

. 

 

Then, we calculate for the determinant of matrix [𝝀𝑰 + 𝕄̂(𝝃)] using expansion by cofactors, that is 

𝐝𝐞𝐭[𝝀𝑰 + 𝕄̂(𝝃)] = 𝒂̂𝟏𝟏𝑪̂𝟏𝟏 + 𝒂̂𝟏𝟐𝑪̂𝟏𝟐 + 𝒂̂𝟏𝟑𝑪̂𝟏𝟑 + 𝒂̂𝟏𝟒𝑪̂𝟏𝟒 

                                                              = 𝝀|𝔸̂𝟏𝟏| − 𝒊𝜸𝝃𝟏|𝔸̂𝟏𝟐| + 𝒊𝜸𝝃𝟐|𝔸̂𝟏𝟑| − 𝒊𝜸𝝃𝟑|𝔸̂𝟏𝟒|                   (9) 

where |𝔸̂𝒊𝒋| is determinant of submatrix that remains after the i-th row and j-th column are deleted 

from matrix [𝝀𝑰 + 𝕄̂(𝝃)] and the number (−𝟏)𝒊+𝒋𝔸̂𝒊𝒋 is denoted by 𝑪̂𝒊𝒋 and called the cofactor. 

In fact, for 𝒊 = 𝒋 = 𝟏 the component of |𝔸̂𝒊𝒋|, we have  

|𝔸̂𝟏𝟏| = |

𝝀 + 𝝁|𝝃|𝟐 + 𝝂𝝃𝟏
𝟐 𝝂𝝃𝟏𝝃𝟐 𝜷𝝃𝟏𝝃𝟑

𝝂𝝃𝟐𝝃𝟏

𝝂𝝃𝟑𝝃𝟏

𝝀 + 𝝁|𝝃|𝟐 + 𝝂𝝃𝟐
𝟐

𝝂𝝃𝟑𝝃𝟐

𝝂𝝃𝟐𝝃𝟑

𝝀 + 𝝁|𝝃|𝟐 + 𝝂𝝃𝟑
𝟐

| 

= (𝝀 + 𝝁|𝝃|𝟐)
𝟐
{(𝝀 + 𝝁|𝝃|𝟐) + 𝝂|𝝃|𝟐}.                         

Similar technique, we have (𝒊𝜸𝝃𝟏)(𝝀 + 𝝁|𝝃|𝟐)
𝟐
, −(𝒊𝜸𝝃𝟐)(𝝀 + 𝝁|𝝃|𝟐)

𝟐
 and (𝒊𝜸𝝃𝟑)(𝝀 + 𝝁|𝝃|𝟐)

𝟐
 for 

|𝔸̂𝟏𝟐|, |𝔸̂𝟏𝟑|, and |𝔸̂𝟏𝟒|, respectively. Substituting |𝔸̂𝟏𝟏|, |𝔸̂𝟏𝟐|, |𝔸̂𝟏𝟑|, and |𝔸̂𝟏𝟒| to equation (9) we 

have, 

                            𝐝𝐞𝐭[𝝀𝑰 + 𝕄̂(𝝃)] = (𝝀 + 𝜶|𝝃|𝟐)
𝟐
{𝝀𝟐 + (𝝁 + 𝝂)|𝝃|𝟐𝝀 + 𝜸𝟐|𝝃|𝟐}                             (10) 

 Furthermore, we determine a matrix adjoint of [𝝀𝑰 + 𝕄̂(𝝃)] which is a tranpose matrix of cofactor 

matrix. Since these matrix is a symmetric matrix, so that the determinant of the matrix hold the properties 

|𝔸̂𝒊𝒋| = |𝔸̂𝒋𝒊| for 𝒊, 𝒋 = 𝟏, 𝟐, 𝟑, 𝟒. Moreover, we enough only determine the |𝔸̂𝟐𝟐|, |𝔸̂𝟐𝟑|, |𝔸̂𝟐𝟒|, |𝔸̂𝟑𝟑|, 

|𝔸̂𝟑𝟒| and |𝔸̂𝟒𝟒|. In fact, for 𝒊 = 𝒋 we have 

|𝔸̂𝟐𝟐| = (𝝀 + 𝝁|𝝃|𝟐)
𝟐
{𝝀(𝝀 + 𝝁|𝝃|𝟐) + (𝝃𝟐

𝟐 + 𝝃𝟑
𝟐)(𝝀𝝂 + 𝜸𝟐)}, 

|𝔸̂𝟑𝟑| = (𝝀 + 𝝁|𝝃|𝟐)
𝟐
{𝝀(𝝀 + 𝝁|𝝃|𝟐) + (𝝃𝟏

𝟐 + 𝝃𝟑
𝟐)(𝝀𝝂 + 𝜸𝟐)}, 

|𝔸̂𝟒𝟒| = (𝝀 + 𝝁|𝝃|𝟐) {𝝀(𝝀 + 𝝁|𝝃|𝟐) + (𝝃𝟏
𝟐 + 𝝃𝟐

𝟐)(𝝀𝝂 + 𝜸𝟐)}. 
Employing the same argument, we can find others minors 

|𝔸̂𝟐𝟑| = (𝝀 + 𝝁|𝝃|𝟐){(𝝃𝟏𝝃𝟐)(𝝀𝝂 + 𝜸𝟐)} = |𝔸̂𝟑𝟐|, 

|𝔸̂𝟐𝟒| = −(𝝀 + 𝝁|𝝃|𝟐){(𝝃𝟏𝝃𝟑)(𝝀𝝂 + 𝜸𝟐)} = |𝔸̂𝟒𝟐|, 

|𝔸̂𝟑𝟒| = −(𝝀 + 𝝁|𝝃|𝟐){(𝝃𝟐𝝃𝟑)(𝝀𝝂 + 𝜸𝟐)} = |𝔸̂𝟑𝟐|. 

Moreover, we have the cofactors in the following 

𝑪̂𝟏𝟏 = (𝝀 + 𝝁|𝝃|𝟐)
𝟐
{(𝝀 + 𝝁|𝝃|𝟐) + 𝝂|𝝃|𝟐}, 

𝑪̂𝟏𝒋 = 𝑪̂𝒋𝟏 − (𝒊𝜸𝝃𝒋−𝟏)(𝝀 + 𝝁|𝝃|𝟐)
𝟐
, 

𝑪̂𝒊𝒋 = 𝑪̂𝒋𝒊(𝝀 + 𝝁|𝝃|𝟐){𝝀(𝝀 + 𝝁|𝝃|𝟐)𝜹𝒊𝒋 + (𝜹𝒊𝒋 − 𝝃𝒊−𝟏𝝃𝒋−𝟏)(𝝀𝝂 + 𝜸𝟐)} 

with 𝜹𝒊𝒋 = 𝟎 for 𝒊 ≠ 𝒋, 𝜹𝒊𝒋 = 𝟏 for 𝒊 = 𝒋 and 𝒊, 𝒋 = 𝟐, 𝟑, 𝟒. 

 

4. Proof of Theorem 

Throughout this section, we use the notation introduced in the previous section.  

 

4.1 Eigen values 

In this subsection, we investigate the eigen values. The solution formula for the model problem has 

already obtained by Kobayashi [5]. Here, we shall give a slightly detail how to get the solution formula 

for velocity dan the density. First of all, we determine the determinant of matrix 𝐝𝐞𝐭[𝛌𝐈 + 𝕄̂(𝛏)] = 𝟎. 

By equation (7), we have  

𝐝𝐞𝐭[𝝀𝑰 + 𝕄̂(𝝃)] = 𝟎 
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                          (𝛌 + 𝛍|𝛏|𝟐)
𝟐
{𝛌𝟐 + (𝛍 + 𝛎)|𝛏|𝟐𝛌 + 𝛄𝟐|𝛏|𝟐} = 𝟎                                                             (11) 

 

From equation (9), we have two possibilities sero values, that are (λ + μ|ξ|2)2 = 0 or 

{λ2 + (μ + ν)|ξ|2λ + γ2|ξ|2} = 0. For the first case, we have λ3 = λ4 = −μ|ξ|2. Furthermore, we will 

find the eigen values of {λ2 + (μ + ν)|ξ|2λ + γ2|ξ|2} = 0. By using the formula  

λ1,2 =
−b ± √b2 − 4ac

2a
 

we have  

λ1,2 =
−(μ+ν)|ξ|2±|ξ|√(μ+ν)2|ξ|2−4γ2

2
.                                         (12) 

In view of equation (10), for |ξ| ≥
2γ

(μ+ν)
, we have  

λ1 =
−(μ + ν)

2
|ξ|2 +

1

2
|ξ|√(μ + ν)2|ξ|2 − 4γ2 

λ2 =
−(μ + ν)

2
|ξ|2 −

1

2
|ξ|√(μ + ν)2|ξ|2 − 4γ2. 

Meanwhile, for |ξ| ≤
2γ

(μ+ν)
, we have  

λ1 = λ2
̅̅̅ 

−(μ + ν)

2
|ξ|2 +

i

2
|ξ|√4γ2 − (μ + ν)2|ξ|2. 

Moreover, for |ξ| =
2γ

(μ+ν)
 can be been in Kobayashi [5]. Thus, we may omit the calculation.  

4.2 Fourier transform of 𝜌̂ and 𝒗̂ 

In this subsection we consider the formula of ρ̂ and 𝐯̂, density and velocity, respectively. These density 

and velocity are the result of the model problem (1). First of all, applying div to second equation of (5), 

we have  
𝜕

𝜕𝑡
div 𝐯 − μΔdiv 𝐯 − νΔdiv 𝐯 + γΔρ = 0.                                               (13) 

 

Let 𝐷 = div v, then equation (13) can be written as follows 

𝐷𝑡 − 𝜔ΔD + γΔρ = 0, 
with 𝜔 = 𝜇 + 𝜈. Recalling first equation of (3),  

𝜌𝑡 = −𝛾div v, 
then we can write the equation to be  

𝜌𝑡 = −𝛾𝐷, 
𝜌𝑡

𝛾
= −𝐷.                                                                     (14) 

Here in after, we differentiate the equation of (14) recpect to 𝑡 variable and substitute (11) and (12) to 

the result, we obtain  
1

𝛾
𝜌

𝑡𝑡
= −𝐷𝑡 , 

                  
1

𝛾
ρ

tt
= γ Δ 𝜌 − ωΔ𝐷, 

                              
1

𝛾
ρ

tt
= γ Δ 𝜌 − ω (−Δ

𝜌𝑡

𝛾
), 

                         ρtt = γ2 Δ 𝜌 + ωΔ𝜌
𝑡
.                                         (15) 

 
Applying Fourier transform to equation (15), we have  

 

                         ρ̂tt + ω|ξ|2𝜌̂
𝑡
+ γ2 |ξ|2 𝜌̂ = 0                                           (16) 

 

with the initial condition  
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𝜌̂(𝜉, 0) = 𝜌̂0(𝜉),   𝜌̂𝑡(𝜉, 0) = −𝑖𝜉𝐯̂0(𝜉).                                     (17) 

 

Moreover, we have the general solution for equation (16) 

 

𝜌̂(𝜉, 𝑡) = 𝑐1𝑒
𝜆1(𝜉)𝑡 + 𝑐2𝑒

𝜆2(𝜉)𝑡,                                          (18) 
 

where 

𝜆1,2 =
−𝜔|𝜉|2 ± |𝜉|√𝜔2|𝜉|2 − 4𝛾2

2
. 

 

Substituting the initial condition (17) to (18), we obtain 

 

𝑐1 =
𝜆2(𝜉)𝜌̂0(𝜉) + 𝑖𝜉𝐯̂𝟎(𝜉)

𝜆2(𝜉) − 𝜆1(𝜉)
,         𝑐2 = −

𝜆1(𝜉)𝜌̂0(𝜉) + 𝑖𝜉𝐯̂0(𝜉)

𝜆2(𝜉) − 𝜆1(𝜉)
.  

 

Therefore, we have the soltion formula for  

 

𝜌̂(𝜉, 𝑡) = (
𝜆2(𝜉)𝑒𝜆1(𝜉)𝑡−𝜆1(𝜉)𝑒𝜆2(𝜉)𝑡

𝜆2(𝜉)−𝜆1(𝜉)
) 𝜌̂0(𝜉) − 𝑖 (

𝑒𝜆2(𝜉)𝑡−𝑒𝜆1(𝜉)𝑡

𝜆2(𝜉)−𝜆1(𝜉)
)𝜉𝐯̂0(𝜉).              (19) 

 

 Furthermore, we determine te solution formula for 𝐯̂(𝜉, 𝑡). Employing the same argument in [3, 

Section 3], firstly applying Fourier transform to the second equation of (5), we obtain 

 

𝐯t̂ − μ|ξ|2𝐯̂ − iνξj ∑ iξk𝑣𝑘̂
3
𝑘=1 + 𝑖γξj𝜌̂ = 0,                                   (20) 

 

We can write equation (20) in the following sense, 

 

𝐯̂𝑡 = (−𝜇|𝜉|2𝐈 − 𝜈𝜉𝜉𝑇)𝐯̂ − 𝑖𝛾𝜉𝜌̂.                                                (21) 

 

Vector 𝐯̂(𝜉, 𝑡) is a vector which parallel and orthogonal from 𝜉, so that we can write the vector 𝐯̂(𝜉, 𝑡) 

as follows 

𝐯̂(𝜉, 𝑡) = 𝑎(𝜉, 𝑡)
𝜉

|𝜉|
+ 𝑏(𝜉, 𝑡),                                                      (22) 

Where 𝑏(𝜉, 𝑡) orthogonal to 𝜉, and 𝑎(𝜉, 𝑡) is a scalar such that 𝑎(𝜉, 𝑡) = v̂(𝜉, 𝑡)
𝜉

|𝜉|
. 

 

Substituting equation (22) to (21), then we have 

𝐯̂𝑡(𝜉, 𝑡) = (−𝜇|𝜉|2I − 𝜈𝜉𝜉𝑇) (𝑎(𝜉, 𝑡)
𝜉

|𝜉|
+ 𝑏(𝜉, 𝑡)) − 𝑖𝛾𝜉𝜌̂, 

                                        = −𝑎(𝜉, 𝑡)
𝜉

|𝜉|
(𝜇|𝜉|2I + 𝜈𝜉𝜉𝑇) − 𝑏(𝜉, 𝑡)(𝜇|𝜉|2I + 𝜈𝜉𝜉𝑇) − 𝑖𝛾𝜉𝜌̂, 

= −𝑎(𝜉, 𝑡) (𝜇|𝜉|𝜉 + 𝜈
𝜉⋅𝜉𝜉𝑇

|𝜉|
) − 𝑏(𝜉, 𝑡)(𝜇|𝜉|2 + 𝜈𝜉𝜉𝑇) − 𝑖𝛾𝜉𝜌̂.          (23) 

 

 Next, we differentiate equation (20) and then substitute the result to the left hand-side of (21), we 

have 

𝑎𝑡(𝜉, 𝑡)
𝜉

|𝜉|
+ 𝑏𝑡(𝜉, 𝑡) = −𝑎(𝜉, 𝑡) (𝜇|𝜉|𝜉 + 𝜈

𝜉⋅𝜉𝜉𝑇

|𝜉|
) − 𝑏(𝜉, 𝑡)(𝜇|𝜉|2 + 𝜈𝜉𝜉𝑇) − 𝑖𝛾𝜉𝜌̂.        

 

Therefore, we obtain  

𝑎𝑡(𝜉, 𝑡) = 𝜔|𝜉|2𝑎(𝜉, 𝑡) − 𝑖𝛾|𝜉|𝜌̂,     𝑏𝑡(𝜉, 𝑡) = −𝜇|𝜉|2 𝑏(𝜉, 𝑡).                       (24) 
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By (23) and the initial condition 𝑏(𝜉, 0) = (I −
𝜉𝜉𝑇

|𝜉|2
) 𝐯̂0(𝜉), we see that  

𝑏(𝜉, 𝑡) = 𝑒𝜇|𝜉|2𝑡 (I −
𝜉𝜉𝑇

|𝜉|2
) 𝐯̂0(𝜉).                                           (25) 

 

Also, by applying integrating factor to first equation (24), we obtain  

 

𝑎(𝜉, 𝑡) = 𝑒−𝜔|𝜉|2𝑡 (𝑎(𝜉, 0) − 𝑖 𝛾|𝜉| ∫ 𝑒𝜔|𝜉|2𝑠𝑡

0
𝜌̂(𝜉, 𝑠)𝑑𝑠)                                

with 𝑎(𝜉, 0) constant. 

 Furthermore, we will investigate the formula of the second term equation (26). Multiplying (19) by 

𝑒𝜔|𝜉|2𝑠, we have  

 

𝑒𝜔|𝜉|2𝑠 𝜌̂(𝜉, 𝑠) = (
𝜆2(𝜉)𝑒

𝜆1(𝜉)𝑠+𝜔|𝜉|2𝑠 − 𝜆1(𝜉)𝑒
𝜆2(𝜉)𝑠+𝜔|𝜉|2𝑠

𝜆2(𝜉) − 𝜆1(𝜉)
) 𝜌̂

0
(𝜉)

− 𝑖(
𝑒𝜆2(𝜉)𝑠+𝜔|𝜉|2𝑠 − 𝑒𝜆1(𝜉)𝑠+𝜔|𝜉|2𝑠

𝜆2(𝜉) − 𝜆1(𝜉)
)𝜉𝐯̂0(𝜉), 

= (
𝜆2(𝜉)𝑒−𝜆2(𝜉)𝑠−𝜆1(𝜉)𝑒−𝜆1(𝜉)𝑠

𝜆2(𝜉)−𝜆1(𝜉)
) 𝜌̂

0
(𝜉) − 𝑖 (

𝑒−𝜆1(𝜉)𝑠−𝑒−𝜆2(𝜉)𝑠

𝜆2(𝜉)−𝜆1(𝜉)
)𝜉𝐯̂0(𝜉),    (26) 

since 𝜆1,2(𝜉) + 𝜔|𝜉|2 = −𝜆2,1(𝜉) and 𝜆1(𝜉)𝜆2(𝜉) = 𝛾|𝜉|2. 

By integrating (26) from 0 ≤ 𝑠 ≤ 𝑡, we have  

  

∫𝑒𝜔|𝜉|2𝑠 𝜌̂(𝜉, 𝑠)

𝑡

0

𝑑𝑠

= (
−𝑒−𝜆2(𝜉)𝑡 − 𝑒−𝜆1(𝜉)𝑡

𝜆2(𝜉) − 𝜆1(𝜉)
) 𝜌̂

0
(𝜉)

+ (
𝑖

𝛾|𝜉|2
)(

𝜆2(𝜉)𝑒
−𝜆1(𝜉)𝑡 − 𝜆1(𝜉)𝑒

−𝜆2(𝜉)𝑡

𝜆2(𝜉) − 𝜆1(𝜉)
)𝜉𝐯̂0(𝜉),  

without loss of generality, we take 𝑎(𝜉, 0) = 0 so that 𝑒𝜔|𝜉|2𝑡 𝑎(𝜉, 0) = 0. Thus, we have  

 

𝑎(𝜉, 𝑡) = −𝑖𝛾|𝜉| (
−𝑒−𝜆2(𝜉)𝑡−𝑒−𝜆1(𝜉)𝑡

𝜆2(𝜉)−𝜆1(𝜉)
) 𝜌̂

0
(𝜉) + (

𝜆2(𝜉)𝑒−𝜆2(𝜉)𝑡−𝜆1(𝜉)𝑒−𝜆1(𝜉)𝑡

𝜆2(𝜉)−𝜆1(𝜉)
)

𝜉𝐯̂0(𝜉)

|𝜉|
.             (27) 

 

Substituting (24) and (27) to (20), this complete the proof of the Theorem 1.2. 
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