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 Fullerene-C70 enriched activated carbon was derived from coconut shells via 

customized milling process. 

 Prepared activated carbon showed high porosity and large specific surface area 

effective for MW X-band applications. 

 Produced activated carbon revealed improved MW reflection loss due to the presence 

of fullerene-C70. 

 Structure, morphology and MW reflection loss loss of activated carbon were 

analyzed.  

 Specific surface area, porosity and fullerene contents was shown to be tuned by 

increasing the milling times.  
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 Fullerene-C70 enriched activated carbon was derived from coconut shells via 

customized milling process. 

 Prepared activated carbon showed high porosity and large specific surface area 

effective for MW X-band applications. 

 Produced activated carbon revealed improved MW reflection loss due to the presence 

of fullerene-C70. 

 Structure, morphology and MW reflection loss loss of activated carbon were 

analyzed.  

 Specific surface area, porosity and fullerene contents was shown to be tuned by 

increasing the milling times.  
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ABSTRACT 

Novel multi-functional materials with very low microwave (MW) absorbance in the X-band 

became demanding for varied high-sensitive electronic applications. To meet this goal, a new type 

of activated carbon samples containing fullerene-C70 was derived from coconut shells using the 

combined physical activation and milling process for the first time. The effects of various milling 

times (50, 75, and 100 minutes) on the structure, morphology, and MW reflection traits of these 

samples were examined. The crystalline phase of the activated fullerene-C70 was found to alter 

from cubic to rhombohedral structure at the milling time of 100, displaying the specific surface 

area of 36525 m2/g and mean pore diameter of 3.42 nm. It was shown that by tuning the surface 

area and fullerene contents in the sample, the MW reflection loss of such activated carbon can be 

controlled. It is established that fullerene-C70 derived from the proposed activated carbon may be 

useful to produce low-cost and efficient MW absorption materials needed for diverse electronic 

devices with reduced electromagnetic interference.  

 

Keywords: Activated carbon, Milling, Fullerene-C70, Permeability, Permittivity, MW reflection 

loss 

 

1.      Introduction 

With the development of microwave (MW)-based electronic technology electromagnetic 

wave pollution became a serious environmental concern, greatly affecting human health and 

normal operations of electronic devices. To mitigate these problems, electromagnetic wave 

absorbing materials have intensively been researched in recent years. Coating the target with an 

efficient electromagnetic wave absorbing material is a method to reduce the intensity of the 

reflected or transmitted electromagnetic waves [1–7]. This method utilizes the absorption or 

dispersion of electromagnetic energy in the medium between the electromagnetic wave source and 

the protected target. It imparts the electromagnetic wave absorbing materials the ability to absorb 

unwanted electromagnetic waves and stability against temperature and oxidation. In addition, they 

are easy to manufacture, flexible and affordable to become one of the high-tech essential materials. 
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Extensive research revealed that the performance of the carbon nanomaterials and their 

composites like graphene, carbon spheres, carbon nanotubes are great potential in attenuating the 

electromagnetic waves [8–12]. Activated carbon is a carbon source that can be obtained by 

activating carbon physically or chemically. The surface morphology of the porous activated carbon 

is one of the unique characteristics that can be used in many applications such as dye absorbers, 

oil purification, supercapacitor electrodes, secondary battery electrodes, and others [8,13–16]. 

Some recent studies revealed that porous carbon nanostructures are advantageous to enhance their 

electromagnetic wave absorption characteristics [17,18]. Essentially, the magnetic components 

insertion inside the carbon materials [19,20] and hollow carbon spheres [21,22] are the effective 

strategies to appreciably improve the electromagnetic radiation absorption performance of the 

resultant products. However, to revalidate such claims more systematic investigations on new 

types of activated carbon nanomaterials are needed. 

Considering the immense applied potential of the activated carbon materials, some 

activated carbon was derived from the coconut shell using the milling technique to achieve their 

improved MW absorption properties in the X-band. The milling times were varied to modify the 

structures, morphologies and electromagnetic radiation absorption attributes of the proposed 

activated carbon enclosing fullerene-C70. A porous surface of the activated carbon with a very 

small volume was used to warp electromagnetic waves so that the internal surface reflections in 

the volume occurred, thus improving the heat dissipation quality of the electromagnetic energy. 

The as-prepared activated carbon samples were characterized to determine their milling time-

dependent surface morphology, structure, specific surface area, porosity, and MW absorbance (in 

terms of reflection loss values) in the X-band. 

 

2.  Experimental 

2.1.    Preparation of activated carbon from coconut shells  

Carbon was made via the carbonization process wherein coconut shells were burnt at 80C 

for an hour under oxygen-deficient conditions to eliminate the organic materials present in the 

shells. The loss of organic materials triggered the formation or opening of the carbon pores. Then, 

the burnt coconut shell-derived carbon was physically activated. Intense heat and water vapor 

enabled the severing of the carbon chains from the organic compounds. The heating as the physical 

activation process was intended to remove the impurities and impure hydrocarbons from the 
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activated carbon. Next, the resultant carbon was heated in the temperature range of 800-900C 

followed by the water vapor streaming. The water vapor reacted with carbon, thus releasing carbon 

monoxide, carbon dioxide, and hydrogen. Thereafter, the activated carbon was pulverized using a 

Mill Shaker at different milling times of 50, 75, and 100 minutes to obtain the particles’ sizes in 

the micrometer range. The extracted activated carbon powders were labeled as C-50, C-75, and C-

100 according to various milling times. A small amount of activated carbon was bound utilizing 

resin to form a rectangular shape steady with the WR90 sample holder for measuring the reflection 

loss (RL).    

 

2.2.    Characterizations 

The morphology and microstructure of the prepared samples (C-50, C-75, and C-100) were 

examined using the field emission scanning electron microscope (FESEM JIB-4610F). The crystal 

structures and phases of the samples were measured using a SmartLab (3 kW) X-ray diffractometer 

equipped with the CuK line of wavelength ()  0.1541874 nm. The Surface Area Analyzer 

(SAA Quantachrome Instrument Version 11.03) was used to determine the specific surface area 

and pore diameter of the samples. The scattering characteristics (S) of the specimens were 

measured using a vector network analyzer (VNA) from Keysight (PNA-L N5232A). The MW 

absorbance values of the samples were calculated to get the components of S (S11, S12, S21, and 

S22). The values of S11 and S21 specify the coefficients of reflection () and transmission (T), 

respectively. The recorded values of S22 and S12 were ignored due to their corresponding similarity 

with S11 and S21. The values of complex relative permeability (µr) and permittivity (r) were 

calculated using the Nicholson-Ross-Weir (NRW) method. In addition, the transmission/reflection 

line concept was used to calculate the reflection loss (RL) of the samples, yielding the MW 

absorption characteristics.  

 

3.  Results and Discussion  

3.1.    Morphology of the activated carbon  

Fig. 1 shows the SEM micrographs of the activated carbons that are pulverized at different 

milling times, which consisted of irregular microstructures. Interestingly, the formation of carbon 

particles with inter-granular pores provided a large specific surface area that is suitable for strong 

interaction with the externally applied electromagnetic radiation. Together, these pores strongly 
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favored the MW entrapment and its random dispersion in all directions facilitated by the finer 

particles in the pores, thereby improving the MW absorption traits of the proposed activated carbon 

specimen. In addition, several smaller particles were merged to form bigger particles through 

surface free energy minimization, indicating their thermodynamic stable state. Indeed, the growth 

and nucleation became more prominent in the C-100 specimen, leading to a significant difference 

in its reflectivity. 

 

 

Fig. 1. Morphology of the activated carbon which is milled at different milling time   

 

3.2.    Structures and phase of the activated carbon 

Fig. 2 displays the X-ray diffraction (XRD) patterns of all the milled samples. The XRD 

peaks of C-50 sample were matched to the cubic carbon (C – ICDD: 00-006-0675) with 

crystallographic parameters of a = b = c = 0.35667 nm and  =  =   =90°. Similar observations 

were made for C-75 and C-100 samples wherein the Bragg’s peaks were dominated by the cubic 

carbon lattice (C – ICDD: 00-006-0675). Sample grown at the milling times of 100 minutes (C-

100) consisted of fullerene-C70 carbon phase (C- ICDD 00-048-1449), showing intense XRD peak 

at 2 = 23.90 with crystallographic parameters of a = b = 0.98095 nm, c = 2.70220 nm, and == 

90°, =120°. It is known that fullerene-C70 enclosing seventy carbon atoms has a spherical caged 

structure made of 25 hexagons and 12 pentagons connected by single and double covalent bonds. 

Due to this unique structure of fullerenes, strong internal reflections occur in the spherical cage, 

thus enabling it a gifted MW absorber. Earlier studies indicated that fullerene being one of the 

efficient reinforcing materials can be greatly effective in absorbing MW radiation[23]. In addition,  

it was claimed that the graphite – fullerene composites can exhibit excellent MW absorption 

performance compared to pure graphite [24] which needs further validation. 
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Fig. 2. XRD patterns of the as-prepared C-50, C-75, and C-100 samples with indicated carbon 

phases of  C and  C70 

 

3.3.   Specific surface area and pore diameter of the activated carbon 

Fig. 3 illustrates a multi-point isothermal BET plot of the activated carbon samples. 

Brunauer, Emmett, and Teller (BET) methods were applied to evaluate the specific surface area 

(m2/g) of the samples (Table 1). These specific surface areas were used to determine the diffusion 

process through the porous material and selectivity for the catalyst reaction explained using the 

adsorption theory. The BET equation was used on the adsorption isotherms with P/P0 values 

ranging from 0.05-0.3. The isothermal BET equation can be written as:  

 
1

𝑊(
𝑃0
𝑃

)−1
=

1

𝑉𝑚𝐶
+ [

𝐶−1

𝑉𝑚𝐶
]

𝑃

𝑃0
 (1)  

where W denotes the volume of absorbed gas at the relative pressure P/P0, 𝑉𝑚 is the volume of 

nitrogen gas that formed a monolayer at a solid surface, P is the pressure of adsorption equilibrium, 

𝑃0 is the pressure of adsorption saturation and C is the constant of energy.  
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Fig. 3. Multi-point isothermal BET plot of all activated carbon specimens 

 

The values of Vm for all the samples were estimated from the slope (s) and intercepts (i) on 

the BET chart, achieving the total and specific surface areas of the produced activated carbon given 

by:  

 𝑠 =  
𝐶−1

𝑉𝑚𝐶
  (2) 

 𝑖 =  
1

𝑉𝑚𝐶
  (3) 

Combining Eq. 1 and 2, one obtains: 

 𝑉𝑚 =
1

𝑠+𝑖
  (4) 
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The BET method was used to calculate the surface area of the sample which can be defined 

as the number of pores in each unit area of the sample. The expression for total surface area (St) 

can be written as: 

 𝑆𝑡 =
𝑉𝑚𝑁𝐴𝑐𝑠

𝑀
  (5) 

where N is the Avogadro's number (6.023×1023 mol-1), Acs is the cross-section area (10.2 Å) and 

M is the molecular weight (28.013 g/mol) of nitrogen.  

The specific surface area (𝑆) calculated from the ratio of total surface area to the mass (m) 

of the solid sample or adsorbent can be written as [25]:  

 𝑆 =
𝑆𝑡

𝑚
 (6) 

Table 1. The total surface area and specific surface area of the activated carbons 

Sample Code Total surface area 

(m2) 

Specific surface area 

(m2/g) 

C-50 1130 50266 

C-75 345 13000 

C-100 947 36525 

 

Fig. 4 depicts the Barret Joyner Hallenda (BJH) pore size distribution - nitrogen adsorption 

at 77.35 K for C-50, C-75, and C-100 samples. Irrespective of the milling times, the pore radius 

distribution of the samples was in the range of 1 and 250 nm wherein the maximum peaks occurred 

at 1.53 (for C-50), 1.94 (for C-75), and 1.71 nm (for C-100). The average pore diameters of C-50, 

C-75, and C-100 samples were 3.06, 3.88, and 3.42 nm, respectively. According to the 

International Union of Pure Applied Chemistry (IUPAC) standard, the resulting pore diameters 

were classified as mesopores (pore diameter range of 2-50 nm).  In addition, the pore volumes of 

C-50, C-75, and C-100 samples were 1.0210-6, 610-8, and 7.410-7 m3/g, respectively.  
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Fig. 4. BJH pore size distribution – nitrogen adsorption at 77.35 K for all activated carbon 

samples 

 

Figs. 3 and 4 clearly revealed the activated carbon samples have a large specific surface area 

and excellent porosity. This porous morphology plays a significant role in the MW absorption, 

where a decrease in the pore diameter can appreciably increase the material's density or cavity 

concentration, thus leading to an alteration in the specific surface area responsible for the MW 

absorption. Consequently, an improvement in the specific surface area and porosity of the samples 

enables more interaction between carbon atoms and MW on the surfaces and interfaces.   

 

2.3.  Complex relative permeability and permittivity of the activated carbon 

Fig. 5 displays the complex relative permeability and permittivity of C-50, C-75, and C-100 

samples measured in the frequency range of 8.2-12.4 GHz. It is worth noting that the real 

permeability values of C-50, C-75, and C-100 samples were comparable due to their almost similar 

crystal phases. Conversely, the C-100 sample showed higher magnetic energy storage capacity 

(higher value of real permeability) than the C-50 and C-75 samples. Irrespective of the milling 

times, the real permeability values for all samples were gradually decreased to zero with the 

increase of MW frequency (Fig. 5(a)). The imaginary permeability of the C-100 sample (Fig. 5(b)) 

was related to magnetic loss which dropped significantly to almost zero in the range of 8.2 to 9 
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GHz and then fluctuated near zero. Meanwhile, the real permittivity of C-50 and C-75 samples 

(Fig. 5(c)) exhibited gradual declination trends with the increase of frequency. However, the real 

permittivity of the C-100 sample remained steady with the increase of frequency, indicating an 

excellent electrical field energy storage performance of C-100. The real permittivity (or dielectric 

constant) also determines how much the incoming energy can be reflected and absorbed by the 

proposed activated carbon. In the frequency range of 8.2 and 9.3 GHz, the imaginary permittivity 

(or dielectric loss factor) of C-100 was considerably increased (Fig. 5(d)) that assessed the 

dissipation of electrical field energy in the form of heat inside the activated carbon. 

 

Fig. 5. MV frequency-dependent complex relative permeability and permittivity of 4 mm thick 

activated carbon.   

 

2.4.  Microwave reflection loss of activated carbon  

Fig. 6 illustrates the MW absorption properties of all activated carbon specimens in terms of 

their frequency-dependent reflection loss (RL). The RL was found to be controlled by adjusting the 

milling time.  The patterns of RL for C-50 and C-75 were similar with an average value of 

approximately -10 dB. Conversely, the C-100 sample exhibited a prominent absorption band 

around 9 GHz with a bandwidth of 3 GHz. Interestingly, mesoporous C-100 sample containing 
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fullerene-C70 revealed significant MW absorbance in the X-band, indicating its potential as MW 

X-band applications in electronic devices. The produced fullerene-C70 dominated activated carbon 

also showed outstanding permeability and permittivity, suggesting its appropriateness for the MW 

X-band applications. Furthermore, the occurrence of a weak oscillation in the high-frequency 

range was attributed to the internal surface reflection within the mesopores. It was asserted that 

the milling process with optimal milling time could substantially enhance the microwave 

absorption capacity of the activated carbon. In short, the suggested fullerene-C70 enclosed 

activated carbon can lead to the development of low-cost, high-efficiency MW absorption 

materials desired for sundry applications. 

 

Fig. 6. MW reflection loss as a function of frequency for all activated carbon specimens 

 

4.      Conclusions 

For the first time novel activated carbon specimens (C-50, C-75, and C-100) were prepared 

from the coconut shells using a modified milling process plus heating process. The milling times 

were varied (50, 75, and 100 minutes) to get mesoporous activated carbon with improved MW 

absorption properties. The surface morphology, phase, structure, surface area, porosity, and MW 

reflection loss of these samples were improved with the increase of milling times. Activated carbon 

obtained as milling time of 100 minutes was the optimum one in terms of structures, morphology, 
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and MW absorbance. The C-100 sample showed a phase transformation from cubic to the 

rhombohedral crystal structure (or fullerene-C70). The surface area and mean pore diameter of the 

C-100 specimen were 36525 m2/g and 3.42 nm, respectively. The activated carbon-containing 

fullerene-C70 revealed excellent permeability and permittivity characteristics suitable for MW X-

band applications. It was affirmed that by regulating the surface area and fullerene-C70 contents in 

the activated carbon the MW reflection loss can be tuned. The proposed fullerene-C70 based 

activated carbon can lead to the development of cheap and efficient MW absorption materials 

required for varied purposes.  
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ABSTRACT 

Novel multi-functional materials with very high microwave (MW) absorbance in the X-band 

became demanding for varied high-sensitive electronic applications. To meet this goal, a new 

type of activated carbon sample containing fullerene-C70 was derived from coconut shells using 

the combined physical activation and milling process for the first time. The effects of various 

milling times (50, 75, and 100 minutes) on the structure, morphology, and MW reflection traits 

of these samples were examined. The crystalline phase of the activated fullerene-C70 was found 

to alter from cubic to rhombohedral structure at the milling time of 100, displaying a specific 

surface area of 946.499 m2/g and mean pore diameter of 3.42 nm. It was shown that by tuning 

the surface area and fullerene contents in the sample, the MW reflection loss of such activated 

carbon can be controlled. It is established that fullerene-C70 derived from the proposed activated 

carbon may be useful to produce low-cost and efficient MW absorption materials needed for 

diverse electronic devices with reduced electromagnetic interference.  

 

Keywords: Activated carbon, Milling, Fullerene-C70, Permeability, Permittivity, MW reflection 

loss 

 

1.      Introduction 

With the development of microwave (MW)-based electronic technology electromagnetic 

wave pollution became a serious environmental concern, greatly affecting human health and 

normal operations of electronic devices. To mitigate these problems, electromagnetic wave 

absorbing materials have intensively been researched in recent years. Coating the target with an 

efficient electromagnetic wave absorbing material is a method to reduce the intensity of the 

reflected or transmitted electromagnetic waves [1–7]. This method utilizes the absorption or 

dispersion of electromagnetic energy in the medium between the electromagnetic wave source 

and the protected target. It imparts the electromagnetic wave absorbing materials the ability to 

absorb unwanted electromagnetic waves and stability against temperature and oxidation. In 

addition, they are easy to manufacture, flexible and affordable to become one of the high-tech 

essential materials. 
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Extensive research revealed that the performance of the carbon nanomaterials and their 

composites like graphene, carbon spheres, carbon nanotubes are great potential in attenuating the 

electromagnetic waves [8–12]. Activated carbon is a carbon source that can be obtained by 

activating carbon physically or chemically. The surface morphology of the porous activated 

carbon is one of the unique characteristics that can be used in many applications such as dye 

absorbers, oil purification, supercapacitor electrodes, secondary battery electrodes, and others 

[8,13–16]. Some recent studies revealed that porous carbon nanostructures are advantageous to 

enhance their electromagnetic wave absorption characteristics [17,18]. Essentially, the magnetic 

components insertion inside the carbon materials [19,20] and hollow carbon spheres [21,22] are 

the effective strategies to appreciably improve the electromagnetic radiation absorption 

performance of the resultant products. However, to revalidate such claims more systematic 

investigations on new types of activated carbon nanomaterials are needed. 

Considering the immense applied potential of the activated carbon materials, some 

activated carbon was derived from the coconut shell using the milling technique to achieve their 

improved MW absorption properties in the X-band. The milling times were varied to modify the 

structures, morphologies, and electromagnetic radiation absorption attributes of the proposed 

activated carbon enclosing fullerene-C70. A porous surface of the activated carbon with a very 

small volume was used to warp electromagnetic waves so that the internal surface reflections in 

the volume occurred, thus improving the heat dissipation quality of the electromagnetic energy. 

The as-prepared activated carbon samples were characterized to determine their milling time-

dependent surface morphology, structure, specific surface area, porosity, and MW absorbance (in 

terms of reflection loss values) in the X-band. 

 

2.  Experimental 

2.1.    Preparation of activated carbon from coconut shells  

Carbon was made via the carbonization process wherein coconut shells were burnt at 80C 

for an hour under oxygen-deficient conditions to eliminate the organic materials present in the 

shells. The loss of organic materials triggered the formation or opening of the carbon pores. 

Then, the burnt coconut shell-derived carbon was physically activated. Intense heat and water 

vapor enabled the severing of the carbon chains from the organic compounds. The heating as the 

physical activation process was intended to remove the impurities and impure hydrocarbons from 
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the activated carbon. Next, the resultant carbon was heated in the temperature range of 800-

900C followed by the water vapor streaming. The water vapor reacted with carbon, thus 

releasing carbon monoxide, carbon dioxide, and hydrogen. Thereafter, the activated carbon was 

pulverized using a Mill Shaker at different milling times of 50, 75, and 100 minutes to obtain the 

particles’ sizes in the micrometer range. The extracted activated carbon powders were labeled as 

C-50, C-75, and C-100 according to various milling times. A small amount of activated carbon 

was bound utilizing resin to form a rectangular shape steady with the WR90 sample holder for 

measuring the reflection loss (RL).    

 

2.2.    Characterizations 

The morphology and microstructure of the prepared samples (C-50, C-75, and C-100) were 

examined using the field emission scanning electron microscope (FESEM JIB-4610F). The 

crystal structures and phases of the samples were measured using a SmartLab (3 kW) X-ray 

diffractometer equipped with the CuK line of wavelength ()  0.1541874 nm. The Surface 

Area Analyzer (SAA Quantachrome Instrument Version 11.03) was used to determine the 

specific surface area and pore diameter of the samples. The scattering characteristics (S) of the 

specimens were measured using a vector network analyzer (VNA) from Keysight (PNA-L 

N5232A). The MW absorbance values of the samples were calculated to get the components of S 

(S11, S12, S21, and S22). The values of S11 and S21 specify the coefficients of reflection () and 

transmission (T), respectively. The recorded values of S22 and S12 were ignored due to their 

corresponding similarity with S11 and S21. Following the method of Nicholson-Ross-Weir 

(NRW), the relative complex permeability (µr = µjµ) and permittivity (r = j) values of 4 

mm thick samples were calculated using:  

 

 μ𝑟 =
1+Γ

Λ(1−Γ)√
1
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where 0 is the wavelength in vacuum, c is the cut-off wavelength, c is the speed of light, and d 

is the thickness of the sample. Meanwhile, the MW absorption properties of the samples were 

obtained from the calculated reflection loss (RL) values based on the transmission/reflection line 

theory [7,23–26] given by: 

  𝑅𝐿 = 20 𝑙𝑜𝑔 |
𝑍𝑖𝑛−1

𝑍𝑖𝑛+1
|     (4) 

 

  𝑍𝑖𝑛 = √
𝜇𝑟

𝜀𝑟
𝑡𝑎𝑛 [−𝑗

2𝜋𝑓𝑑

𝑐 √𝜇𝑟𝜀𝑟]     (5) 

 

where Zin is the input impedance of the material and f is the MW frequency.  

 

3.  Results and Discussion  

3.1.    Morphology of the activated carbon  

Fig. 1 shows the SEM micrographs of the activated carbons that are pulverized at different 

milling times, which consisted of irregular microstructures. Interestingly, the formation of carbon 

particles with inter-granular pores provided a large specific surface area that is suitable for strong 

interaction with the externally applied electromagnetic radiation. Together, these pores strongly 

favored the MW entrapment and its random dispersion in all directions facilitated by the finer 

particles in the pores, thereby improving the MW absorption traits of the proposed activated 

carbon specimen. In addition, several smaller particles were merged to form bigger particles 

through surface free energy minimization, indicating their thermodynamic stable state. Indeed, 

the growth and nucleation became more prominent in the C-100 specimen, leading to a 

significant difference in its reflectivity. 

 

Fig. 1. Morphology of the activated carbon which is milled at different milling time   
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3.2.    Structures and phase of the activated carbon 

Fig. 2 displays the X-ray diffraction (XRD) patterns of all the milled samples. The XRD 

peaks of C-50 sample were matched to the cubic carbon (C – ICDD: 00-006-0675) with 

crystallographic parameters of a = b = c = 0.35667 nm and  =  =   =90°. Similar observations 

were made for C-75 and C-100 samples wherein the Bragg’s peaks were dominated by the cubic 

carbon lattice (C – ICDD: 00-006-0675). Sample grown at the milling times of 100 minutes (C-

100) consisted of fullerene-C70 carbon phase (C- ICDD 00-048-1449), showing intense XRD 

peak at 2 = 23.90 with crystallographic parameters of a = b = 0.98095 nm, c = 2.70220 nm, 

and == 90°, =120°. It is known that fullerene-C70 enclosing seventy carbon atoms has a 

spherical caged structure made of 25 hexagons and 12 pentagons connected by single and double 

covalent bonds. Due to this unique structure of fullerenes, strong internal reflections occur in the 

spherical cage, thus enabling it a gifted MW absorber. Earlier studies indicated that fullerene 

being one of the efficient reinforcing materials can be greatly effective in absorbing MW 

radiation[27]. In addition,  it was claimed that the graphite – fullerene composites can exhibit 

excellent MW absorption performance compared to pure graphite [28] which needs further 

validation. 

 

Fig. 2. XRD patterns of the as-prepared C-50, C-75, and C-100 samples with indicated carbon 

phases of  C and  C70 
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3.3.   Specific surface area and pore diameter of the activated carbon 

Fig. 3 illustrates a multi-point isothermal BET plot of the activated carbon samples. 

Brunauer, Emmett, and Teller (BET) methods were applied to evaluate the specific surface area 

(m2/g) of the samples (Table 1). These specific surface areas were used to determine the 

diffusion process through the porous material and selectivity for the catalyst reaction explained 

using the adsorption theory. The BET equation was used on the adsorption isotherms with P/P0 

values ranging from 0.05 to 0.3. The isothermal BET equation can be written as:  

 
1

𝑊(
𝑃0
𝑃

)−1
=

1

𝑉𝑚𝐶
+ [

𝐶−1

𝑉𝑚𝐶
]

𝑃

𝑃0
 (6)  

where W denotes the volume of absorbed gas at the relative pressure P/P0, 𝑉𝑚 is the volume of 

nitrogen gas that formed a monolayer at a solid surface, P is the pressure of adsorption 

equilibrium, 𝑃0 is the pressure of adsorption saturation and C is the constant of energy.  

 

Fig. 3. Multi-point isothermal BET plot of all activated carbon specimens 
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The values of Vm for all the samples were estimated from the slope (s) and intercepts (i) on 

the BET chart, achieving the specific surface areas of the produced activated carbon given by:  

 𝑠 =  
𝐶−1

𝑉𝑚𝐶
  (7) 

 𝑖 =  
1

𝑉𝑚𝐶
  (8) 

Combining Eq. 7 and 8, one obtains: 

 𝑉𝑚 =
1

𝑠+𝑖
  (9) 

The BET method was used to calculate the surface area of the sample (defined as the 

number of pores in each unit area of the sample). The specific surface area (SBET) was estimated 

using: 

 𝑆𝐵𝐸𝑇 =
𝑉𝑚𝑁𝐴𝑐𝑠

𝑀
  (10) 

where N is the Avogadro's number (6.023×1023 mol-1), Acs is the area of cross-section (16.2 Å) 

and M is the molecular weight (28.013 g/mol) of nitrogen.  

Table 1. The specific surface area of the activated carbons 

Sample Code Slope 

(s) 

Intercepts 

(i) 

The volume of 

nitrogen gas  

(Vm) 

 

Specific surface area 

SBET (m2/g) 

C-50 2.980 0.098 0.325 1131.617 

C-75 8.984 1.109 0.099 345.102 

C-100 3.605 0.075 0.272 946.499 

 

Fig. 4 depicts the Barret Joyner Hallenda (BJH) pore size distribution - nitrogen adsorption 

at 77.35 K for C-50, C-75, and C-100 samples. Irrespective of the milling times, the pore radius 

distribution of the samples was in the range of 1 and 250 nm wherein the maximum peaks 

occurred at 1.53 (for C-50), 1.94 (for C-75), and 1.71 nm (for C-100). The average pore 

diameters of C-50, C-75, and C-100 samples were 3.06, 3.88, and 3.42 nm, respectively. 

According to the International Union of Pure Applied Chemistry (IUPAC) standard, the resulting 

pore diameters were classified as mesopores (pore diameter range of 2-50 nm).  In addition, the 

pore volumes of C-50, C-75, and C-100 samples were 1.0210-6, 610-8, and 7.410-7 m3/g, 

respectively.  
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Fig. 4. BJH pore size distribution – nitrogen adsorption at 77.35 K for all activated carbon 

samples 

 

Figs. 3 and 4 clearly revealed the activated carbon samples have a large specific surface 

area and excellent porosity. This porous morphology plays a significant role in the MW 

absorption, where a decrease in the pore diameter can appreciably increase the material's density 

or cavity concentration, thus leading to an alteration in the specific surface area responsible for 

the MW absorption. Consequently, an improvement in the specific surface area and porosity of 

the samples enables more interaction between carbon atoms and MW on the surfaces and 

interfaces.   

 

2.3.  Relative complex permeability and permittivity of the activated carbon 

Fig. 5 displays the relative complex permeability and permittivity of C-50, C-75, and C-

100 samples measured in the frequency range of 8.2-12.4 GHz. It is worth noting that the real 

permeability values of C-50, C-75, and C-100 samples were comparable due to their almost 

similar crystal phases. Conversely, the C-100 sample showed higher magnetic energy storage 

capacity (higher value of real permeability) than the C-50 and C-75 samples. Irrespective of the 

milling times, the real permeability values for all samples were gradually decreased to zero with 

the increase of MW frequency (Fig. 5(a)). The imaginary permeability of the C-100 sample (Fig. 
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5(b)) was related to magnetic loss which dropped significantly to almost zero in the range of 8.2 

to 9 GHz and then fluctuated near zero. Meanwhile, the real permittivity of C-50 and C-75 

samples (Fig. 5(c)) exhibited gradual declination trends with the increase in frequency. However, 

the real permittivity of the C-100 sample remained steady with the increase in frequency, 

indicating an excellent electrical field energy storage performance of C-100. The real 

permittivity (or dielectric constant) also determines how much the incoming energy can be 

reflected and absorbed by the proposed activated carbon. In the frequency range of 8.2 to 9.3 

GHz, the imaginary permittivity (or dielectric loss factor) of C-100 sample was negative (Fig. 

5(d)), indicating an electrical field energy storage in the material rather than dissipation. In 

addition, the electrical dipole polarization-enabled dielectric loss factor of the activated carbon 

specimen up to 9.3 GHz was mainly governed by the dominant heating mechanism or electrical 

field energy dissipation in the form of heat inside the material. It is important to note that the 

dielectric polarization not only depended on the strength of the applied electric field but also the 

geometry or crystal structure of the proposed activated carbon specimen. 

 

Fig. 5. MV frequency-dependent relative complex permeability and permittivity of 4 mm thick 

activated carbon.   
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2.4.  Microwave reflection loss of activated carbon  

Fig. 6 illustrates the MW absorption properties of all activated carbon specimens in terms 

of their frequency-dependent reflection loss (RL). The RL was found to be controlled by adjusting 

the milling time.  The patterns of RL for C-50 and C-75 were similar with an average value of 

approximately -10 dB. Conversely, the C-100 sample exhibited a prominent absorption band 

around 9 GHz with a bandwidth of 3 GHz. Interestingly, a mesoporous C-100 sample containing 

fullerene-C70 revealed significant MW absorbance in the X-band, indicating its potential for MW 

X-band applications in electronic devices. The produced fullerene-C70 dominated activated 

carbon also showed outstanding permeability and permittivity, suggesting its appropriateness for 

the MW X-band applications. Furthermore, the occurrence of a weak oscillation in the high-

frequency range was attributed to the internal surface reflection within the mesopores. It was 

asserted that the milling process with optimal milling time could substantially enhance the 

microwave absorption capacity of the activated carbon. In short, the suggested fullerene-C70 

enclosed activated carbon can lead to the development of low-cost, high-efficiency MW 

absorption materials desired for sundry applications. 

 

Fig. 6. MW reflection loss as a function of frequency for all activated carbon specimens of 4 mm 

thick. 
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4.      Conclusions 

For the first time novel activated carbon specimens (C-50, C-75, and C-100) were prepared 

from the coconut shells using a modified milling process plus a heating process. The milling 

times were varied (50, 75, and 100 minutes) to get mesoporous activated carbon with improved 

MW absorption properties. The surface morphology, phase, structure, surface area, porosity, and 

MW reflection loss of these samples were improved with the increase in milling times. Activated 

carbon obtained at a milling time of 100 minutes was the optimum one in terms of structures, 

morphology, and MW absorbance. The C-100 sample showed a phase transformation from cubic 

to the rhombohedral crystal structure (or fullerene-C70). The specific surface area and mean pore 

diameter of the C-100 specimen were 946.499 m2/g and 3.42 nm, respectively. The activated 

carbon-containing fullerene-C70 revealed excellent permeability and permittivity characteristics 

suitable for MW X-band applications. It was affirmed that by regulating the surface area and 

fullerene-C70 contents in the activated carbon the MW reflection loss can be tuned. The proposed 

fullerene-C70 based activated carbon can lead to the development of cheap and efficient MW 

absorption materials required for varied purposes.  
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 Fullerene-C70 enriched activated carbon was derived from coconut shells via a 

customized milling process. 

 Prepared activated carbon showed high porosity and large specific surface area 

effective for MW X-band applications. 

 Produced activated carbon revealed improved MW reflection loss due to the presence 

of fullerene-C70. 

 Structure, morphology, and MW reflection loss of the activated carbon were 

analyzed.  

 Specific surface area, porosity, and fullerene contents were shown to be tuned by 

increasing the milling times.  
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