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Solution Formula of the Compressible Fluid Motion in Three
Dimension Euclidean Space using Fourier Transform

Abstract. We derive a detailed determination of the solution formula for the compressible
viscous fluid flow in three dimensional Euclidean space using Fourier transform. For the further
research, we can not only generalized the model problem to the N-dimensional Euclidean space
(N>3) but also we can estimate the solution operator families of the model problem.

Keyword: Compressibie, Euciidean space, Fourier transform, Viscous fluid,.

1. Introduction
In this paper, we consider the solution formula of the linearized for compressible fluid flow which
described as follows:

pr+ydivu= 0 1
{v,—ydu—deivu—rcVAp= 0 . M

With the initial data are u|, =0, (p,u)],_y = (p, o) and u = ( Uz, uz )T § is velocity

and ( uy, uy,ug )T is the transpose of { uy,u,,uz ) . We know that p = p(x) an
u = (uy(x),uy(x),us(x) )T are respectively the fluid density and the fluid velocity that are
unknown ﬁmctions.@ # and y are positive constants, andv is a constant such that p +
v > 0 and p and v are the Viscosity coefficients. The domain () is a three dimensional Euclidean
space R3. This result can be generalized to N-dimensional case and also we can estimates the
solution operator families of the model problem which investigated by [2] in 2016.

To introduce our main resuit, we introduce the notation. For a scalar-vaiued function u = u(x)
and vector-valued function v = v(x) = (vy(x), vy (x), v3(x))T, we set for 0 = % ok =
1,--,N)
Vu = (0;u,0,u,03u)", Au=Yy3_ 9%u, Av= (Avy, Av,, Av,)T,
divv=33_10kvx, W={0v | kl=123 b Vv = {00y | k1, m = 1.2.3}.

The set of all natural number is denoted by Nand Ny = N U {0}. We set,




Before we state the main result, first of all we introduce the definition of Sobolev space

wem@) = {U= (V) | p € WF(Q),VE W () }.

Definition 1.1 (Adams and Fournier, [1])
Letk € NU{0}andp € [1, ) then the Sobolev Space W™ () is defined by

qu(ﬂ) = {u € Lg() | D%u € Lq(ﬂ),v a with |a|] £ m}
Next, we state the main result of this paper.

Theorem 1.2 Let {/’lj €3 )@1 be the roots of det[Al + M(1)] = 0, where A3 &= @

Then for 4; &),j =12, we have the following assertions:
i. Forlél= Zyﬁ) _we have 2;(§),j = 1,2 as follows:

(a+
3y =D g 4 Sl PAER
e R N R
ii. Forlél < (;I , we have 2;(§),j = 1,2 as follows:
= T = 2 By 4 11y = @ PPRP, 1=V
iii. For|&|l # 2Y_ we have the solution formula of A(&,t) and 9, t) as follow

(a+B)
= - lz(g)elx(é’)t_xl(g)elz(é’)t A = eh2@®t_g1 Oty

elz(f)c = exl(f)t

9, 0) = ivg ( ==L )ﬁo(f,t) + e~ EPE0 (@)

(Az(f)elzmt—h(s)eh@‘ _ p—alPt EET00(®

A2(H-2:(8) i
This paper is organized as follows: the next section introduce a reduced system for (1.1) and
shows that Theorem 1.2 follows from the main result for the reduced system. In third Section,
we calculate representation formulas for solutions of the reduced system by using the Fourier
transform with respect to x = (X3, %2, x3) and its inverse transform. Section 4 proves our main

theorem for the reduced system by results obtained in Section 3.

2. Reduced system

In this section, we consider the resolvent problem of@@hystem (1).Setu;=v; (U= 1,2,3), then

v = (4,72, v3)7 satisfies
{Ap +ydive=f in Q, @

First of all. we he equation system (2) in the following

(A+M)U=F in 0 3)




where,

_ (PN _ vy Y s f)
U_(v)— vy ) Mz[yv —aA-—BVdiv]' onid IF—(y‘ '

V3 "é_——Qy/

We can also write the equation system of (2)ina matrix form

di
) ¥ [yOV —aAy— l[l;Vdiv] (5

3
0 yzak

1(5)+ e i AR

3
W —add— /zakz 3,
L,

In addition, for the time derivative, we can write the equation system of (1) in the following

{ pe +ydivv= 0 in [0, 00) x R3, 3)
v, — pAv —vdiv v — kVAp = 0 in [0,00) X R3.
Furthermore. we consider the equation (3). For the simplicity, we can write the equation 3)

Ut =+ MU = 0 in [0, w) X Rz, U It=0= UO in R3' (4)

with domain D(M) = {IU = (p,v) € Wpl‘2 | v lag= 0}, U, = (po, Vo). Then, by taking Fourier
transform to (3) with respect to the x variable and solving the ordinary differential equation with respect
to variable t, we have

U, = E(OF = 7 (e MORE)),
where we define the Fourier transform i of u = u(x) with respect to x = (%4, X5, x3) and its inverse
transform as follows:
) ¥ e f
a=a@)=2) =J

R3

e~ * ¢ y(x)dx

g 2615 R
FAROI0) = g | e 2O

Moreover, we also can apply Fourier transform with respect to variable x to equation (4),
AW+ MEUT=F



0=[u+ME)] FO
u=7t{u+ ME)| T FO) ®)

with det[Al + F(§)] # 0 and [A1+ M(§)] " is inverse of [AL + M)

Furthermore, by using adjoint of the matrix, we can determine the inverse of matrix,

[+ M(g)]'i o madj[u + M(®)). (6)

3. Representation formulas for solutions

In this section, following [4, Section III}, we compute representation formulas for solutions of (2).
First of all, applying the Fourier transform to matrix M in equation (6) yield the following matrix

0 ivé1 iv§: ivés
iyE, plél® +vét v€1é2 vé1és
vk,  vEE  plEP+v Ve

lins v§3é1 v§3é2 ulEl? +VE§J

M(§) =

where |]2 = & + & + £ and i? = —1. Then, we also have

A iy, iv§: ivés
PO L £ T ul&12 +vE v§i§z v§iés
[ R ivé2 v§281 A+ ulgl? +vE vé2ds
ivés vé3é, v§3: i+ ulE? +vE

Then. we calculate for the determinant of matrix [ll + M(f)] using expansion by cofactors, that is
det{a1 + M(§)] = dy1Cyq +812C12 + Ar3Ciz + d14C1a

= Ay - ivEa|Rea| + ivE2|Ass| — iv8s|Aal
Y]

where miil is determinant of submatrix that remains after the i-th row and j-th column are deleted
from matrix [Al + M(f)] and the number (—1)*" ﬁi}- is denoted by é,-j and called the cofactor.

In fact, for i=j=1 the component of |ﬁi,-|, we have

= |3~+#|§|2 +v§ v§1§2 v§iés I
1A = ‘ v§2$1 A+ ulEl? +vE v§28s
v§3és vz A+ plE* + Vf%’l"

= -+ g (A -+ uiER) +vIZI2).

Similar technique. we have (iv€:) (A + ul€1?) . —(ivE) (A + ul12)? and (iyE) (A + ulgl?)" for
|A12|, |A13l, and |A14|, respectively. Substituting lAlll' mlzl’ lfkml, and |§14| to equation (7) we
have,




det[21 + M(D)] = (A + ulE2) (2% + (u + IE2A + V*E1%) @®)

Furthermore, we determine a matrix adjoint of equation (7) which is a tranpose matrix of cofactor
matrix. Since these matrix is a symmetric matrix, so that the determinant of the matrix hold the
properties |Ail| = |Aﬁ| for i,j = 1,2, 3,4. Moreover, we enough only determine the |A22|, |A23|,
i;‘iz‘;i, ifs\g;,i, if‘f\yi and i;‘ff\,ﬂi. in fact, for i = j we have

|Az| = G+ ulEP2AQ + 1) + (83 + ED (v + v}
|Baa] = A+ pIEDZAG+ 1) + §F + DV + 5O}
(Ase] = A+ plEl?) 2QA+ 81 + (& + &) + ¥}
Employing the same argument, we can find others minors
m23| = A+ pléIH {18 Av + YA} = mszl.
|Aze] = =@+ p IEIHE S Qv +¥2)} = |A4],
mu' = —(A+ plEPH){(EE) v +yD} = lﬁszl-
Moreover, we have the cofactors in the following
Cir = A+ plEPHHA+ plE1® + V1%,
€,y = G — (€)@ +plE1?)?,
Cij = Aji('l + plE AR + plEl?)8; + (655 — §i—a8j-1) (v + ¥}
with 8 = 0fori # j, 8; = 1fori=jand i,j=2,3,4
4. Proof of Theorem 2.1
Throughout this section, we use the nqtation introduced in the previous section.

4.1 Eigen Values

In this subsection, we investigate the eigen values. The solution formula for_the model problem has
already obtained by Kobayashi [5]. Here in-after, we shall give aslightly @etai how to get the solution
formula for velocity and density in equation system (1)-First of all, we deterfiiine the detreminant of the

matrix [M + ﬂl(f)] = 0. By equation (8) we have
det[A1 + M(O)] = (A + plE1?)2 (% + (u + WIEPA+y2IE12}
0= (A +plEP?A + (u+ KA+ 1§12} ©)
From equation (9), we have two possibilities zero values, that are (A+plé|*)>2=0 or

{22 + (u+v)|EI22 + y2|€1"2} = 0. For the first case, we have Az = 1, = —ul&|?. Furthermore, we
will find the eigen values of {4 + (u + v)[§|?2 +¥?|§|*2} = 0. By using the formula




—b + Vb% — 4ac

hz = 2a
we have,
A o —(MIEPEY ()22 -4y2
= L : (10)
In view of equation (10), for || > ) we have
{
(u+ V) gm
1= e 4 2 G R — 7, ohot \f
GG l¢l= 22X
z - (o
Meanwhile, for |¢] < (‘H_v) we have (“ )
== +v
L=T=—=—kP+ IfIJ4y2 — (u+ V)21~

4.2 Fourier transform of density p and velocity ¥

In this subsection, we consider the formula of p and ¥ for density and velocity, respectively. First of all,
applying div o second equation (3), we have

whet & & mean 7 —leV pAY — vVdiv v — kVAp = 0. (1)

W \5 FQ/QAX'WV\ l")( R od ¥
Let D = div v, then equation (11) can be written as follows . Q o L
D, — wAD +yAs = 0, 2% Qﬂw “\ b—) (12)

[ \eLe)

with @« =u+vand D; = Z—l:. Recalling first ion (3).
=ydi e —_— = -—X diV v
@ > Pt

and we can write above equation to be

pe=-vD,
& =—D. (13)
Here in after, we differentiate (13) respect to t variable and then substitute (12) and (13) to the result,
we have
P _ _ 5
¥ .
1
=per = YAp — wAD,

14
1 Pt
=pre = yAp — wA(— -
4 I
Pee = Y2Ap + whpy. (14)
Applying Fourier transformation to equation (14), we have
P+ v2lEIZp =0, %)

with the initial condition




P 0) = po(®), Pr(§,0) = —i %o(E).

Moreover, we have the general solution for equation (15)
pt) = et c et (16)

where

—wl§? + [§lV@?§]? — 4y?
5 .

A =

Substituting the initial condition to (16), we obtain

; _ L@@ +ERE _ M(©po®) + i %)
: LEO-4LE& LE-M4E

Therefore, we have the solution formula for p($, t) in the following

R = 22(E)ell(f)t—ll(f)eh(at)A __(elz(f)f_elﬂf)t) .
5,0 = (MR 56 ~ i (i) S0 (17)

Furthermore, we determine solution formula for ¥(¢, t). Employing the \sam grgument [3, Section 3].
Firstly, applying Fourier transform to the second equation of (3), we have

Ve + uIE120 — ipd; ey iicOp + ¥E;p =0, (18)

we can write (18) in the following

9, = (— plE1P1 = vEETIV — iy§p. (19)
Vector 9(§, t) is a vector which parallel and orthogonal from £, so that we can write the vector v(¢, )
as follows
9(6,8) = a(§, O+ b(E D), (20)
where b(¢,t) orthogonal to £, and a(§,t) isa scalar such that a(é,t) = 9(¢, t) T%

Substituting equation (20) to (19), then we have
0 = (— ulEP1—v§ET) (a(s‘. t) % +b(§,t) | — i¥éh,

= —a(f,t)%(#lflzl +vEET) — b(E, ) (U1 + vEET) —ivép

i e G PP o G e T e O N P
= —a(§, 1) (i§i¢ +vz) — b I + w53 ) = &P 21)

Next, we differentiate equation (20) respect to variable 7, then substitute the result to equation (21), we
obtain

(6, + Be(E,0) = —a(6,0) (HIEIE +vEES) = bE DI+ vEET) — 8. 2D

Therefore, we have

a0, (&, 1) = wlE1?a(E, ) — lElp, b, 1) = —pl1*b(E, 1), (22)



T
By (22) and initial condition b(§,0) = (1- %—) 95, we see that

T
b(E, 1) = e~HEPt (1- % %o (23)
Also, by taking integrating factor to (23) we have

a6, t) = e~ (a(£,0) — g f; e A (. 9) ds), (24)

with a(£,0) is a constant.

Furthermore, we consider the formula of the second term of (24). Multiplying (17) by factor e~olél’t
we have

n 1, (§)e@lEPs+a @)t — 3 (f)emlflzs+lz({)t\ A
E“"ﬂzsp(f, S) = ( 2 ——— 11,5\ po(f)
\ A\§ ) — M\S) J
(ew|E|2s+Az(£)t o ew|$|25+).1(§)t>
£l 0 (
RGEING) £9(8)
- 12(5)8—12(05_11(5)8—11(f)s) n = (e-ll(E)s_e—lz(E)s) .
= ( TNOENG po® — i Fpam ) (25)

since, Ay o(E) + wlEl? = —A22(® nd OLE JrEIB Uk ¥ Y W o wht ]

Furthermore, by integrating (25) form 0 < s < t, we have
t

[ evterepe.s) ds

n
<

t
e 1, (§)e 22 ®s — Al(g)e-h(f)s) o ey (e-z,(as - e-zz({)s) .
= 0[ ( ).2(0 s )_1({) Po(f) 13 Az(f) = /11(5) fVo(f)dS,
W Esdnhi i i (A (Oe - xl(e)e"zmt> X
-(“Zo—no )+ e e

Without loss of generality, we take a(¢,0) =0, soa(é, O)e“"mzt = 0, thus we have
g -e'h<¥>f+e-ﬁlmf) ba (Az(f)e“lmf—mae'hm‘) £00(§)
ae0 = -k (e ) PO AGERG i oplae)
Thus, combining (23) and (26) yields that the formula of velocity ¥(£,t). This complete the proof of
Theorem 1.2. ;
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Abstract. We derive a detailed determination of the solution formula for the compressible viscous
fluid flow in three dimensional Euclidean space using Fourier transform. For the further research,
we can not only generalized the model problem to the N-dimensional Euclidean space (N>3) but
also we can estimate the solution operator families of the model problem.

Keywords: compressible, viscous fluid, Euclidean space, Fourier transform.

1. Introduction
In this paper, we consider the solution formula of the linearized for compressible fluid flow which
described as follows:

{pt+ydivv= 0 , 0

Vi — WAV — vVWdivv + yVp = 0.

with the initial data are v|zq =0, (p,V)|t=o = (Po,Vo) and v = (vy,v,,vs)T is velocity and
(vy,V,,v3 )T is the transpose of ( v4,v,,vs ) . We know that density and velocity are written as p =
p(x) and v = ( v;(x),v,(x),v3(x) )T, respectively. Moreover, i and y are positive constants, and v is a
constant such that p+v >0 and p and v are the viscosity coefficients. The domain Q is a three
dimensional Euclidean space R3. This result can be generalized to N-dimensional case and also we can
estimates the solution operator families of the model problem which investigated by [2] in 2016.

To introduce our main result, first of all we introduce the notation. For a scalar-valued function u =

u(x) and vector-valued function v = v(x) = (v;(x),v,(x),v3(x))T, we set for 9y = 6671(’ (k=1,--,N)
Vu = (01u,05u,05w)T, Au=Y3_,08u, Av = (Avy,Av,, Avs)T,
divv=33_ 0k Vv={0ww,|k?=123}, Vv ={0y0,vy | k£,m=1,23}
The set of all natural number is denoted by N and N, = N U {0}. We set,
W) = {U = (p,v) | p € WE(Q),v € W) }.
Before we state the main result, first of all we introduce the definition of Sobolev space W™ (Q).

Definition 1.1 (Adams and Fournier, [1])
Letk € N U {0} and p € [1, ) then the Sobolev Space W () is defined by

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1
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W (Q) = {u € Lq(Q) | D*u € Ly(Q),V a with |a| < m}
Next, we state the main result of this paper.

Theorem 1.2 Let A;(§),j = 1, ..., 4 be the roots of det[Al + M(A)] = 0, where
A3(8) = A,(®) = —ulE|%. Then for A(8),j = 1,2, we have the following assertions:

. 2y ) s .
i. Forl|¢ = Y we have 2;(8),j = 1,2 as follows:

)
- 1
h = 8 g G PR —
- 1
R N e e

.. 2y L .
ii. Forl¢ < Gy’ we have 2;(8),j = 1,2 as follows:
—(p+v)

M =X T g + o g2 — G WPRIE, i =L

(aZTYs)' we have the solution formula of p(§, t) and ¥(, t) as follow

A2 (5)er1®t_y, (£)er2®t er2(®t_gr1 (Ot

P50 = (OO0 50 — i (S ) 590®).

iii.  For g

A2 (O _ MO

9D = iyt <W> Bo(5 O + e HE G, ()

(7\2 ®er2®t2, et ®t e-a|§|2t) g7 90())
2202 8|2
This paper is organized as follows: the next section introduce a reduced system for (1) and shows
that Theorem 1.2 follows from the main result for the reduced system. In third Section, we calculate
representation formulas for solutions of the reduced system by using the Fourier transform with respect
to x = (X4, Xy, X3) and its inverse transform. Section 4 proves our main theorem for the reduced system

by results obtained in Section 3.

2. Reduced System
In this section, we consider the resolvent problem of eqaution system (1). Set u; = v; (j = 1,2,3), then
v = (vq,V,,v3)T satisfies

{?\p + vydivv = f . ) .in Q, @
AVv—pAv—vVdivv+yVp=g inQ.
First of all, we can write the equation system of (2) in the following
(A+M)U=F in 0 3)

where,

P ~

u=(p)=(v| M™M= [yov —uAyiiideiv]’ and  F = (é )
U3

We can also write the equation system of (2) in a matrix form

A(5)+ [yov —yAyil TVdiv] ()

Il
A~
(ST N}
~—

or we can write in the form
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=) o

In addition, for the time derivative, we can write the equation system of (1) in the following

A(p)+ 0 szzlak
v/) W —pudg —vor X3, 0;

{pt +ydivv= 0 in [0,0) x R3, )
vy — uAv —vWdivv +yVp =0 in[0, o) X R3.
Furthermore, we consider the equation (5). For the simplicity, we can write the equation (5) to be

U, +MU=0 in[0,0)xR3 Ulo= U, inR3, (6)

with domain D(M) = {U = (p,v) € W,"* | v 159= 0}, Uy = (po, vo). Then, by taking Fourier
transform to (6) with respect to the x variable and solving the ordinary differential equation with respect
to variable t, we have

U = EQOF = 771 (e "OF()),

where we define the Fourier transform fof f = f(x) with respect to x = (x;, x5, x3) and its inverse
transform as follows:

f=am@ham=jeﬂvmm
]R3

1 .
Tgl[g](x) = 2m)? fR3elx~f g(&)dé

Where f = (fl' SZ! E3) € R3'
Next, we consider the resolvent problem of equation system (5) then applying Fourier transform, we

have
AU+MEU=F

MA+M®)U=F
0=[M+M©] FE
U=7"{n+ME] FE) 7)

with det[Al + MI(£)] 2 0 and [AI+ FI(®)] " is inverse of [AI + MI()].
Furthermore, by using adjoint of the matrix, we can determine the inverse of matrix [AI + M(¥)],

[AL+F(®)] " = madj [AI + (). @)

3. Representation formulas for solution
In this section, following [4, section I11], we compute representation formulas for solutions of (2).
First of all, applying the Fourier transform to matrix M in equation (3) yield the following matrix

[ O ivé1 iy§z iy$s 1
M(f):liy{l nlé? +vé; vé1é2  v§1és I
lil’fz 23131 ulél? + vz vé2¢3 J
iy§s  v$3é1 vEsE,  ulEl +vE;

where |§|2 = & + & + & and i2 = —1. Then we also have
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I[ Yl ivéy iy$2 ivés 1|
7 2 2
[AI+NA4I(§)]=|1_YEI A+ plél” +véy 2"515; v§1és3 |
llYEz véé, A+ pl&? +vEs vé2és3 J
iy$s vé3$y V3¢, A+ plE? +vE;

Then, we calculate for the determinant of matrix [AI + M({)] using expansion by cofactors, that is
det[Al + M(§)] = @1C11 + @12C12 + @13C13 + @14C14
= 2|Ay| — ivé1|Arz| + ivEa|Ass| — ivEs|Ay ©))
where |A;;] is determinant of submatrix that remains after the i-th row and j-th column are deleted
from matrix [AI + M(&)] and the number (—1)**/A;; is denoted by C;; and called the cofactor.
In fact, for i = j = 1 the component of |A;;|, we have

R A+ pl¢|? + v v§1é2 BS1$3
|A1q| = 127131 A+ ulé|? + v v§2¢3
v§3$ vé3é, A+ plE? + v

= (A+ g {(A+ plg1?) +vig12)
Similar technique, we have (iy&;)(2 +u|§|2)2,—(iyfz)(/l + ulflz)2 and (iy&3) (4 + ul(flz)2 for
|A12]|, |A13], and |Ay4], respectively. Substituting |A44|, |A12|, |A13], and |A14] to equation (9) we
have,
det[Al + FMI(8)] = (A + al€]?)*{A2 + (u + v)|€124 + y2[€]2) (10)
Furthermore, we determine a matrix adjoint of [AI + M(f)] which is a tranpose matrix of cofactor
matrix. Since these matrix is a symmetric matrix, so that the determinant of the matrix hold the properties
|Ai;| = |Aq| for i,j = 1,2,3,4. Moreover, we enough only determine the |A;5|, |Az3|, |Az4], |A33],
|A3z4| and |A44]. In fact, for i = j we have

|Az| =+ ulflz)z{l(l + pl€?) + (& + v +vH)},
|Ass] = (2 + pl&1?) {A(4 + pl&1?) + (&2 + E) (v + D))},

|Baa| = (A +plE1?) {A(2+plg1?) + 1+ D@ +yH)}
Employing the same argument, we can find others minors

LXX23| = A+ plE2){(E&) (v +9?)} = m’?z
|§24| = —()» + !l|f|2){(f153)()ﬂ/ + Yz)} = |1§42|.
|Az4| = —(2 + pl&12){(£283) (v + ¥?)} = |A3z,).
Moreover, we have the cofactors in the following
Cia = (A + plE12) (A + pIE1?) + vIgI2),
S ’ 2
o Cij = Cj1 — (iv§_) (A + ul€1?)",
Cij = Cji(A+ pl&12){A(2 + pl€1?)65; + (8 — &i—1€j-1) AV + ¥2)}
with 8;; =0fori#j,8;;=1fori=jandij=2,3,4.

)

4. Proof of Theorem
Throughout this section, we use the notation introduced in the previous section.

4.1 Eigen values
In this subsection, we investigate the eigen values. The solution formula for the model problem has
already obtained by Kobayashi [5]. Here, we shall give a slightly detail how to get the solution formula
for velocity dan the density. First of all, we determine the determinant of matrix det[M + M(E)] =0.
By equation (7), we have

det[AI + M(§)] =0
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(A + plE2) (A% + (u+ V)IEPA +y2[E2) = 0 (12)

From equation (9), we have two possibilities sero values, that are (A + pl|€]?)2 =0 or
A% + (u+ v)|E|1*A + y2|E|?} = 0. For the first case, we have A; = A, = —p|€|2. Furthermore, we will
find the eigen values of {A% + (u + v)|€|2A + y2|€|?} = 0. By using the formula

—b + Vb2 — 4ac
12 = 2a
we have
7\1,2 _ —(u+V) €12 (€| (H+V)2|§|2—4Y2l (12)
In view of equation (10), for |¢] > uz—y) we have
(u v)
M=———[E2 + EN@+®%P—
(u +v)
Ay =——[¢12 - mwm+w%P—
Meanwhile, for |£] < % we have
( V)
M =1 —— 82+ IﬂJ%ﬂ—(u+VPEP

Moreover, for [§| = u—) can be been in Kobayashl [5]. Thus, we may omit the calculation.

4.2 Fourier transform of p and v

In this subsection we consider the formula of p and ¥, density and velocity, respectively. These density
and velocity are the result of the model problem (1). First of all, applying div to second equation of (5),
we have

% div v — pAdiv v — vAdivv + yAp = 0. (13)

Let D = div v, then equation (13) can be written as follows
Dy — wAD +yAp = 0,
with w = u + v. Recalling first equation of (3),

pr = —ydivy,
then we can write the equation to be
Pt = —]/D,
Pt — _p. (14)

Here in after, we differentiate the equation of (14) recpect to t variable and substitute (11) and (12) to
the result, we obtain

P =Y Ap + whp,. (15)
Applying Fourier transform to equation (15), we have
Pre + 0[8%p, +¥? 812 p =0 (16)

with the initial condition
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P(E,0) = po(8), pe(&,0) = —i&¥,y(8). a7

Moreover, we have the general solution for equation (16)
ﬁ(f' t) = Clell(f)t + Czelz(f)t, (18)

where

—wl|¢|* £ ¢y w?]|¢]? — 4y?
: :

A1z =
Substituting the initial condition (17) to (18), we obtain

o _R2@PD+ERE@  L©po@) + 5908
! 2, - 1) 2 20 -1

Therefore, we have the soltion formula for

~ _ Az(f)ell(at_ll(f)elz(f)t ~ o 312(5)t_ell(€)t ~
PG, _( A2 (E)—21(6) )p"(f) l( PRGN )EVOG)' (19)

Furthermore, we determine te solution formula for ¥(¢,t). Employing the same argument in [3,
Section 3], firstly applying Fourier transform to the second equation of (5), we obtain

¥ — WIEI20 — ivg Ti-, i& Tk + ivgD = 0, (20)
We can write equation (20) in the following sense,
U = (—ulSIP1—vEEM)v — iyép. (21)

Vector V(&,t) is a vector which parallel and orthogonal from &, so that we can write the vector (&, t)
as follows

96,0 = a6, 05+ b, 0, (22)
Where b(¢,t) orthogonal to &, and a (¢, t) is a scalar such that a(¢,t) = 9(¢,t) %

Substituting equation (22) to (21), then we have

V(& 1) = (—ulE1P1—vEEh) (a(f. t)i +b(, t)) — yép,

g
= —a, t)%wm FVEET) = b, OIS+ vEET) — igp,
= —a(6,0) (gl +vEE) - b O +vigH) - ir5p. @3)

Next, we differentiate equation (20) and then substitute the result to the left hand-side of (21), we
have

ac(§, O+ be(§, 0 = —a(6, 0 (uIg18 +vEED) — b, OGIg1? + vEET) — iy,

Therefore, we obtain

a:(§,8) = wl§?a@, ) —l§lp, b€ ) = —ul§]? b(, D). (24)
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By (23) and the initial condition b(¢,0) = (I - %) Vo (£), we see that

— oulelPt (180
b(§,6) = et (1-2)¥0(8). (25)
Also, by applying integrating factor to first equation (24), we obtain

a(§,6) = e~ (a(g,0) — i yI€| [y e®€V*s p(&, 5)ds)
with a(&,0) constant.
Furthermore, we will investigate the formula of the second term equation (26). Multiplying (19) by
e®lé1’s \we have

Az(g)eﬂl(f)smlflzs _,11(5)9/12(5)5+w|g|25 ~
PNGEING )f’o@

(M Os+olElEs _ g @stwlfI2s

“( INGEYAG) )Wf)'

— lz(€>e‘12“)5—11(é’)e—mas) p — -(e‘l1<f>5—e"12“)s) -

- ( A1 () Po(f) L INGENG) $0,(8), (26)
since Ay 2(£) + w|€[2 = =25,1(8) and 11 (D)A,(§) = Y12,
By integrating (26) from 0 < s < t, we have

e®lEs 5(¢,5) = <

t
f e“l81s (g, 5) ds
0

—e ROt _ o= ()t R
< LO-LO @)”o“) »
i\ (@ M - L @e P
<Y|§|2>< 1,0 — 1,5 )fvo(f),

without loss of generality, we take a(&,0) = 0 so that e®§1*t a(£,0) = 0. Thus, we have

— iyl (2D e O o 12(f)e_lz(f)t—/h(f)e_ll(at> £90(9)
a6, t) = Wl{'( PRGNG )p0(6)+( 12O —21() i (27)

Substituting (24) and (27) to (20), this complete the proof of the Theorem 1.2.
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