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Abstract This paper considers the R-boundedness of
the solution operator families for Navier-Lamé equation
by taking into account the surface tension in a bounded
domain of N- dimensional Euclidean space (N ≥ 2). We
investigate the R- boundedness in half-space domain case.
These R-boundedness implies not only the generation of
analytic semigroup but also the maximal Lp-Lq regularity
for the initial boundary value problem by using Weis’s
operator valued Fourier multiplier theorem for time
dependent problem.

Keywords R-sectoriality, Navier-Lamé equation,
surface tension, half-space.

1 Introduction

Let u and Ω be a velocity field and a bounded domain
in N -dimensional space RN (N ≥ 2), respectively. The
formula of Navier-Lamé equation in bounded domain with
surface tension is written in the following:

λu− α∆u− β∇div u = f in RN+ ,
(αD(u)− (β − α)div uI)n− σ(∆′Γη)n = g on RN0 ,

λη + a′ · ∇′η − u · n = d on RN0 .
(1)

where a′ = (a1, . . . , aN−1) ∈ RN−1 and a′ · ∇′η =∑N−1
j=1 aj∂jη. Assume that

|a′| ≤ a0 (2)

for some constant a0 > 0. Let RN+ and RN0 be a half-space
and its boundary, respectively. Namely,

RN+ = {x = (x1, . . . , xN ) ∈ RN | xN > 0},
RN0 = {x = (x1, . . . , xN ) ∈ RN | xN = 0},

and n = (0, . . . , 0,−1) be the unit outer normal to RN0 .
D(u), u = (u1, . . . , uN ), the doubled deformation ten-
sor whose (i, j) components are Dij(u) = ∂iuj + ∂jui
(∂i = ∂/∂xi), I the N ×N identity matrix, α, β are posi-
tive constants (α and β are the first and second viscosity
coefficients, respectively) such that β − α > 0.

Meanwhile, ∆Γt is the Laplace-Beltrami operator on
∆Γt . Let RN+ and RN0 be a half-space and its boundary,
respectively. Namely,

RN+ = {x = (x1, . . . , xN ) ∈ RN | xN > 0},
RN0 = {x = (x1, . . . , xN ) ∈ RN | xN = 0}

Let n = (0, . . . , 0,−1) be the unit outer normal to RN0 .
We consider the following problem:

λu− α∆u− β∇div u = f in RN+ ,
(αD(u)− (β − α)div u)n− σ(∆Γη)n = g on RN0 ,

λη − n · u = d on RN0 ,
(3)

where α is uniformly continuous function with respect to
x ∈ RN+ , which satisfy the assumptions:

ρ∗/2 ≤ α(x) ≤ 2ρ∗. (4)

The aim of this paper is to derive a systematic way prov-
ing the existence and the R-boundedness solution oper-
ator of the resolvent problem for the equation system of
Navier-Lamé (3) with surface tension in half-space. By us-
ing the Weis operator valued Fourier multiplier theorem
[19], the existence of the R-boundedness solution opera-
tor of the problem (1) implies not only the generation of
analytic semigroup but also the maximal Lp-Lq regular-
ity. The Navier-Lamé (NL) equation is the fundamental
equation of motion in classical linear elastodynamics [7].
Sakhr [13] investigated the Navier-Lamé equation by using
Buchwald representation in cylindrical coordinates. The
R-sectoriality was introduced by Clément and Prüß[5].
In 2009, Cao [2] investigated the Navier-Stokes and the
wave-type extension-Lamé equations by using Fourier ex-
pansion. And also investigated the flag partial differential
equations by using Xu’s method.

In this paper, we investigate the derivation of the R-
sectoriality for the model problem in the whole space and
half-space by applying Fourier transform to the model
problems. In the other side, Denk, Hieber and Prüß[4]
proved the R-sectoriality for BVP of the elliptic equation
which is hold the Lopatinski-Shapiro condition.

Recently, there are many researcher who concern to
study R-boundedness case. In 2014, Murata [8] inves-
tigated the R-boundedness of the Stokes operator with
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slip boundary condition. Others researcher who investi-
gated the R-sectoriality is Maryani [10, 11]. She studied
the maximal Lp-Lq regularity class in a bounded domain
and some unbounded domains which satisfy some unifor-
mity and global well-posedness in the bounded domain
case, respectively using the result of R-bundedness of the
solution operator of the model problem of the Oldroyd-b
model. The main purpose of this paper is to investigate
the R-boundedness of the solution operator families for
the Navier-Lamé equation with surface tension in half-
space problem. A further result in favour of focusing on
the main problem is finding the characteristic of η and
creating the Laplace- Beltrami operator on Γ. This kind
of investigation is become considerable benefit in studying
of fluid mechanics.

Several mathematical analysis approach of fluid motion
with surface tension have been undertaken in recent year.
In 2013, Shibata [15] investigated the generalized resol-
vent estimates of the Stokes equations with first order
boundary condition in a general domain. Later year, Shi-
bata and Shimizu [18] studied a local in time solvability
of free surface problems for the Navier-Stokes equations
with surface tension. According to those phenomena, it
is such an interesting subject to analyze fluid flow of the
non-Newtonian compressible type especially model of the
Navier-Lamé equations.

The main aim of this study is to prove the existence of
theR-bounded solution operator families for Navier-Lamé
equations with surface tension in a bounded domain for
the resolvent problem (1) in half-space for σ > 0 and a = 0
case. This topic become important reference for someone
who concern with not only local well-posedness but also
global well-posedness of Oldroyd-B model fluid flow. And
then, applying the definition of R-sectoriality and Weis’
operator valued Fourier multiplier theorem in [19], auto-
matically we obtain the generation of analytic semigroup
and the maximal Lp-Lq regularity for the equation (3). In
2017, Maryani and Saito [12] investigated R-boundedness
of solution operator of two phase problem for Stokes equa-
tions.

To state our main results, at this stage we introduce
our notation used throughout the paper.

Notation N denotes the sets of natural numbers and we
set N0 = N ∪ {0}. C and R denote the sets of complex
numbers, and real numbers, respectively. For the sets of
all N × N symmetric and anti-symmetric matrices, we
denote Sym(RN ) and ASym(RN ), respectively. Let q′ =
q/(q − 1), where q′ is the dual exponent of q with 1 <
q < ∞, and satisfies 1/q + 1/q′ = 1. For any multi-index
κ = (κ1, . . . , κN ) ∈ NN0 , we write |κ| = κ1 + · · · + κN
and ∂kx = ∂κ1

1 · · · ∂
κN
N with x = (x1, . . . , xN ). For scalar

function f and N -vector of functions g, we set

∇f = (∂1f, . . . , ∂Nf),

∇g = (∂igj | i, j = 1, . . . , N),

∇2f = {∂i∂jf | i, j = 1, . . . , N},
∇2g = {∂i∂jgk | i, j, k = 1, . . . , N}.

L(X,Y ) denotes the set of all bounded linear opera-
tors from X into Y , for Banach spaces X and Y and
Hol (U,L(X,Y)) the set of all L(X,Y ) valued holomorphic
functions defined on a domain U in C. Lq(D), Wm

q (D),

Bsp,q(D) and Hs
q (D) denote the usual Lebesgue space,

Sobolev space, Besov space and Bessel potential space,
respectively, for any domain D in RN and 1 ≤ p, q ≤ ∞.
Whilst, ‖ · ‖Lq(D), ‖ · ‖Wm

q (D), ‖ · ‖Bsq,p(D) and ‖ · ‖Hsq (D)

denote their respective norms. For θ ∈ (0, 1), Hθ
p (R, X)

denotes the standard X-valued Bessel potential space de-
fined by

Hθ
p (R, X) = {f ∈ Lp(R, X) | ‖f‖Hθp(R,X) <∞},

‖f‖Hθp(R,X) <∞} =

(∫
R
‖F−1[(1 + τ2)θ/2F [f ](τ)](t)‖pX dt

)1/p

.

We set W 0
q (D) = Lq(D) and W s

q (D) = Bsq,q(D).
C∞(D) denotes the set all C∞ functions defined on
D. Lp((a, b), X) and Wm

p ((a, b), X) denote the usual
Lebesgue space and Sobolev space of X-valued function
defined on an interval (a, b), while ‖ · ‖Lp((a,b),X) and
‖ · ‖Wm

p ((a,b),X) denote their respective norms.Moreover,
we set

‖eηtf‖Lp((a,b),X) =

(∫ b

a

(eηt‖f(t)‖X)pdt

)1/p

for 1 ≤ p <∞.

The d-product space of X is defined by Xd = {f =
(f, . . . , fd) | fi ∈ X (i = 1, . . . , d)}, while its norm is de-
noted by ‖ ·‖X instead of ‖ ·‖Xd for the sake of simplicity.
We set

Wm,`
q (D) = {(f,g,H) | f ∈Wm

q (D),

g ∈W `
q (D)N , H ∈Wm

q (D)N×N},
‖(f,g,H)‖Wm,`

q (Ω) = ‖(f,H)‖Wm
q (Ω) + ‖g‖W `

q (Ω),

Lp,γ1(R, X) = {f(t) ∈ Lp,loc(R, X) | e−γ1tf(t) ∈ Lp(R, X)},
Lp,γ1,0(R, X) = {f(t) ∈ Lp,γ1(R, X) | f(t) = 0 (t < 0)},
Wm
p,γ1(R, X) = {f(t) ∈ Lp,γ1(R, X) | e−γ1t∂jt f(t) ∈ Lp(R, X)

(j = 1, . . . ,m)},
Wm
p,γ1,0(R, X) = Wm

p,γ1 ∩ Lp,γ1,0(R, X).

Let Fx = F and F−1
ξ = F−1 denote the Fourier transform

and the Fourier inverse transform, respectively, which are
defined by

Fx[f ](ξ) =

∫
RN

e−ix·ξf(x)dx

F−1
ξ [g](x) =

1

(2π)N

∫
RN

eix·ξg(ξ)dξ.

We also write f̂(ξ) = Fx[f ](ξ). Let L and L−1 denote
the Laplace transform and the Laplace inverse transform,
respectively, which are defined by

L[f ](λ) =

∫ ∞
−∞

e−λtf(t)dt, L−1[g](t) =
1

2π

∫ ∞
−∞

eλtg(τ)dτ,

with λ = γ + iτ ∈ C. Given s ∈ R and X-valued function
f(t), we set

Λsγf(t) = L−1
λ [λsL[f ](λ)](t).

We introduce the Bessel potential space of X-valued func-
tions of order s as follows:

Hs
p,γ1(R, X) = {f ∈ Lp(R, X) | e−γtΛsγ [f ](t) ∈ Lp(R, X)

for any γ ≥ γ1},
Hs
p,γ1,0(R, X) = {f ∈ Hs

p,γ1(R, X) | f(t) = 0 (t < 0)}.
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For x = (x1, . . . , xn) and y = (y1, . . . , yn), we set
x · y =< x,y >=

∑n
j=1 xjyj . For scalar functions

f, g and N -vectors of functions k, g we set (k, g)D =∫
D
kg dx, (k,g)D =

∫
D

k · g dx, (k, g)Γ =
∫

Γ
kg dσ,

(k,g)Γ =
∫

Γ
k · gdσ, where σ is the surface element

of Γ. For N × N matrices of functions F = (Fij)
and G = (Gij), we set (F,G)D =

∫
D

F : G dx and

(F,G)Γ =
∫

Γ
F : G dσ, where F : G ≡

∑N
i,j=1 FijGij

and |F| ≡
(∑n

i,j=1 FijFij

)1/2

. Moreover, x · F means

vectors with components
∑n
i=1 aiFij . Let C∞0 (G) be the

set of all C∞ functions whose supports are compact and
contained in G. The letter C denotes generic constants
and the constant Ca,b,... depends on a, b, . . .. The values of
constants C and Ca,b,... denote a positive constant which
maybe different even in a single chain of inequalities. We
use small boldface letters, e.g. u to denote vector-valued
functions and capital boldface letters, e.g. H to denote
matrix-valued functions, respectively. But, we also use
the Greek letters, e.g. ρ, θ, τ , ω, such as to denote mass
densities, and elastic tensors unless the confusion may oc-
cur, although they are N ×N matrices.

2 Methodology

Research methodology of this paper is literature review.
In this article, we consider the R-Boundedness of the op-
erator solution of the Navier-Lamé equation with surface
tension in half-space case. The procedures how to prove
the purpose of the article are explained in the following.
First of all, we define half-space and its boundary, then
by using the partial Fourier transform and inverse partial
Fourier transform of resolvent problem of (1) in whole
and half-space, we get new solution formula of velocity
and also density of Navier-Lamé equations. In the end,
we use Weis’s operator valued Fourier multiplier for time
dependent problem.

3 Result and Discussion

3.1 Main Theorem

Before stating our main result, firstly, we introduce
the definition of R-boundedness and the operator valued
Fourier multiplier theorem due to Weis [19]. The following
theorem is obtained by Weis [19].

Theorem 3.1. Let X and Y be two UMD Banach
spaces and 1 < p < ∞. Let M be a function in
C1(R\{0},L(X,Y )) such that

RL(X,Y )({(τ
d

dτ
)`M(τ) | τ ∈ R\{0}}) ≤ κ <∞ (` = 0, 1)

with some constant κ. Then, the operator TM defined in
(5) is extended to a bounded linear operator from Lp(R, X)
into Lp(R, Y ). Moreover, denoting this extension by TM ,
we have

‖TM‖L(Lp(R,X),Lp(R,Y )) ≤ Cκ

for some positive constant C depending on p, X and Y .

Definition 3.2. A family of operators T ⊂ L(X,Y ) is
calledR-bounded on L(X,Y ), if there exist constants C >
0 and p ∈ [1,∞) such that for any n ∈ N, {Tj}nj=1 ⊂
T , {fj}nj=1 ⊂ X and sequences {rj}nj=1 of independent,
symmetric, {−1, 1}-valued random variables on [0, 1], we
have the inequality:{∫ 1

0

‖
n∑
j=1

rj(u)Tjxj‖pY du
}1/p

≤ C
{∫ 1

0

‖
n∑
j=1

rj(u)xj‖pX du
}1/p

.

The smallest such C is called R-bounded of T , which is
denoted by RL(X,Y )(T ).

Let D(R, X) and S(R, X) be the set of all X val-
ued C∞ functions having compact support and the
Schwartz space of rapidly decreasing X valued functions,
respectively, while S ′(R, X) = L(S(R,C), X). Given
M ∈ L1,loc(R\{0}, X), we define the operator TM :
F−1D(R, X)→ S ′(R, Y ) by

TMφ = F−1[MF [φ]], (F [φ] ∈ D(R, X)). (5)

Remark 3.3. For the definition of UMD space, we refer
to a book due to Amann [1]. For 1 < q < ∞, Lebesgue
space Lq(Ω) and Sobolev space Wm

q (Ω) are both UMD
spaces.

We quote a proposition [4], which tell us that R-bounds
behave like norms.

Lemma 3.4. Let X, Y and Z be Banach space and T and
S be R-bounded families

1. If X and Y be Banach spaces and let T and S be R-
bounded families in L(X,Y ). Then T + S = {T +
S|T ∈ T , S ∈ S} is also an R-bounded family in
L(X,Y ) and

RL(X,Y )(T + S) ≤ RL(X,Y )(T ) +RL(X,Y )(S)

2. If X, Y and Z be Banach spaces and let T and S be
R-bounded families in L(X,Y ) and L(Y,Z), respec-
tively. Then ST = {ST |T ∈ T , S ∈ S} is also an
R-bounded family in L(X,Z) and

RL(X,Z)(T S) ≤ RL(X,Y )(T )RL(X,Y )(S)

Definition 3.5. Let V be a domain in C, let Ξ = V ×
(RN−1 \ {0}), and let m : Ξ→ C; (λ, ξ′) 7→ m(λ, ξ′) be C1

with respect to τ , where λ = γ + iτ ∈ V , and C∞ with
respect to ξ′ ∈ RN−1 \ {0}.

1. m(λ, ξ′) is called a multiplier of order s with type 1
on Ξ, if the estimates:

|∂κ
′

ξ′m(λ, ξ′)| ≤ Cκ′(|λ|1/2 + |ξ′|)s−|κ
′|,

|∂κ
′

ξ′ (τ∂τm(λ, ξ′))| ≤ Cκ′(|λ|1/2 + |ξ′|)s−|κ
′|

hold for any multi-index κ ∈ NN0 and (λ, ξ′) ∈ Ξ with
some constant Cκ′ depending solely on κ′ and V .

2. m(λ, ξ′) is called a multiplier of order s with type 2
on Ξ, if the estimates:

|∂κ
′

ξ′m(λ, ξ′)| ≤ Cκ′(|λ|1/2 + |ξ′|)s|ξ′|−|κ
′|,

|∂κ
′

ξ′ (τ∂τm(λ, ξ′))| ≤ Cκ′(|λ|1/2 + |ξ′|)s|ξ′|−|κ
′|

hold for any multi-index κ ∈ NN0 and (λ, ξ′) ∈ Ξ with
some constant Cκ′ depending solely on κ′ and V .
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Let Ms,i(V ) be the set of all multipliers of order s
with type i on Ξ for i = 1, 2. For m ∈ Ms,i(V ), we
set M(m,V ) = max|κ′|≤N Cκ′ .

Let F−1
ξ′ be the inverse partial Fourier transform defined

by

F−1
ξ′ [f(ξ′, xN )](x′) =

1

(2π)N−1

∫
RN−1

eiξ
′·ξ′f(ξ′, xN ) dξ′.

Then, we have the following two lemmas which have
proved essentially by Shibata and Shimizu [17, Lemma
5.4 and Lemma 5.6].

Lemma 3.6. Let ε ∈ (0, π/2), q ∈ (1,∞) and λ0 > 0.
Given m ∈M−2,1(Σε,λ0

), we define an operator L(λ) by

[L(λ)g](x) =

∫ ∞
0

F−1
ξ′ [m(λ, ξ′)λ1/2e−B(xn+yN )ĝ(ξ′, yN )]

(x′) dyN .

Then, we have

RL(Lq(RN+ ),W 2−j
q (RN+ )N )({(τ∂τ)`(λj/2∂αxL(λ)) | λ ∈ Σε,λ0})

≤ rb(λ0) (` = 0, 1), (j = 0, 1, 2).

where τ denotes the imaginary part of λ, and rb(λ0) is a
constant depending on M(m,Σε,λ0), ε, λ0, N , and q.

Lemma 3.7. Let 1 < q < ∞, 0 < ε < π/2 dan λ0 > 0
. Let m(λ, ξ′) be a function defined on Σε,λ0 and m ∈
M−2,2(Σε,λ0) such that for any multi-index κ′ ∈ NN−1

0

there exists a constant Cκ′ such that

|∂κ
′

ξ′ {(τ
∂

∂τ
)`m(λ, ξ′)}| ≤ Cκ′(|λ|1/2 + |ξ′|−2−|κ′|)

(` = 0, 1) (6)

for any (λ, ξ′) ∈ Σε,λ0,. Let Ψj(λ) (j = 1, . . . , 4) be oper-
ators defined by

Ψ1(λ)f =

∫ ∞
0

F−1
ξ′ [m(λ, ξ′)Be−B(xN+yN )Fx′ [f ](ξ′, yN )]

(x′) dyN ,

Ψ2(λ)f =

∫ ∞
0

F−1
ξ′ [m(λ, ξ′)B M(xN + yN )Fx′ [f ](ξ′, yN )]

(x′) dyN ,

Ψ3(λ)f =

∫ ∞
0

F−1
ξ′ [m(λ, ξ′)AB M(xN + yN )Fx′ [f ](ξ′, yN )]

(x′) dyN ,

Ψ4(λ)f =

∫ ∞
0

F−1
ξ′ [m(λ, ξ′)B2M(xN + yN )Fx′ [f ](ξ′, yN )]

(x′) dyN .

Then, we have

RL(Lq(RN+ ),Lq(RN+ )Ñ )({(τ
d

dτ
)`(GλΨi(λ)) | λ ∈ Σε,λ0}) ≤ C

(` = 0, 1, i = 1, 2, 3, 4)

with some constant C. Here and hereafter, Cκ′ denote a
generic constant depending on κ′, ε, λ0.

The proof of the Lemma can be seen in [6], [3] and [8].

Lemma 3.8. Let 1 < q <∞ and let Λ be a set in C. Let
m = M(λ, ξ) be a function defined on Λ×(RN \{0}) which
is infinitely differentiable with respect to ξ ∈ RN \ {0} for
each λ ∈ Λ. Assume that for any multi-index α ∈ NN0
there exists a constant Cα depending on α and Λ such
that

|∂αξm(λ, ξ)| ≤ Cα|ξ|−|α| (7)

for any (λ, ξ) ∈ Λ × (RN \ {0}). Let Kλ be an operator
defined by

Kλf = F−1[m(λ, ξ)F [f ](ξ)]. (8)

Then, the family of operators {Kλ | λ ∈ Λ} is R-bounded
on L(Lq(RN )) and

RL(Lq(RN ))({Kλ | λ ∈ Λ}) ≤ Cq,N max
|α|≤N+1

Cα (9)

for some Cq,N depending only on q and N .

The following theorem is the main theorem of this arti-
cle.

Theorem 3.9. Let 1 < q < ∞, 0 < ε < π/2 and N <
r <∞. Assume that r ≥ max(q, q′) and λ ∈ Σε,λ0 . Set

Zq(RN+ ) ={(f ,g, d) | f ∈ Lq(RN+ ),g ∈W 1
q (RN+ )N ,

d ∈W 2−1/q
q (RN0 )},

Zq(RN+ ) ={(F1,F2,F3, F4)|F1 ∈ Lq(RN+ )N ,F2 ∈ Lq(RN+ )N ,

F3 ∈ Lq(RN+ )N
2

, F4 ∈W 2−1/q
q (RN0 )}.

Then, there exists a λ0 ≥ 1 and an operator family R(λ)
and R1(λ) with

R(λ) ∈ Hol(Σε,λ0 ,L(Zq(RN
+),W2

q(RN
+)))

R1(λ) ∈ Hol(Σε,λ0 ,L(Zq(RN
+),W3−1/q

q (RN
0 ))) (10)

such that for any (f ,g, d) ∈ Zq(RN+ ) and λ ∈ Σε,λ0
, u =

R(λ)(f , λ1/2g,∇g, d) and η = R1(λ)(f , λ1/2g,∇g, d) are
unique solution to problem (3). Moreover, there exists a
constant rb such that

RL(Zq(RN+ ),W 2−j
q (RN+ )N )({(τ∂τ)`(λj/2R(λ)) | λ ∈ Σε,λ0

}) ≤ rb

(` = 0, 1, j = 0, 1, 2),

RL(Zq(RN+ ),W 3−k
q (RN+ ))({(τ∂τ)`(λkR1(λ)) | λ ∈ Σε,λ0

}) ≤ rb

(` = 0, 1, k = 0, 1), (11)

with λ = γ + iτ .

Remark 3.10. The F1, F2, F3 and F4 are variables cor-
responding to f , λ1/2g, ∇g and d, respectively.

The resolvent parameter λ in problem (3) varies in Σε,λ0

with

Σε,λ0 ={λ ∈ C | | arg λ| ≤ π − ε, |λ| ≥ λ0}
(ε ∈ (0, π/2), λ0 > 0). (12)

The following section discusses the R-boundedness of
the solution operator in the whole space problem.
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3.2 On the R-boundedness of the solution oper-
ator in RN

In this section, we consider the R-boundedness of the
solution operator of the Navier-Lamé equation:

λu− α∆u− β∇div u = f in Ω (13)

where α and β are positive constants. Applying div to
(13), we have

(λ− (α+ β)∆)div u = div f (14)

Substituting (14) to (13) we have the formula of u, that
is

u =(λ− α∆)−1f + β∇[(λ− α∆)−1(λ− (α+ β)∆)−1div f ]
(15)

By the Fourier transform and the inverse Fourier trans-
form for f = (f1, . . . , fN ) we have S0(λ)f = (u1, . . . , uN )
then we can write equation (15) to be

S0(λ)g =F−1
ξ

[
F [f ](ξ)

λ+ α|ξ|2

]
+ βF−1

ξ

[
ξξ · F [f ](ξ)

(λ+ α|ξ|2)(λ+ (α+ β)|ξ|2)

]
. (16)

Related to the spectrum, we know the following lemma
which proved by Shibata and Tanaka [14].

Lemma 3.11. Let 0 < ε < π
2 , Σε,λ0 as defined in (12)

Then we have the following assertion

1. For any λ ∈ Σε and ξ ∈ RN we have

|α−1λ+ |ξ|2| ≥ sin(
ε

2
)(α−1|λ|+ |ξ|2) (17)

2. For any λ0 > 0 we have

|arg(α−1λ)| ≤ π − ε

The following theorem is the main result of this section.

Theorem 3.12. Let 1 < q < ∞ , 0 < ε <
π/2 and we assume that α > 0, α + β > 0.
Let S0(λ) be the operator defined in 16. Then,
S0(λ) ∈ Hol(Σε,λ0 ,L(Lq(RN )N ,W 2

q (RN )N )). For any

f ∈ Lq(RN )N and λ ∈ Σε,λ0 , u = S0(λ)f is a unique
solution to the problem (13) and we have

RL(Lq(RN )N ,Lq(RN )Ñ )({(τ
d

dτ
)`(GλS0(λ)) | λ ∈ Σε,λ0

}) ≤ C

(` = 0, 1) (18)

for λ = γ + iτ and some constant C depends solely on ε,
λ0, γ, q and N , Gλu = (λu, γu, λ1/2∇u,∇2u).

3.3 On the R-boundedness solution operator in
RN+ ; σ > 0, a = 0

In this section we consider the following generalized re-
solvent problem of the equation (3) which can be written
in the following:

λu− α∆u− β∇div u = f in RN+ ,
(αD(u)− (β − α)div uI)n− σ(∆Γη)n = g on RN0 ,

λη − u · n = d on RN0 .
(19)

where n = (0, . . . , 0,−1) ∈ RN and ∆′η =∑N−1
j=1 ∂2η/∂x2

j .
Furthermore, we consider the following equation sys-

tem:
λu− α∆u− β∇div u = 0 in Ω,

(αD(u)− (β − α)div uI)n− σ(∆Γη)n = 0 on Γ,

λη + a′ · ∇′η − u · n = d on RN0 .
(20)

Then, we shall prove the following theorem

Theorem 3.13. Let 1 < q <∞, 0 < ε < π/2 and λ1 > 0
and operator families U(λ) and V(λ) with

U(λ) ∈ Hol(Σε,λ0 ,L(Zq(RN
+),W2

q(RN
+)))

V(λ) ∈ Hol(Σε,λ0 ,L(Zq(RN
+),W3

q(RN
+)))

such that for any d ∈ W 2
q (RN+ )N , u = U(λ)d and η =

V(λ)d are unique solutions of equation (20). Moreover,
the following estimate are hold:

RL(Zq(RN+ ),W 2−j
q (RN+ )N )({(τ∂τ)`(λj/2U(λ)) | λ ∈ Σε,λ0

}) ≤ rb(λ1) (` = 0, 1, j = 0, 1, 2),

RL(Zq(RN+ ),W 3−k
q (RN+ ))({(τ∂τ)`(λkV(λ)) | λ ∈ Σε,λ0

}) ≤ rb(λ1) (` = 0, 1, k = 0, 1).

We have Theorem 3.9 immediately with help of the The-
orem 3.13.

First of all, applying the partial Fourier transform to
equation (20), we have for xN > 0 for first and second
equation in the following

α(α−1λ+ |ξ′|2)ûj − α∂2
N ûN − βiξj(iξ′ · û′ + ∂N ûN ) = 0,

α(α−1λ+ |ξ′|2)ûN − α∂2
N ûN − β∂N (iξ′ · û′ + ∂N ûN ) = 0,

α(∂N ûj + iξj ûN ) |xN=0 = 0

2α∂N ûN + (β − α)(iξ′ · û′ + ∂N ûN ) |xN=0= −σ|ξ′|2η̂
λη̂ + ûN |xN=0 = d̂

(21)

with iξ′ · û′ =
∑N−1
k=1 iξkûk, ξ′ = (ξ1, . . . , ξN−1) and

f̂ = f̂(ξ′, xN ) =
∫
RN−1 e

−ix′·ξ′f(x′, xN )dx′. Here and
hereafter, j runs from 1 to N−1. Since (λ−α∆)(λ−(α+
β)∆)û = 0 as was seen in (14), we have (∂2

N − A2)(∂2
N −

B2)û = 0 with

A =
√

(α+ β)−1λ+ |ξ′|2, B =
√
α−1λ+ |ξ′|2.

We look for a solution û = (û1, . . . , ûN ) of the form

û` = (P` +Q`)e
−BxN − P`e−AxN (22)

for ` = 1, . . . , N
First of all, by substituting (22) into (21) and equating

the coefficients of e−AxN and e−BxN , we have

α(B2 −A2)Pj − βiξj(iξ′ · P ′ −APN ) = 0,

α(B2 −A2)PN + βA(iξ′ · P ′ −APN ) = 0,

iξ′ · P ′ + iξ′ ·Q′ −B(PN +QN ) = 0,

α((B −A)Pj +BQj − iξjQN ) = 0

(α+ β)(B(PN +QN )−APN )− βiξ′ ·Q′ = σ|ξ′|2η̂
(23)

with iξ′ ·R′ =
∑N−1
k=1 iξkRk for R = P and Q. We consider

iξ′ ·Q′ and QN as two unknowns to solve the linear equa-
tions (23). Then by the second and the third equation in
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(23), we have

iξ′ · P ′ =
|ξ′|2

AB − |ξ′|2
(iξ′ ·Q′ −BQN ),

PN =
A

AB − |ξ′|2
(iξ′ ·Q′ −BQN ) (24)

Since iξ′ · k̂′(0) = α((B−A)iξ′ ·P ′+Biξ′ ·Q′)+α|ξ′|2QN )
as follows from the fourth equation of (23), combining
this formula with the last equation in (23) and (24) and
setting

L11 =
αA(B2 − |ξ′|2)

AB − |ξ′|2

L12 =
α|ξ′|2(2AB − |ξ′|2 −B2)

AB − |ξ′|2

L21 =
2αA(B −A)− (β − α)(A2 − |ξ|2)

AB − |ξ′|2

L22 =
(α+ β)B(A2 − |ξ|2)

AB − |ξ′|2
(25)

we have a linear system:

L

[
iξ′Q′

QN

]
=

[
0

σ|ξ′|2η

]
(26)

with Lopatinski matrix

L =

[
L11 L12

L21 L22

]
. (27)

The analysis of the Lopatinski determinant can be seen in
Götz and Shibata [3].

If detL 6= 0 at (λ, ξ′) ∈ Σε,λ0
, then it follows from (26)

that

iξ′ · P ′ =
|ξ′|2

(detL)(AB − |ξ′|2)
M,

PN =
A

(detL)(AB − |ξ′|2)
M (28)

with M = −(L12+BL11
)σ|ξ′|2η. By (28), we have

iξ′ · P ′ −APN =
(|ξ′|2 −A2)

(detL)(AB − |ξ′|2)
M, (29)

so that by (23) we have

Pj = − βiξj(|ξ′|2 −A2)

α(B2 −A2) detL(AB − |ξ′|2)
(L12+BL11

)σ|ξ′|2η̂

PN =
βA(|ξ′|2 −A2)

α(B2 −A2)(detL)(AB − |ξ′|2)
(L12+BL11

)σ|ξ′|2η̂

Qj =
iξj

B detL

[
β(|ξ′|2 −A2)

α(A+B)(AB − |ξ′|2)
(L12 +BL11)

+L11

]
σ|ξ′|2η̂

QN =
L11

detL
σ|ξ′|2η̂

(30)
Thus, combining (23) and (30) and setting ω = β/α, we
have

ûj(ξ
′, xN ) =− ω(iξj)(L12 +BL11)

B(B +A) detL

|ξ′|2 −A2

AB − |ξ′|2

(BM(xN )− e−BxN )σ|ξ′|2η̂

+
(iξj)L11

B detL
e−BxNσ|ξ′|2η̂

and,

ûN (ξ′, xN ) =
ωA(L12 +BL11)

(B +A) detL

|ξ′|2 −A2

AB − |ξ′|2
M(xN )σ|ξ′|2η̂

+
L11

detL
e−BxNσ|ξ′|2η̂. (31)

with M(xN ) =
e−BxN − e−AxN

B −A
.

Inserting the formula of ûN (ξ′, xN )|xN=0 into the last
equation of (21), we have

λη̂ +
L11

detL
σ|ξ′|2η̂ = d̂

which implies that

η̂ =
detL

G
d̂ (32)

with

G = (λ detL+ L11σ|ξ′|2). (33)

Lemma 3.14. Let 0 < ε < π/2 and G be the function
defined in (33). Then, there exist λ1 > 0 and C > 0 such
that the estimate:

|G| ≥ C(|λ|+ |ξ′|)(|λ|1/2 + |ξ′|)3 (34)

holds for (λ, ξ′) ∈ Σε,λ1
× (RN−1 \ {0}).

Proof. Firstly, by using Lemma 5.1 in [3] and technique of
the proof of the Lemma 3.14 which can be seen in Shibata
[16] we can proof the Lemma 3.14.

Thus, by substituting the solution formula (33), the
equation (31) can be written in the following

ûj(ξ
′, xN ) =− ω(iξj)(L12 +BL11)

B(B +A)

|ξ′|2 −A2

AB − |ξ′|2
(BM(xN )

− e−BxN )σ|ξ′|2 d̂
G

+
(iξj)L11

B
e−BxNσ|ξ′|2 d̂

G

and,

ûN (ξ′, xN ) =
ωA(L12 +BL11)

(B +A) detL

|ξ′|2 −A2

AB − |ξ′|2
M(xN )σ|ξ′|2 d̂

G

+
L11

G
e−BxNσ|ξ′|2d̂. (35)

By using the Volevich trick

p(ξ′, xN )q(ξ′, 0) =−
∫ ∞

0

∂

∂yN
(p(ξ′, xN + yN )q(ξ′, yN ))dyN

=−
∫ ∞

0

∂p

∂yN
(ξ′, xN + yN )q(ξ′, yN ))dyN

−
∫ ∞

0

p(ξ′, xN + yN )
∂q

∂yN
(ξ′, yN ))dyN

and the identities 1 =
λ

1
2

αB2
λ

1
2 −

N−1∑
k=1

iξk
B2

iξk and

∂NM(xN ) = −e−BxN −AM(xN ).
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In view of equation (35) The solution formula for uj =
Uj(λ)d and uN = UN (λ)d can be written as follow

Uj(x) =

∫ ∞
0

F−1
ξ′

[
ω(iξj)(L12 +BL11)

B(B +A)

|ξ′|2 −A2

AB − |ξ′|2
σB

G

AM(xN + yN )F [∆′d](ξ′, yN )

]
(x′) dyN

+

∫ ∞
0

F−1
ξ′

[
ω(iξj)(L12 +BL11)

B(B +A)

|ξ′|2 −A2

AB − |ξ′|2
σB

G

e−B(xN+yN )F [∆′d](ξ′, yN )

]
(x′) dyN

+

∫ ∞
0

F−1
ξ′

[
ω(L12 +BL11)

B(B +A)

|ξ′|2 −A2

AB − |ξ′|2

σ|ξ′|2BM(xN + yN )

G
F [∂j∂Nd](ξ′, yN )

]
(x′) dyN

−
∫ ∞

0

F−1
ξ′

[
ω(iξj)(L12 +BL11)

B(B +A)

|ξ′|2 −A2

AB − |ξ′|2
σB

G

e−B(xN+yN )F [∆′d](ξ′, yN )

]
(x′) dyN

−
∫ ∞

0

F−1
ξ′

[
ω(L12 +BL11)

B(B +A)

|ξ′|2 −A2

AB − |ξ′|2
σ|ξ′|2

G

e−B(xN+yN )F [∂j∂Nd](ξ′, yN )

]
(x′) dyN

−
∫ ∞

0

F−1
ξ′

[
(iξj)L11

B

σB

G

e−B(xN+yN )Fx′ [∆′d](ξ′, yN )

]
(x′)dyN

−
∫ ∞

0

F−1
ξ′ [

L11

B2

σB|ξ′|2

G

e−B(xN+yN )Fx′ [∂j∂Nd](ξ′, yN )](x′)dyN

UN (x) =−
∫ ∞

0

F−1
ξ′

[
ω(L12 +BL11)

B(B +A)

|ξ′|2 −A2

AB − |ξ′|2
σB

G
(36)

AM(xN + yN )F [∆′d](ξ′, yN )

]
(x′) dyN

−
∫ ∞

0

F−1
ξ′

[
ω(L12 +BL11)

B(B +A)

|ξ′|2 −A2

AB − |ξ′|2
σB

G

e−B(xN+yN )F [∆′d](ξ′, yN )

]
(x′) dyN

+

∫ ∞
0

F−1
ξ′

[
ω(L12 +BL11)

B(B +A)

|ξ′|2 −A2

AB − |ξ′|2

σ|ξ′|2BM(xN + yN )

G
F [∂Nd](ξ′, yN )

]
(x′) dyN

−
∫ ∞

0

F−1
ξ′

[
L11

B

σB

G
e−B(xN+yN )Fx′ [∆′d](ξ′, yN )

]
(x′)dyN

−
∫ ∞

0

F−1
ξ′ [

L11

B2

σB|ξ′|2

G
e−B(xN+yN )

Fx′ [∂Nd](ξ′, yN )](x′)dyN (37)

where we have used F [∆′d](ξ′, yN ) = −|ξ′|2d̂(ξ′, yN ). We
have Uj(λ)d = uj , j = 1 . . . , N −1 and UN (λ)d = uN . By

Lemma 3.14 and Lemma 3.15, we have

RL(W 2
q (RN+ ),W 2−κ

q (RN+ ))({(τ∂τ)`(λk/2Uj(λ)) | λ ∈ Σε,λ0})

≤ rb(λ1) (` = 0, 1, k = 0, 1, 2),

where rb(λ1) is a constant depending on m0, m1, m2 and
λ1. Analogously, we have

RL(W 2
q (RN+ ),W 2−κ

q (RN+ ))({(τ∂τ)`(λk/2UN (λ)) | λ ∈ Σε,λ0
})

≤ rb(λ1) (` = 0, 1, k = 0, 1, 2).

Furthermore, we construct the formula of η. Let φ(xN )
be a function in C∞0 such that φ(xN ) = 1 for |xN | ≤ 1
and φ(xN ) = 0 for |xN | ≥ 2. We define η by

η(x) = φ(xN )F−1
ξ′

[
e−AxN

detL

G
d̂(ξ′, 0)

]
(x′).

By the Volevich trick, we have

η(x) =− φ(xN )

∫ ∞
0

∂NF−1
ξ′

[
e−A(xN+yN ) detL

G
d̂(ξ′, yN )φ(yN )

]
(x′) dyN

=φ(xN )

∫ ∞
0

F−1
ξ′

[
e−A(xN+yN )AdetL

G
d̂(ξ′, yN )φ(yN )

]
(x′) dyN

− φ(xN )

∫ ∞
0

F−1
ξ′

[
e−A(xN+yN ) detL

G
∂N (d̂(ξ′, yN )φ(yN ))

]
(x′) dyN

=φ(xN )

∫ ∞
0

F−1
ξ′

[
e−A(xN+yN ) AdetL

G(1 + |ξ′|2)

F ′[(1−∆′)d](ξ′, yN )φ(yN )

]
(x′) dyN

− φ(xN )

∫ ∞
0

F−1
ξ′

[
e−A(xN+yN ) detL

G(1 + |ξ′|2)(
∂N (d̂(ξ′, yN )φ(yN ))−

N−1∑
k−1

iξk∂N (F ′[∂kd](ξ′, yN )φ(yN ))

)]
(x′) dyN

Let V(λ)d |xN=0= η and recalling the definition of η in
(32).

By the Volevich trick, we have

V(λ)d

= −φ(xN )

∫ ∞
0

∂NF−1
ξ′

[
e−A(xN+yN ) detL

G
d̂(ξ′, yN )φ(yN )

]
(x′) dyN

= φ(xN )

∫ ∞
0

F−1
ξ′

[
e−A(xN+yN )AdetL

G
d̂(ξ′, yN )φ(yN )

]
(x′) dyN

− φ(xN )

∫ ∞
0

F−1
ξ′

[
e−A(xN+yN ) detL

G
∂N (d̂(ξ′, yN )φ(yN ))

]
(x′) dyN

= φ(xN )

∫ ∞
0

F−1
ξ′

[
e−A(xN+yN ) AdetL

G(1 + |ξ′|2)

F ′[(1−∆′)d](ξ′, yN )φ(yN )

]
(x′) dyN

− φ(xN )

∫ ∞
0

F−1
ξ′

[
e−A(xN+yN ) detL

G(1 + |ξ′|2)(
∂N (d̂(ξ′, yN )φ(yN ))−

N−1∑
k−1

iξk∂N (F ′[∂kd](ξ′, yN )φ(yN ))

)]
(x′) dyN
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Let V(λ)d = φ(xN ){V1(λ)d+ V2(λ)d} with

V1(λ)d =

∫ ∞
0

F−1
ξ′

[
e−A(xN+yN ) AdetL

G(1 + |ξ′|2)

F ′[(1−∆′)d](ξ′, yN )φ(yN )

]
(x′) dyN

V2(λ)d =−
∫ ∞

0

F−1
ξ′

[
e−A(xN+yN ) detL

G(1 + |ξ′|2)(
∂N (d̂(ξ′, yN )φ(yN ))

−
N−1∑
k−1

iξk∂N (F ′[∂kd](ξ′, yN )φ(yN ))

)]
(x′) dyN

To treat η, we use the following lemma which had been
proved by Shibata [9].

Lemma 3.15. Let Σ be a domain in C and let 1 < q <
∞. Let φ and ψ be two C∞0 ((−2, 2)) functions. Given
m0 ∈ M0,2(Σ), we define an operator L6(λ) and L7(λ)
acting on g ∈ Lq(RN+ ) by

[L6(λ)g](x) = φ(xN )

∫ ∞
0

F−1
ξ′

[
e−A(xN+yN )m0(λ, ξ′)

ĝ(ξ′, yN )ψ(yN )

]
dyN ,

[L7(λ)g](x) = φ(xN )

∫ ∞
0

F−1
ξ′

[
Ae−A(xN+yN )m0(λ, ξ′)

ĝ(ξ′, yN )ψ(yN )

]
dyN .

Then,

RL(Lq(RN+ ))({(τ∂τ )`Lk(λ) | λ ∈ Σ}) ≤ rb

for some constant k = 6, 7, ` = 0, 1 and rb depending on
Σε,λ0

Proof. The lemma 3.15 of the model have proved by Shi-
bata [16]. Moreover, for (j, α′, k) ∈ N0 ×NN−1

0 ×N0 with
j + |α′ + k| ≤ 3 and j = 0, 1, we write

λj∂α
′

x′ ∂
k
NV(λ)d =

k∑
n=0

(
n

k

)
(∂k−nN φ(xN ))

[λj∂α
′

x′ ∂
k
NV1(λ)d

+ λj∂α
′

x′ ∂
k
NV2(λ)d]

and then

λj∂α
′

x′ ∂
k
NV1(λ)d

=

∫ ∞
0

F−1
ξ′

[
Ae−A(xN+yN )λ

j(iξ′)α
′
(−|ξ′|)n detL

G̃(1 + |ξ′|2)

F ′[(1−∆′)d](ξ′, yN )φ(yN )

]
λjV2(λ)d

=

∫ ∞
0

F−1
ξ′

[
e−A(xN+yN )λ

j detL

G̃
∂N (d̂(ξ′, yN )φ(yN ))

]
(x′)dyN

λj∂α
′

x′ ∂
k
NV2(λ)d

=

∫ ∞
0

F−1
ξ′

[
e−A(xN+yN )λ

j(iξ′)α
′
detL

G̃(1 + |ξ′|2)(
∂N (d̂(ξ′, yN )φ(yN ))−

N−1∑
k−1

iξk
|ξ′|

∂N (F ′[∂kd](ξ′, yN )φ(yN ))

)]
(x′)dyN (38)

for |α′|+ n ≥ 1, and we use the formula

1 =
1 + |ξ′|2

1 + |ξ′|2
=

1

1 + |ξ′|2
−
N−1∑
j=1

|ξ′|
1 + |ξ′|2

iξj
|ξ′|

iξj

for the third equation of (38).

We can see that for the multipliers in the equation (38)
hold Lemma 3.15, then we have

RL(W 2
q (RN+ ),W 3−k

q (RN+ ))({(τ
d

dτ
)(λkV(λ)) | λ ∈ Σε,λ∗}) ≤ rb

(k = 0, 1).

This completes the proof of Theorem 3.13.

Proof. Furthermore, we prove Theorem 3.9. Let
(f ,g, d) ∈ Zq(RN+ ) and (u, η) be solutions of the equa-
tion (3). Setting U(λ) = (U1(λ), . . . ,UN (λ)), by The-
orem 3.13 we see that u = U(λ)d and η = V(λ)d are
unique solution of equation (3), then we can see that given
ε ∈ (0, π/2), there exists λ > 0 and operator families R
and R1 satisfying (10) such that u = R(λ)(f , λ1/2g,∇g, d)
and η = V(λ)(g, λ1/2k,∇k, d) are unique solutions of
equation (3). Moreover, the estimate (11) hold. This
complete the proof of Theorem 3.9. In fact, in view
of Definition R-boundedness solution operator, for any
n ∈ N, we take {λj}nj=1 ⊂ Σ, {gj}nj=1 ⊂ Lq(RN+ ) and
rj(u) (j = 1, . . . , n) be Rademacher functions. By the
Fubini-Tonelli theorem, we have

∫ 1

0

‖
n∑
j=1

rj(u)L6(λj)gj‖qLq(RN+ )
du

=

∫ t

0

∫ ∞
0

∫
RN−1

|
n∑
j=1

rj(u)L6(λj)gj |q dy′ dxN du

=

∫ ∞
0

(∫ 1

0

‖
n∑
j=1

rj(u)L6(λj)gj‖qLq(RN−1)
du

)
dxN .

For any xN ≥ 0, by Minkowski’s integral inequality,
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Lemma 3.15 and Hölder’s inequality, we have(∫ 1

0

‖
n∑
j=1

rj(u)L6(λj)gj‖qLq(RN−1)
du

)1/q

= |φ(xN )|
(∫ 1

0

‖
∫ ∞

0

F−1
ξ′ [

n∑
j=1

rj(u)e−A(xN+yN )

m0(λj , ξ
′)ĝj(ξ

′, yN )](y′)ψ(yN )dyN‖qLq(RN−1)
du

)1/q

≤ |φ(xN )|
(∫ 1

0

(∫ ∞
0

‖F−1
ξ′ [

n∑
j=1

rj(u)e−A(xN+yN )

m0(λj , ξ
′)ĝj(ξ

′, yN )](y′)ψ(yN )dyN‖Lq(RN−1) dyN

)q
du

)1/q

≤ |φ(xN )|
∫ ∞

0

(∫ 1

0

‖F−1
ξ′ [

n∑
j=1

rj(u)e−A(xN+yN )

m0(λj , ξ
′)ĝj(ξ

′, yN )](y′)‖q
Lq(RN−1)

du

)1/q

|ψ(yN )| dyN

≤ |φ(xN )

|
∫ ∞

0

(∫ 1

0

‖F−1
ξ′ [

n∑
j=1

rj(u)ĝj(·, yN )]‖q
Lq(RN−1)

du

)1/q

|ψ(yN )| dyN
≤ |φ(xN )

|
∫ ∞

0

(∫ 1

0

‖F−1
ξ′ [

n∑
j=1

rj(u)ĝj(·, yN )]‖q
Lq(RN−1)

du dyN

)1/q

(∫ ∞
0

|ψ(yN )|q
′
dyN

)1/q′

≤ |φ(xN )|
∫ ∞

0

(∫ 1

0

‖F−1
ξ′ [

n∑
j=1

rj(u)ĝj(·, yN )]‖q
Lq(RN+ )

du

)1/q

(∫ ∞
0

|ψ(yN )|q
′
dyN

)1/q′

.

In fact since,

|∂α
′

ξ′ (e
−A(xN+yN )m0(λ, ξ′))| ≤ Cα′ |ξ′|−|α

′|

for any xN ≥ 0, yN ≥ 0, (λ, ξ′) ∈ Σ × (RN−1 \ {0}), and
α′ ∈ NN−1, by Lemma 3.8 we have∫ 1

0

‖
n∑
j=1

rj(u)

F−1
ξ′

[
e−A(xN+yN )m0(λj , ξ

′)ĝj(ξ
′, yN )

]
(y′)‖q

Lq(RN−1)
du

≤ C
∫ 1

0

‖
n∑
j=1

rj(u)gj(·, yN )‖q
Lq(RN−1)

du.

Putting these inequalities together and using Hölder’s in-
equality gives∫ 1

0

‖
n∑
j=1

rj(u)Lq(λj)gj‖qLq(RN+ )
du

≤
∫ ∞

0

|φ(xN )|q
∫ 1

0

‖
n∑
j=1

rj(u)gj‖qLq(RN+ )
du dxN

(∫ ∞
0

|ψ(yN )|q
′
dyN

)q/q′
,

and so, we have

‖
n∑
j=1

rj(u)Lq(λj)gj‖Lq((0,1),Lq(RN+ ))

≤ C‖φ‖Lq(R)‖ψ‖Lq′ (R)‖
n∑
j=1

rjgj‖Lq((0,1),Lq(RN+ )).

This shows Lemma 3.15.

By using Lemma 3.6 and 3.15, we can show Theorem
3.13. These completes the proof of Theorem 3.9.

4 Conclusions

Partial Differential Equation (PDE) can describe the
phenomena in our daily life. The aim of PDE problem
is well-posedness properties of the model problem. One
property of well-posedness is regularity of the solution of
the model problem. The R-boundedness of the solution
operator families of model problem is one of the methods
to get the regularity. Therefore, the R-boundedness of
Navier-Lamé equation with surface tension can be used
investigating well-posedness properties of model problem.
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