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Morphological and molecular characterization of mole crab (Genus: 1 

Emerita) in the Cilacap coastlines of Indonesia, with particular focus on 2 

genetic diversity of Emerita sp. nov.  3 

  4 

Abstract. Previous studies reported Emerita emeritus is the only species of the Genus Emerita inhabiting the coastal ecosystem of the 5 
Cilacap Regency. A recent study reported the presence of suspected new Emerita species living on the Cilacap sandy beach but used a 6 
small number of specimens and no reports about genetic diversity. This study used more Emerita samples than previous study. This 7 
study aimed to identify Emerita specimens based on the morphology and the cytochrome c oxidase 1 gene and analyzed the genetic 8 
diversity of Emerita sp. nov. Emerita samples were collected from three different beaches in Cilacap Regency, Central Java, Indonesia. 9 
Morphological identification placed the samples into two different morphotypes. Morphotype A was identified as Emerita emeritus. 10 
Morphotype B was determined as Emerita sp. nov. Molecular data support the placement of Emerita samples into Emerita emeritus, and 11 
Emerita sp. nov. Emerita sp. nov. has haplotype diversity of 0.857 ± 0.057, indicating a high genetic diversity. Haplotype H2 was 12 
suggested as the most primitive one because other haplotypes radiated from it. This study concluded that two sympatric Emerita species 13 
inhabit Cilacap coastlines, and Emerita sp. nov. has high genetic diversity. 14 

Keywords: Albunea, genetic variation, Hyppa, polymorphism, sand crabs 15 

Abbreviations:  COI= cytochrome c oxidase 1 16 

Running title: Morphological and molecular characterization of mole crabs  17 

INTRODUCTION 18 

Classical taxonomy and systematic utilized morphological data during species characterization (Erlank et al., 2018; 19 

Shu et al., 2022). In some animal groups, morphology characteristics are entirely satisfactory (Chan et al. 2016; Mauroka 20 

et al. 2018; Korovchinsky 2019). However, in other groups, this character may lead to identification mistakes, especially in 21 

groups with limited morphological differences, such as in mole crab from the Genus Albunea (Boko and MacLaughlin 22 

2010), cryptic species (Karanovic 2015; Bilgin et al. 2015; Bekker et al. 2016; Kusbiyanto 2020) or group with limited and 23 

undeveloped morphological characters, such as egg, larvae, and early juvenile (Ko et al. 2013; Palero et al. 2016; 24 

Palecanda 2020)  25 

Mole crabs, locally known as ‘yutuk,’ belong to Decapoda from the superfamily Hippoidea. It consists of three 26 

different families of Albuneidae, Blepharipodidae, and Hippidae, which are divided into Emerita and Hippa genera. 27 

Moreover, ten species have been identified and described under Genus Emerita (Boyko and McLaughlin 2010). This 28 

crustacean group is widely distributed over the World (Boyko and McLaughlin 2010), and the distribution has been 29 

elaborated by Mahapatro et al. (2018). In Indonesia, these crabs inhibit sandy coastlines from the West Coast of Sumatera 30 

to Moluccas (Wardiatno et al., 2015; Boyko and Harvey, 1999).  31 

Previous studies reported that the three genera of Hippoidea have been described from Indonesia waters (Bhagawati et 32 

al. 2016; Pramithasari et al. 2017; Nugroho et al. 2018; Butet et al. 2019; Hartoko et al. 2019; Bhagawati et al. 2020). 33 

Other studies described Emerita emeritus as the only species of genus Emerita found on the southern coastlines of Java 34 

(Nugroho et al. 2018; Dewi et al. 2019; Krisanti et al. 2020; Suryanti et al. 2020), including from Cilacap sandy beaches, 35 

such as Widarapayung beach, District of Binangun (Bhagawati et al. 2016; Haq et al. 2018). However, recent studies 36 

observed morphological and molecular deviations in some samples to the Emerita emeritus characteristics. The possible 37 

presence of the species complex’s sympatric of the Cilacap coastlines was reported (Nuryanto et al., 2020). Even, Hanim 38 

et al. (2017) proposed a scientific name for the new suspected species of Emerita from Pangandaran beach, as Emerita 39 

pangandarensis sp. nov., but it has not been approved by the international commission of zoological nomenclature. 40 

However, the studies by Nuryanto et al. (2020) and Hanim et al. (2017) were conducted in few samples and only focused 41 

on species identification. These studies did not report genetic diversity in newly suspected Emerita species. Molecular 42 

characterization was performed in a higher number of specimens and data types. Additionally, it assessed the genetic 43 

diversity of new suspected Emerita species collected from the southern coast of Cilacap, Central Java, Indonesia.  44 

Species identification and population genetic studies were conducted using various molecular markers (Nuryanto et al., 45 

2017; Butet et al., 2019; Nuryanto et al., 2019; Elvyra et al., 2020; Setyaningrum et al., 2022; Riani et al. 2021). The 46 

cytochrome c oxidase 1 (COI) gene is a common marker used in species determination (Ko et al., 2013; Muchlisin et al., 47 



 

2013; Dahruddin et al., 2016; Irmawati et al., 2017; Syaifudin et al. 2020) and population genetic studies (Song et al. 2013; 48 

Zhang et al. 2014; Fahmi 2015; Nuryanto et al. 2019). Therefore, this research aimed to characterize samples of genus 49 

Emerita based on morphological and molecular characteristics, as well as assess the genetic diversity using the cytochrome 50 

c oxidase 1 gene. 51 

MATERIALS AND METHODS  52 

Research location and sampling sites  53 
The samples of mole crabs were collected from the sandy coastal region of the Cilacap Regency, Central Java, 54 

Indonesia. Additionally, the sampling was carried out in Jetis beach in District of Nusawungu as well as Kenari Indah and 55 

Widarapayung beaches in District of Binangun, Cilacap Regency, Central Java, Indonesia (Figure 1).  56 

 57 

 58 
Figure 1. Peta Sampling Location of Emerita at Jetis Beach, Kenari Indah and Widarapayung (source: google maps, modified 59 

by S.S. Asmarani, 2022) 60 

 61 

 62 

Mole crabs sampling 63 
Emerita specimens were collected manually using two traditional fishing gears called “sodo nets” and “sorok bamboo” 64 

(Figure 2). Furthermore, local fishermen performed samples collection and handling. Abdominal tissue samples were cut 65 

off for approximately 5 mm
2
 and preserved using 96% alcohol in 2 ml screw lid tubes. 66 

 67 

 68 
Figure 2. Fishing gears for collecting mole crab (Emerita) samples (A. sodo nets and B. sorok bamboo)  69 

 70 

Procedures 71 
Morphological characterization 72 

Freshly collected crabs were brought to Animal Taxonomy Laboratory, Faculty of Biology Jenderal Sudirman 73 

University. The samples were washed thoroughly using freshwater, and morphological characterization was carried out 74 

based on the diagnostic character essential for identifying crustaceans. According to NG (1998), several diagnostic 75 

characteristics for identifying crustaceans are carapax, anterolateral side, dorsal surface, frontal side, buccal 76 

cavern/mouthpart, and locomotion (dactyl and pereopod), abdominal segments, and gonopods. 77 

Observations on the genus Emerita were performed by referring to the diagnostic character used by Sankolli (1965), 78 

Bhagawati et al. (2016, 2020); Boyko & Harvey (1999), Haig, (1986); Osawa & Chan (2010), and Wardiatno et al. (2015). 79 



 

These characteristics are the color and shape of the carapax; the position, number, and shape of the slits (Carapace 80 

Groove/CG) on the carapax surface; spines on the anterior carapax; a curved shape of the margin on the latero-anterior; 81 

and the shape and number of fine spines on the latero-anterior portion. Carapax height measurements were conducted on 82 

the front, middle, and back of the body, with the shape and size of the eyestalk. The merus distal and dactyl form on the 83 

maxilliped-3 and the first pereopod, while spines and hairs form on the margin of the first pereopod dactyl. Pleopods are 84 

formed in the abdominal segment as pleural. 85 

 86 

DNA isolation and marker amplification  87 

Genomic DNA was isolated from abdominal tissue samples using the Quick-DNA™ Miniprep Plus kit from Zymo’s 88 

research. The processes were conducted based on the procedures provided by the company. The extracted DNA was 89 

migrated in 1% agarose electrophoresis and stained using ethidium bromide. The COI gene marker fragments were 90 

amplified using FishF2 and FishR2 primers (Ward et al. 2005) in Primus 25 Peqlab Thermocycler. Subsequently, the 91 

amplification reactions consisted of 1x buffer PCR, 2 mM MgCl2, 0.2 mM of each primer, 0.2 mM dNTP mix, 1 U Taq 92 

polymerase, and 2.0 ng / μl template DNA. The final volume to 50 μl of the mixtures was adjusted by adding DNA-RNA-93 

free water. Thermal cycles were started by pre-denaturation step at 95°C for 4 minutes. The amplification reactions were 94 

performed for 35 cycles with denaturation steps lasted for 30 seconds at 95°C, followed by annealing at 53°C for 120 95 

seconds, and terminated by extension steps 60 for minutes at 72°C.  Additionally, a final elongation step terminated the 96 

cycles after 5 minutes, at 72°C. The amplified COI marker were stained using ethidium bromide in 1.5% agarose gel and 97 

documented using the GelDoc apparatus (BioRad).  98 

Marker sequencing and editing 99 

Nucleotide sequencing of the used marker was conducted in the Molecular Genetic Laboratory of PT Genetika Science 100 

Indonesia Jakarta, according to Sanger method. The study obtained consensus and multiple alignments by assembling the 101 

forward and reverse sequences using ClustalW ver.1.4 in Bioedit (Hall 2011). In addition, it obtained haplotype and 102 

Arlequin data files from its generating process in DnaSP 6 (Rozas et al. 2017).  103 

Data analysis 104 
The taxonomic status of Emerita samples was delineated based a sequence homology to the conspecific relative 105 

available in GenBank. This test was carried out using an essential local alignment search tool (BLAST). Additionally, this 106 

study was also used genetic distance genetic divergence or a gap of 5% (Candek and Kuntner, 2015; Setyaningrum et al., 107 

2020). Variance analysis and fixation statistic (Fst) were conducted in Arlequin 3.5 (Excoffier & Lischer 2010) to estimate 108 

significant genetic divergence between the morphotypes. The diversity data was evaluated using Haplotypes (h) and 109 

nucleotide (π) diversities, calculated using Arlequin 3.5. Similarly, the neutrality of the used COI marker was tested using 110 

Fs and D values (Excoffier & Lischer 2010). Evolutionary relationships among haplotypes were estimated based on 111 

haplotype networks reconstructed using the median-joining method in NETWORK software (Bandelt et al. 1999).  112 

RESULTS AND DISCUSSION 113 

Taxonomic status  114 
Morphological identification 115 

A total of 17 individual Emerita samples were analyzed during the study. Morphological identification separated the 116 

samples into two different morphotypes. The first (A) and second (B) morphotypes consisted of 3 and 14 individuals, 117 

respectively (Figures 3A and 3B). However, they have similar general morphological characteristics that lead to Genus 118 

Emerita placement. The body of the Emerita crab is light, dark to blackish gray, with a slightly cylindrical shape with a 119 

wider distal carapace area. The eyestalk is long and slender, extending beyond the second antenna segment. The antennae 120 

are very long with hairy setae, and the segment on the second antenna consists of 3 horn-like and median spines. There are 121 

two oblique elongated protrusions with distinct spines that can be moved at the edges. The carapace has 3 frontal lobes, 122 

with the median very pointed and triangular, separated from the lateral lobe. The surface of the carapace has visible line-123 

shaped slits located post-frontal and post-gastric. The latero-frontal margin has fine spines with sparse hairs. It has a short 124 

abdomen with a long telson, almost half the carapace length. The first pereopods were simple with an oval, lamellate 125 

dactyl, less than twice the width. Dactylus of the first pereopod with 4-5 rigid spines is found in the distal half of the lower 126 

margin, while 1-3 with 2 spines is in the tip. 127 

The morphotypes A and B were differentiated by the following characteristics. The frontal part of the carapace showed 128 

differences in the shape and length of the spines at the base of the second antenna segment, the shape of a hollow between 129 

the three spines at the tip of the carapace, and the post-frontal and post-gastric cleft forms (Fig. 3). Individuals with 130 

morphotype A have eye stalks longer than the spines at the second antenna base (Figure 3A). In contrast, morphotype B 131 

has eye stalks almost the same length as the spines at the second antenna base. Another performance is the concave shape 132 

between the three spines on the frontal carapace. Morphotype A does not form an angle, while B forms a curve. The shape 133 

of the gap found in the post-frontal area is a straight line, neat and flat in morphotype A, but it is elevated in morphotype B 134 



 

with a curved line in the post-stomach. In morphotype A, the arch is not too deep, and its carapace’s right and left ends 135 

have a thin curved slit. In contrast, morphotype B has a narrower curved line. 136 

 137 

 138 
Figure 3. Frontal carapace on morphotype A and morphotype B 139 

 140 

Based on the latero-frontal section on body height, morphotype A had a flatter body shape than B (Figure 4.). There are 141 

differences in the spines at the second antenna base from the lateral side between morphotypes A and B. Furthermore, 142 

Morphotype A has slightly curved outer spines, while B tends to be straight. The latero-frontal margin of the carapace, 143 

which contains fine spines with sparse hairs between the two morphotypes, has different spine shapes, arch, and the 144 

number of spines. The tip of the spine is not sharp; hence, when touched, it feels like a smooth protrusion. The anterior end 145 

of the margin does not have spines and has a shorter size than that of morphotype B. The shape of the posterior carapace 146 

margin curve in morphotype A is more prominent without spines. In contrast, it is more sloping in morphotype B, which 147 

has fine spines. 148 

 149 

 150 
Figure 4. Latero-frontal carapace in morphotype A and morphotype B 151 

 152 

Morphotypes A and B had different shapes on the distal part of the merus of the third maxilliped (Figure 5). Sankolli 153 

(1965), Kazmi and Siddiqui (2006), Boyko (2002), and Bhagawati et al. characterize morphotype A as having features 154 

similar to Emerita emeritus (Linnaeus, 1756) (2016; 2020). Morphotype A has the first pereopod dactyl oval, measuring 155 

less than twice the largest width. There are distinct spines on margins and occupy nearly the distal third of the lower part. 156 

Morphotype B has the character of the first pereopod dactyl, which is similar to morphotype A. However, the spines on the 157 

margins are smaller and possess the same size. 158 

 159 

 160 
Figure 5. The distal part of the merus of the third maxilliped: Morphotype A; Morphotype B; and C. schematic of Emerita 161 

emeritus (Linnaeus 1756.), ovigerous females from Madras (Sonkolli 1965) 162 

 163 



 

 164 
Figure 6. First pereopod on morphotype A, morphotype B, and schematic of Emerita emeritus (Linnaeus 1756.), 165 

ovigerous females from Madras (Sonkolli, 1965) 166 

 167 

Based on their morphological characteristics, morphotypes A and B have many similarities (Emerita) and differences, 168 

suggesting the occurrence of new species. However, it has been well-known that mole crabs from the superfamily 169 

Hippoidea show high variability in morphology (Poore 2004; Ahyong et al. 2009; Schnabel and Ahyong 2009). This 170 

condition may lead to misidentification when performed based on morphological characters. Molecular data confirmed the 171 

possible occurrence of Sympatric species of Emerita emeritus in the Cilacap coastlines (Nuryanto et al. 2020) inferred 172 

from several specimens. Therefore, further study is still needed using more samples to strengthen the data on new Emerita 173 

species in the areas.  174 

 175 

Molecular characterization 176 

Sequence identity tests to the closest relative in GenBank revealed that three individuals (KI1, KI3, and WP9) of the 177 

morphotype A have high sequence identities to Emerita emeritus KR047035 ranging from 96.12 % to 96.25 %. In contrast, 178 

the sequence identities to Emerita sp. ranged from 85.60 % to 85.74 %. The remaining 14 individuals of the morphotype B 179 

showed low identities to Emerita emeritus KR 047035 in GenBank, ranging between 84.78% and 86.87%. The sequence 180 

identity of the remaining 14 specimens of the morphotype B to Emerita sp. MZ571198 was high ranging from 98.83 to 181 

100% (Table 1). 182 

 183 
Table 1. The BLAST parameters of Emerita samples from Cilacap coastlines to their conspecific relatives in GenBank 184 

Samples 

Emerita emeritus KR047035 Emerita sp. MZ571198 

Coverage Expect Value 
Genetic identity 

(%) 
Coverage Expect Value Genetic identity (%) 

K1 (A) 100 0.00 96.12 99 0.00 85.74 

K3 (A) 100 0.00 96.12 99 0.00 85.74 

WP9 (A) 99 0.00 96.25 100 0.00 85.60 

J3 (B) 96 2e179 86.87 100 0.00 98.83 

J4 (B) 97 2e-125 84.78 99 0.00 99.15 

J6 (B) 99 0.00 86.48 100 0.00 99.84 

J7 (B) 99 0.00 86.44 100 0.00 99.16 

J8 (B) 99 0.00 86.45 99 0.00 100 

KI4 (B) 99 0.00 86.48 100 0.00 99.84 

KI5 (B) 99 0.00 86.32 100 0.00 99.67 

WP3 (B) 99 0.00 86.32 100 0.00 99.51 

WP5 (B) 98 0.00 86.64 99 0.00 99.83 

WP8 (B) 99 0.00 86.42 100 0.00 99.85 

CLPE8* (B) 99 0.00 86.84 100 0.00 99.84 

CLP4* (B) 98 2e-169 86.57 100 0.00 99.82 

CLP11* (B) 98 5e-171 86.75 100 0.00 100 

CLP15* (B) 98 5e-171 86.75 100 0.00 100 

 185 

Genetic distance and genetic gap 186 



 

Table 2 summarizes the genetic distance and gap between morphotype A and E. emeritus KR047035, as well as 187 

morphotype B and Emerita sp. MZ571198. The genetic gap was estimated based on the difference between the maximum 188 

and the minimum genetic distance of species. 189 

 190 
Table 2. Genetic distance and gap within and among species (%) 191 

Population Emerita emeritus Emerita sp.  

Emerita emeritus 0.00 – 3.20 16.80 – 19.00 

Emerita sp. 16.80 – 0.190 0.00 – 1.70 

The gap between E. emeritus and Emerita sp. 16.80-3.20 = 13.6  

 192 

Genetic divergence 193 

Variance analysis and Fst value indicated that the two morphotypes showed significant genetic differences with a p-194 

value of 0.005 (Table 3). The significant genetic difference between the two indicated that both belong to two different 195 

species, proved by the BLAST result. 196 

 197 
Table 3. Variance and Fst analysis indicate significant genetic divergence between two Emerita morphotypes 198 

Source of variation d.f Sum of squares Variance components Percentage of variation 

Between morphotypes 1 1.303 0.143Va 26.53 

Within morphotypes 17 6.750 0.397 73.47 

Total 18 8.053 0.540  

Fixation index (Fst): 0.265 

p-value (Va and Fst) 0.0059 

 199 

Amino acid composition 200 

The morphotypes were also subjected to amino acid composition to define molecular divergence, as summarized in 201 

Table 4. 202 

 203 
Table 4. Amino acid composition of each morphotype (%) 204 

Nucleotide 
Morphotype 

Morphotype A Morphotype B 

A 24.34 19.60 

T 29.72 33.41 

G 27.39 28.93 

C 18.54 18.05 

 205 

This research delineated the samples of morphotype A as Emerita emeritus. This is due to the strong genetic and 206 

conspecific identities of 96.12% to 96.25% and 85.60% to 85.74% for Emerita sp (MZ571198). Morphotype A was 207 

delineated into E. emeritus because genetic divergence within species may range from 0% to 4.6% (da Silva et al. 2014) or 208 

higher (Weis et al. 2014). Genetic divergence between morphotype A and Emerita emeritus KR047035 was below 4.6% 209 

(da Silva et al. 2014). The highest value was 3.88%, within the allowable range of 4% to 5%, as a moderate level of 210 

genetic identity for species delineation (Jeffery et al. 2011). This study has selected the value because the mutation rate of 211 

the COI gene is species-specific (Karanovic et al. 2015; Palecanda 2020). A genetic threshold between 4% and 5% is 212 

permissible for genetic species determination, although additional considerations should be accounted (Higashi et al. 2011; 213 

Jeffrey et al. 2011). Previous studies also utilized a genetic threshold of 5% during species determination (Candek and 214 

Kuntner 2015; Kusbiyanto et al. 2020; Riani et al. 2021). 215 

The remaining 14 samples were identified as Emerita sp. nov. because of their high genetic identity (98.83% to 100%) 216 

to Emerita sp. MZ571198. In contrast, morphotype B had a low genetic identity (84.78% to 86.87%) to Emerita emeritus 217 

KR047035. This value is widely used as a genetic threshold in species delineation during animal barcoding (Hubert et al. 218 

2010; Candek and Kuntner 2015).  219 

The division of morphotypes A and B into two distinct species is due to a genetic distance ranging from 16.80% to 220 

19.00%, with a genetic gap of % (Table 2). Moreover, the two morphotypes also showed significant genetic variances and 221 

fixation index (p = 0.0059, Table 3) with different compositions of nucleotide content, especially in Adenine (A) and 222 

Thymine (T) composition (Table 4). Amino acid AT was higher than GC in both morphotypes, but the content of A and T 223 

was different. The phenomena were also reported in fish (Elvyra et al. 2020). The molecular difference observed in this 224 

study is in line with morphotypes A and B morphology. Therefore, the delineation of morphotypes A and B as Emerita 225 

emeritus and Emerita sp. nov. was reliable.  226 

This study also proved that the CO1 gene is a good marker for taxonomic identification into species level. The 227 

reliability the COI gene as a barcode because it is highly variable among animal species (Sachithanandam et al. 2012; 228 

Balkhis et al. 2011; Winarni et al., 2021). Similar phenomena were also reported from several locations across Indonesia 229 

(Muchlisin et al. 2013; Irmawati et al. 2017; Pramono et al. 2017) and other regions (Aquilino et al. al. 2011; 230 

Triantafyllidis et al. 2011). 231 



 

Historical demography and genetic diversity of Emerita sp. nov. 232 
Historical demography 233 

Tajima’s D value was -1.563 (p = 0.044). That statistically significant results assumed that the used COI marker was 234 

under selection pressure. Instead of accepting selection pressure on the used marker, the negative sign of the D value 235 

indicated a recent population bottleneck and neutrality of the marker (Tajima1989; Jong et al. 2011). The negative 236 

symptoms and non-significant Fs (-1.580, p= 0.147) could be used to assume that the marker was neutral marker and 237 

indicated population bottleneck (Table 5). The assumption was based on a fact that Fus’ Fs values are believed to be more 238 

sensitive than Tajimas’ D. According to Jong et al. (2011) and Mohammed et al. (2021), sensitivity of Fus’ Fs values 239 

because it is calculated based on nucleotide diversity. A similar phenomenon was also reported in fish (Setyaningrum et al. 240 

2022). Therefore, the used COI marker could be assumed as a neutral marker for assessing the genetic diversity of the 241 

Emerita sp population in the Cilacap coastlines. 242 
 243 
Table 5. Species, number of individuals (N), number of haplotypes (nhp), haplotype diversity (h), nucleotide diversity (µ), Tajima’D, 244 
and Fu’s Fs values 245 

Species N nhp h µ D p-sig. Fs p-sig. 

Emerita sp. 15 7 0.857 ± 0.057 0.005 ± 0.003 -1.563* 0.044 -1.580ns 0.147 

Note: *= significant, ns= not significant 246 
 247 

Genetic diversity 248 

Multiple sequences alignment resulted s total of 418 bp COI gene fragment from 14 individuals Emerita sp. nov. 249 

collected from the coastlines of Widarapayung Wetan, Widarapayung Kulon, and Sedayu Villages, District of Binagun, 250 

Cilacap Regency, Central Java, Indonesia. Furthermore, 12 out of 418 bp were polymorphic, resulting in 7 haplotypes, and 251 

the haplotype diversity was 0.857 ± 0.057 (Table 5). This data indicates that the Emerita sp. nov. population in the Cilacap 252 

coastlines has high genetic diversity. The nucleotide diversity value (µ) was 0.005 ± 0.003, which revealed low nucleotide 253 

diversity and a relatively low rate of evolution in the Emerita sp. nov. population on the Cilacap coastlines. The haplotype 254 

network (Figure 3) shows that haplotypes were separated by 2 to 5 mutation steps. However, the mutation was widely 255 

distributed in the population, as indicated by high diversity (0.857 ± 0.057). High haplotype diversity assessed using the 256 

COI gene was widespread in animal phyla (Dorn et al. 2011; Dung et al. 2013; Song et al. 2013; Zhang et al. 2014; 257 

Nuryanto et al. 2019). At the same time, low haplotype diversity was also common in animal populations (Setyaningrum et 258 

al. 2022). The COI gene’s study may show a complex pattern of diversity levels, even within species (Pavesi et al. 2011; 259 

Parmaksiz and Eksi 2017). The phenomena are also observed in population studies using other markers, such as 260 

microsatellites (Esa and Rahim 2013; Gouskov et al. 2016; Abbas et al. 2017; Achrem et al. 2017; Cheng et al. 2017) and 261 

d-loop (Zhong et al. 2013; Liu et al. 2016; Lau et al. 2018; Parmaksiz 2019; Ariyaraphong et al. 2021; Zhang et al. 2022). 262 

This study cannot be compared with previous results because there is no population genetic study on mole crabs, 263 

especially on the presumable Emerita sp. nov. The only population study was conducted by Pramithasari et al. (2017), who 264 

compared mole crabs (Albunea symmysta) populations in Java and Sumatra. However, their study used morphological 265 

data, and the comparison to Pramithasari et al. (2017) was not congruent. This fact implies that more studies on the 266 

population genetics of mole crabs are needed. 267 

Evolutionary relationships among Emerita sp. nov. individuals 268 
The evolutionary process of the Emerita sp. nov. population on the southern coast of Cilacap is presented in the 269 

haplotype network (Figure 7). Star-like haplotype network in Figure 7 showed that haplotype 2 was the most primitive. 270 

Meanwhile, H2 was the center of the network, and other haplotypes evolved from (H2) as the most abundant (Balkhis et 271 

al., 2011; Song et al., 2012). The result contradicted the general acceptance that primitive haplotype has the highest 272 

abundance in the population (Adamson et al. 2012; Barasa et al. 2014; Basvar et al. 2018; 2019). The low frequency of H2 273 

observed was assumed because of the small population (14 individuals). However, this assumption should be proven based 274 

on a further study using a high number of analyzed individuals. 275 

 276 

Figure 7. Haplotype networks indicating evolutionary relationships among Emerita sp. individuals 277 



 

 278 

According to the analyzed data, this study concluded that mole crabs (Genus Emerita) in the Cilacap coastlines 279 

consisted of two distinct sympatric species (Emerita emeritus and Emerita sp. nov). Emerita sp. nov. had high haplotype 280 

diversity and was more abundant than Emerita emeritus. As a result, comprehensive research in terms of sampling site, 281 

number of samples, and other biological characteristics are needed to provide complete information for sympatric and taxa 282 

species of Emerita sp. nov. 283 
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Morphological and molecular characterization of mole crab (Genus: 1 

Emerita) in the Cilacap coastlines of Indonesia, with particular focus on 2 

genetic diversity of Emerita sp. nov.  3 

  4 

Abstract. Previous studies reported Emerita emeritus is the only species of the Genus Emerita inhabiting the coastal ecosystem of the 5 
Cilacap Regency. A recent study reported the presence of suspected new Emerita species living on the Cilacap sandy beach but used a 6 
small number of specimens and no reports about genetic diversity. This study used more Emerita samples than the previous study. This 7 
study aimed to identify Emerita specimens based on the morphology and the cytochrome c oxidase 1 gene and analyzed the genetic 8 
diversity of Emerita sp. nov. Emerita samples were collected from three different beaches in Cilacap Regency, Central Java, Indonesia. 9 
Morphological identification placed the samples into two different morphotypes. Morphotype A was identified as Emerita emeritus. 10 
Morphotype B was determined as Emerita sp. nov. Molecular data support the placement of Emerita samples into Emerita emeritus, and 11 
Emerita sp. nov. Emerita sp. nov. has haplotype diversity of 0.857 ± 0.057, indicating a high genetic diversity. Haplotype H2 was 12 
suggested as the most primitive one because other haplotypes radiated from it. This study concluded that two sympatric Emerita species 13 
inhabit Cilacap coastlines, and Emerita sp. nov. has high genetic diversity. 14 

Keywords: Albunea, genetic variation, Hyppa, polymorphism, sand crabs 15 

Abbreviations:  COI= cytochrome c oxidase 1 16 

Running title: Morphological and molecular characterization of mole crabs  17 

INTRODUCTION 18 

Classical taxonomy and systematic utilized morphological data during species characterization (Erlank et al., 2018; 19 

Shu et al., 2022). In some animal groups, morphology characteristics are entirely satisfactory (Chan et al. 2016; Mauroka 20 

et al. 2018; Korovchinsky 2019). However, in other groups, this character may lead to identification mistakes, especially in 21 

groups with limited morphological differences, such as in mole crab from the Genus Albunea (Boko and MacLaughlin 22 

2010), cryptic species (Karanovic 2015; Bilgin et al. 2015; Bekker et al. 2016; Kusbiyanto 2020) or group with limited and 23 

undeveloped morphological characters, such as egg, larvae, and early juvenile (Ko et al. 2013; Palero et al. 2016; 24 

Palecanda 2020)  25 

Mole crabs, locally known as ‘yutuk,’ belong to Decapoda from the superfamily Hippoidea. It consists of three 26 

different families of Albuneidae, Blepharipodidae, and Hippidae, which are divided into Emerita and Hippa genera. 27 

Moreover, ten species have been identified and described under Genus Emerita (Boyko and McLaughlin 2010). This 28 

crustacean group is widely distributed over the World (Boyko and McLaughlin 2010), and the distribution has been 29 

elaborated by Mahapatro et al. (2018). In Indonesia, these crabs inhibit sandy coastlines from the West Coast of Sumatera 30 

to Moluccas (Wardiatno et al., 2015; Boyko and Harvey, 1999).  31 

Previous studies reported that the three genera of Hippoidea have been described from Indonesia waters (Bhagawati et 32 

al. 2016; Pramithasari et al. 2017; Nugroho et al. 2018; Butet et al. 2019; Hartoko et al. 2019; Bhagawati et al. 2020). 33 

Other studies described Emerita emeritus as the only species of genus Emerita found on the southern coastlines of Java 34 

(Nugroho et al. 2018; Dewi et al. 2019; Krisanti et al. 2020; Suryanti et al. 2020), including from Cilacap sandy beaches, 35 

such as Widarapayung beach, District of Binangun (Bhagawati et al. 2016; Haq et al. 2018). However, recent studies 36 

observed morphological and molecular deviations in some samples to the Emerita emeritus characteristics. The possible 37 

presence of the species complex’s sympatric of the Cilacap coastlines was reported (Nuryanto et al., 2020). Even, Hanim 38 

et al. (2017) proposed a scientific name for the new suspected species of Emerita from Pangandaran beach, as Emerita 39 

pangandarensis sp. nov., but . Still, the international commission has not approved itsit has not been approved by the 40 

international commission of zoological nomenclature. However, the studies by Nuryanto et al. (2020) and Hanim et al. 41 

(2017) were conducted in few samples and only focused on species identification. These studies did not report genetic 42 

diversity in newly suspected Emerita species. Molecular characterization was performed in a higher number of specimens 43 

and data types. Additionally, it assessed the genetic diversity of new suspected Emerita species collected from the southern 44 

coast of Cilacap, Central Java, Indonesia.  45 

Species identification and population genetic studies were conducted using various molecular markers (Nuryanto et al., 46 

2017; Butet et al., 2019; Nuryanto et al., 2019; Elvyra et al., 2020; Setyaningrum et al., 2022; Riani et al. 2021). The 47 



 

cytochrome c oxidase 1 (COI) gene is a common marker used in species determination (Ko et al., 2013; Muchlisin et al., 48 

2013; Dahruddin et al., 2016; Irmawati et al., 2017; Syaifudin et al. 2020) and population genetic studies (Song et al. 2013; 49 

Zhang et al. 2014; Fahmi 2015; Nuryanto et al. 2019). Therefore, this research aimed to characterize samples of genus 50 

Emerita based on morphological and molecular characteristics, as well as and assess the genetic diversity using the 51 

cytochrome c oxidase 1 gene. 52 

MATERIALS AND METHODS  53 

Research location and sampling sites  54 
The samples of mole crabs were collected from the sandy coastal region of the Cilacap Regency, Central Java, 55 

Indonesia. Additionally, the sampling was carried out in Jetis beach in the District of Nusawungu as well as Kenari Indah 56 

and Widarapayung beaches in the District of Binangun, Cilacap Regency, Central Java, Indonesia (Figure 1).  57 

 58 

 59 
Figure 1. Peta Sampling Location of Emerita at Jetis Beach, Kenari Indah and Widarapayung (source: google maps, modified 60 

by S.S. Asmarani, 2022) 61 

 62 

 63 

Mole crabs sampling 64 
Emerita specimens were collected manually using two traditional fishing gears called “sodo nets” and “sorok bamboo” 65 

(Figure 2). Furthermore, local fishermen fishers performed samples collection and handling. Abdominal tissue samples 66 

were cut off for approximately 5 mm
2
 and preserved using 96% alcohol in 2 ml screw lid tubes. 67 

 68 

 69 
Figure 2. Fishing gears for collecting mole crab (Emerita) samples (A. sodo nets and B. sorok bamboo)  70 

 71 

Procedures 72 
Morphological characterization 73 

Freshly collected crabs were brought to Animal Taxonomy Laboratory, Faculty of Biology Jenderal Sudirman 74 

University. The samples were washed thoroughly using freshwater, and morphological characterization was carried out 75 

based on the diagnostic character essential for identifying crustaceans. According to NG (1998), several diagnostic 76 

characteristics for identifying crustaceans are carapax, anterolateral side, dorsal surface, frontal side, buccal 77 

cavern/mouthpart, and locomotion (dactyl and pereopod), abdominal segments, and gonopods. 78 



 

Observations on the genus Emerita were performed by referring to the diagnostic character used by Sankolli (1965), 79 

Bhagawati et al. (2016, 2020); Boyko & Harvey (1999), Haig, (1986); Osawa & Chan (2010), and Wardiatno et al. (2015). 80 

These characteristics are the color and shape of the carapax; the position, number, and shape of the slits (Carapace 81 

Groove/CG) on the carapax surface; spines on the anterior carapax; a curved shape of the margin on the latero-anterior; 82 

and the shape and number of fine spines on the latero-anterior portion. Carapax height measurements were conducted on 83 

the front, middle, and back of the body, with the shape and size of the eyestalk. The merus distal and dactyl form on the 84 

maxilliped-3 and the first pereopod, while spines and hairs form on the margin of the first pereopod dactyl. Pleopods are 85 

formed in the abdominal segment as pleural. 86 

 87 

DNA isolation and marker amplification  88 

Genomic DNA was isolated from abdominal tissue samples using the Quick-DNA™ Miniprep Plus kit from Zymo’s 89 

research. The processes were conducted based on the procedures provided by the company. The extracted DNA was 90 

migrated in 1% agarose electrophoresis and stained using ethidium bromide. The COI gene marker fragments were 91 

amplified using FishF2 and FishR2 primers (Ward et al. 2005) in Primus 25 Peqlab Thermocycler. Subsequently, the 92 

amplification reactions consisted of 1x buffer PCR, 2 mM MgCl2, 0.2 mM of each primer, 0.2 mM dNTP mix, 1 U Taq 93 

polymerase, and 2.0 ng / μl template DNA. The final volume to 50 μl of the mixtures was adjusted by adding DNA-RNA-94 

free water. The pre-denaturation step at 95°C started thermal cyclesThermal cycles were started by pre-denaturation step at 95 

95°C for 4 minutes. The amplification reactions were performed for 35 cycles with denaturation steps that lasted for 30 96 

seconds at 95°C, followed by annealing at 53°C for 120 seconds, and terminated by extension steps 60 for minutes at 97 

72°C.  Additionally, a final elongation step terminated the cycles after 5 minutes, at 72°C. The amplified COI marker were 98 

was stained using ethidium bromide in 1.5% agarose gel and documented using the GelDoc apparatus (BioRad).  99 

Marker sequencing and editing 100 

Nucleotide sequencing of the used marker was conducted in the Molecular Genetic Laboratory of PT Genetika Science 101 

Indonesia Jakarta, according to the Sanger method. The study obtained consensus and multiple alignments by assembling 102 

the forward and reverse sequences using ClustalW ver.1.4 in Bioedit (Hall 2011). In addition, it obtained haplotype and 103 

Arlequin data files from its generating process in DnaSP 6 (Rozas et al., 2017).  104 

Data analysis 105 
The taxonomic status of Emerita samples was delineated based on a sequence homology to the conspecific relative 106 

available in GenBank. This test was carried out using an essential local alignment search tool (BLAST). Additionally, 107 

thisThis study was also used genetic distance genetic divergence or a gap of 5% (Candek and Kuntner, 2015; 108 

Setyaningrum et al., 2020). Variance analysis and fixation statistic (Fst) were conducted in Arlequin 3.5 (Excoffier & 109 

Lischer 2010) to estimate significant genetic divergence between the morphotypes. The diversity data was evaluated using 110 

Haplotypes (h) and nucleotide (π) diversities, calculated using Arlequin 3.5. Similarly, the neutrality of the used COI 111 

marker was tested using Fs and D values (Excoffier & Lischer 2010). Evolutionary relationships among haplotypes were 112 

estimated based on haplotype networks reconstructed using the median-joining method in NETWORK software (Bandelt 113 

et al. 1999).  114 

RESULTS AND DISCUSSION 115 

Taxonomic status  116 
Morphological identification 117 

A total of 17 individual Emerita samples were analyzed during the study. Morphological identification separated the 118 

samples into two different morphotypes. The first (A) and second (B) morphotypes consisted of 3 and 14 individuals, 119 

respectively (Figures 3A and 3B). However, they have similar general morphological characteristics that lead to Genus 120 

Emerita placement. The body of the Emerita crab is light, dark to blackish gray, with a slightly cylindrical shape with a 121 

wider distal carapace area. The eyestalk is long and slender, extending beyond the second antenna segment. The antennae 122 

are very long with hairy setae, and the segment on the second antenna consists of 3 horn-like and median spines. There are 123 

two oblique elongated protrusions with distinct spines that can be moved at the edges. The carapace has 3 frontal lobes, 124 

with the median very pointed and triangular, separated from the lateral lobe. The surface of the carapace has visible line-125 

shaped slits located post-frontal and post-gastric. The latero-frontal margin has fine spines with sparse hairs. It has a short 126 

abdomen with a long telson, almost half the carapace length. The first pereopods were simple with an oval, lamellate 127 

dactyl, less than twice the width. Dactylus of the first pereopod with 4-5 rigid spines is found in the distal half of the lower 128 

margin, while 1-3 with 2 spines is in the tip. 129 

The morphotypes A and B were differentiated by the following characteristics. The frontal part of the carapace showed 130 

differences in the shape and length of the spines at the base of the second antenna segment, the shape of a hollow between 131 

the three spines at the tip of the carapace, and the post-frontal and post-gastric cleft forms (Fig. 3). Individuals with 132 

morphotype A have eye stalks longer than the spines at the second antenna base (Figure 3A). In contrast, morphotype B 133 



 

has eye stalks almost the same length as the spines at the second antenna base. Another performance is the concave shape 134 

between the three spines on the frontal carapace. Morphotype A does not form an angle, while B forms a curve. The shape 135 

of the gap found in the post-frontal area is a straight line, neat and flat in morphotype A, but it is elevated in morphotype B 136 

with a curved line in the post-stomach. In morphotype A, the arch is not too deep, and its carapace’s right and left ends 137 

have a thin curved slit. In contrast, morphotype B has a narrower curved line. 138 

 139 

 140 
Figure 3. Frontal carapace on morphotype A and morphotype B 141 

 142 

Based on the latero-frontal section on body height, morphotype A had a flatter body shape than B (Figure 4.). There are 143 

differences in the spines at the second antenna base from the lateral side between morphotypes A and B. Furthermore, 144 

Morphotype A has slightly curved outer spines, while B tends to be straight. The latero-frontal margin of the carapace, 145 

which contains fine spines with sparse hairs between the two morphotypes, has different spine shapes, arch, and the 146 

number of spines. The tip of the spine is not sharp; hence, when touched, it feels like a smooth protrusion. The anterior end 147 

of the margin does not have spines and has a shorter size than that of morphotype B. The shape of the posterior carapace 148 

margin curve in morphotype A is more prominent without spines. In contrast, it is more sloping in morphotype B, which 149 

has fine spines. 150 

 151 

 152 
Figure 4. Latero-frontal carapace in morphotype A and morphotype B 153 

 154 

Morphotypes A and B had different shapes on the distal part of the merus of the third maxilliped (Figure 5). Sankolli 155 

(1965), Kazmi and Siddiqui (2006), Boyko (2002), and Bhagawati et al. characterize morphotype A as having features 156 

similar to Emerita emeritus (Linnaeus, 1756) (2016; 2020). Morphotype A has the first pereopod dactyl oval, measuring 157 

less than twice the largest width. There are distinct spines on margins and occupy nearly the distal third of the lower part. 158 

Morphotype B has the character of the first pereopod dactyl, which is similar to morphotype A. However, the spines on the 159 

margins are smaller and possess the same size. 160 

 161 

 162 



 

Figure 5. The distal part of the merus of the third maxilliped: Morphotype A; Morphotype B; and C. schematic of Emerita 163 

emeritus (Linnaeus 1756.), ovigerous females from Madras (Sonkolli 1965) 164 

 165 

 166 
Figure 6. First pereopod on morphotype A, morphotype B, and schematic of Emerita emeritus (Linnaeus 1756.), 167 

ovigerous females from Madras (Sonkolli, 1965) 168 

 169 

Based on their morphological characteristics, morphotypes A and B have many similarities (Emerita) and differences, 170 

suggesting the occurrence of new species. However, it has been well-known that mole crabs from the superfamily 171 

Hippoidea show high variability in morphology (Poore 2004; Ahyong et al. 2009; Schnabel and Ahyong 2009). This 172 

condition may lead to misidentification when performed based on morphological characters. Molecular data confirmed the 173 

possible occurrence of Sympatric species of Emerita emeritus in the Cilacap coastlines (Nuryanto et al. 2020) inferred 174 

from several specimens. Therefore, further study is still needed using more samples to strengthen the data on new Emerita 175 

species in the areas.  176 

 177 

Molecular characterization 178 

Sequence identity tests to the closest relative in GenBank revealed that three individuals (KI1, KI3, and WP9) of the 179 

morphotype A have high sequence identities to Emerita emeritus KR047035 ranging from 96.12 % to 96.25 %. In contrast, 180 

the sequence identities to Emerita sp. ranged from 85.60 % to 85.74 %. The remaining 14 individuals of the morphotype B 181 

showed low identities to Emerita emeritus KR 047035 in GenBank, ranging between 84.78% and 86.87%. The sequence 182 

identity of the remaining 14 specimens of the morphotype B to Emerita sp. MZ571198 was high ranging from 98.83 to 183 

100% (Table 1). 184 

 185 
Table 1. The BLAST parameters of Emerita samples from Cilacap coastlines to their conspecific relatives in GenBank 186 

Samples 

Emerita emeritus KR047035 Emerita sp. MZ571198 

Coverage Expect Value 
Genetic identity 

(%) 
Coverage Expect Value Genetic identity (%) 

K1 (A) 100 0.00 96.12 99 0.00 85.74 

K3 (A) 100 0.00 96.12 99 0.00 85.74 

WP9 (A) 99 0.00 96.25 100 0.00 85.60 

J3 (B) 96 2e179 86.87 100 0.00 98.83 

J4 (B) 97 2e-125 84.78 99 0.00 99.15 

J6 (B) 99 0.00 86.48 100 0.00 99.84 

J7 (B) 99 0.00 86.44 100 0.00 99.16 

J8 (B) 99 0.00 86.45 99 0.00 100 

KI4 (B) 99 0.00 86.48 100 0.00 99.84 

KI5 (B) 99 0.00 86.32 100 0.00 99.67 

WP3 (B) 99 0.00 86.32 100 0.00 99.51 

WP5 (B) 98 0.00 86.64 99 0.00 99.83 

WP8 (B) 99 0.00 86.42 100 0.00 99.85 

CLPE8* (B) 99 0.00 86.84 100 0.00 99.84 

CLP4* (B) 98 2e-169 86.57 100 0.00 99.82 

CLP11* (B) 98 5e-171 86.75 100 0.00 100 

CLP15* (B) 98 5e-171 86.75 100 0.00 100 



 

 187 

Genetic distance and genetic gap 188 

Table 2 summarizes the genetic distance and gap between morphotype A and E. emeritus KR047035, as well as and 189 

morphotype B and Emerita sp. MZ571198. The genetic gap was estimated based on the difference between the maximum 190 

and the minimum genetic distance of species. 191 

 192 
Table 2. Genetic distance and gap within and among species (%) 193 

Population Emerita emeritus Emerita sp.  

Emerita emeritus 0.00 – 3.20 16.80 – 19.00 

Emerita sp. 16.80 – 0.190 0.00 – 1.70 

The gap between E. emeritus and Emerita sp. 16.80-3.20 = 13.6  

 194 

Genetic divergence 195 

Variance analysis and Fst value indicated that the two morphotypes showed significant genetic differences with a p-196 

value of 0.005 (Table 3). The significant genetic difference between the two indicated that both belong to two different 197 

species, proved by the BLAST result. 198 

 199 
Table 3. Variance and Fst analysis indicate significant genetic divergence between two Emerita morphotypes 200 

Source of variation d.f Sum of squares Variance components Percentage of variation 

Between morphotypes 1 1.303 0.143Va 26.53 

Within morphotypes 17 6.750 0.397 73.47 

Total 18 8.053 0.540  

Fixation index (Fst): 0.265 

p-value (Va and Fst) 0.0059 

 201 

Amino acid composition 202 

The morphotypes were also subjected to amino acid composition to define molecular divergence, as summarized in 203 

Table 4. 204 

 205 
Table 4. Amino acid composition of each morphotype (%) 206 

Nucleotide 
Morphotype 

Morphotype A Morphotype B 

A 24.34 19.60 

T 29.72 33.41 

G 27.39 28.93 

C 18.54 18.05 

 207 

This research delineated the samples of morphotype A as Emerita emeritus. This is due to the strong genetic and 208 

conspecific identities of 96.12% to 96.25% and 85.60% to 85.74% for Emerita sp (MZ571198). Morphotype A was 209 

delineated into E. emeritus because genetic divergence within species may range from 0% to 4.6% (da Silva et al. 2014) or 210 

higher (Weis et al. 2014). Genetic divergence between morphotype A and Emerita emeritus KR047035 was below 4.6% 211 

(da Silva et al. 2014). The highest value was 3.88%, within the allowable range of 4% to 5%, as a moderate level of 212 

genetic identity for species delineation (Jeffery et al. 2011). This study has selected the value because the mutation rate of 213 

the COI gene is species-specific (Karanovic et al., 2015; Palecanda, 2020). A genetic threshold between 4% and 5% is 214 

permissible for genetic species determination, although additional considerations should be accounted for (Higashi et al., 215 

2011; Jeffrey et al., 2011). Previous studies also utilized a genetic threshold of 5% during species determination (Candek 216 

and Kuntner 2015; Kusbiyanto et al. 2020; Riani et al. 2021). 217 

The remaining 14 samples were identified as Emerita sp. nov. because of their high genetic identity (98.83% to 100%) 218 

to Emerita sp. MZ571198. In contrast, morphotype B had a low genetic identity (84.78% to 86.87%) to Emerita emeritus 219 

KR047035. This value is widely used as a genetic threshold in species delineation during animal barcoding (Hubert et al., 220 

2010; Candek and Kuntner, 2015).  221 

The division of morphotypes A and B into two distinct species is due to a genetic distance ranging from 16.80% to 222 

19.00%, with a genetic gap of % (Table 2). Moreover, the two morphotypes also showed significant genetic variances and 223 

fixation index (p = 0.0059, Table 3) with different compositions of nucleotide content, especially in Adenine (A) and 224 

Thymine (T) composition (Table 4). Amino acid AT was higher than GC in both morphotypes, but the content of A and T 225 

was different. The phenomena were also reported in fish (Elvyra et al., 2020). The molecular difference observed in this 226 

study is in line with morphotypes A and B morphology. Therefore, the delineation of morphotypes A and B morphotypes 227 

A and B delineated as Emerita emeritus and Emerita sp. nov. was reliable.  228 

This study also proved that the CO1 gene is a good marker for taxonomic identification into at the species level. The 229 

reliability the COI gene as a barcode because itCOI gene’s reliability as a barcode is highly variable among animal species 230 

(Sachithanandam et al., 2012; Balkhis et al., 2011; Winarni et al., 2021). Similar phenomena were also reported from 231 



 

several locations across Indonesia (Muchlisin et al. 2013; Irmawati et al. 2017; Pramono et al. 2017) and other regions 232 

(Aquilino et al. al. 2011; Triantafyllidis et al. 2011). 233 

Historical demography and genetic diversity of Emerita sp. nov. 234 
Historical demography 235 

Tajima’s D value was -1.563 (p = 0.044). That statistically significant results assumed that the used COI marker was 236 

under selection pressure. Instead of accepting selection pressure on the used marker, the negative sign of the D value 237 

indicated a recent population bottleneck and neutrality of the marker (Tajima1989; Jong et al. 2011). The negative 238 

symptoms and non-significant Fs (-1.580, p= 0.147) could be used to assume that the marker was neutralneutral marker 239 

and indicated a population bottleneck (Table 5). The assumption was based on a the fact that Fus’ Fs values are believed to 240 

be more sensitive than Tajimas’ D. According to Jong et al. (2011) and Mohammed et al. (2021), the sensitivity of Fus’ Fs 241 

values because it is calculated based on nucleotide diversity. A similar phenomenon was also reported in fish 242 

(Setyaningrum et al., 2022). Therefore, the used COI marker could be assumed as a neutral marker for assessing the 243 

genetic diversity of the Emerita sp population in the Cilacap coastlines. 244 
 245 
Table 5. Species, number of individuals (N), number of haplotypes (nhp), haplotype diversity (h), nucleotide diversity (µ), Tajima’D, 246 
and Fu’s Fs values 247 

Species N nhp h µ D p-sig. Fs p-sig. 

Emerita sp. 15 7 0.857 ± 0.057 0.005 ± 0.003 -1.563* 0.044 -1.580ns 0.147 

Note: *= significant, ns= not significant 248 
 249 

Genetic diversity 250 

Multiple sequences alignment resulted in s total of 418 bp COI gene fragment fragments from 14 individuals Emerita 251 

sp. nov. collected from the coastlines of Widarapayung Wetan, Widarapayung Kulon, and Sedayu Villages, District of 252 

Binagun, Cilacap Regency, Central Java, Indonesia. Furthermore, 12 out of 418 bp were polymorphic, resulting in 7 253 

haplotypes, and the haplotype diversity was 0.857 ± 0.057 (Table 5). This data indicates that the Emerita sp. nov. 254 

population in the Cilacap coastlines has high genetic diversity. The nucleotide diversity value (µ) was 0.005 ± 0.003, 255 

which revealed low nucleotide diversity and a relatively low rate of evolution in the Emerita sp. nov. population on the 256 

Cilacap coastlines. The haplotype network (Figure 3) shows that haplotypes were separated by 2 to 5 mutation steps. 257 

However, the mutation was widely distributed in the population, as indicated by high diversity (0.857 ± 0.057). High 258 

haplotype diversity assessed using the COI gene was widespread in animal phyla (Dorn et al., 2011; Dung et al., 2013; 259 

Song et al., 2013; Zhang et al., 2014; Nuryanto et al., 2019). At the same time, low haplotype diversity was also common 260 

in animal populations (Setyaningrum et al., 2022). The COI gene’s study may show a complex pattern of diversity levels, 261 

even within species (Pavesi et al., 2011; Parmaksiz and Eksi, 2017). The phenomena are also observed in population 262 

studies using other markers, such as microsatellites (Esa and Rahim 2013; Gouskov et al. 2016; Abbas et al. 2017; Achrem 263 

et al. 2017; Cheng et al. 2017) and d-loop (Zhong et al. 2013; Liu et al. 2016; Lau et al. 2018; Parmaksiz 2019; 264 

Ariyaraphong et al. 2021; Zhang et al. 2022). 265 

This study cannot be compared with previous results because there is no population genetic study on mole crabs, 266 

especially on the presumable Emerita sp. nov. The only population study was conducted by Pramithasari et al. (2017), who 267 

compared mole crabs (Albunea symmysta) populations in Java and Sumatra. However, their study used morphological 268 

data, and the comparison to Pramithasari et al. (2017) was not congruent. This fact implies that more studies on the 269 

population genetics of mole crabs are needed. 270 

Evolutionary relationships among Emerita sp. nov. individuals 271 
The evolutionary process of the Emerita sp. nov. population on the southern coast of Cilacap is presented in the 272 

haplotype network (Figure 7). Star-like haplotype network in Figure 7 showed that haplotype 2 was the most primitive. 273 

Meanwhile, H2 was the center of the network, and other haplotypes evolved from (H2) as the most abundant (Balkhis et 274 

al., 2011; Song et al., 2012). The result contradicted the general acceptance that primitive haplotype has the highest 275 

abundance in the population (Adamson et al., 2012; Barasa et al., 2014; Basvar et al., 2018; 2019). The low frequency of 276 

H2 observed was assumed because of the small population (14 individuals). However, this assumption should be proven 277 

based on a further study using a high number of analyzed individuals. 278 



 

 279 

Figure 7. Haplotype networks indicating evolutionary relationships among Emerita sp. individuals 280 

 281 

According to the analyzed data, this study concluded that mole crabs (Genus Emerita) in the Cilacap coastlines 282 

consisted of two distinct sympatric species (Emerita emeritus and Emerita sp. nov). Emerita sp. nov. had high haplotype 283 

diversity and was more abundant than Emerita emeritus. As a result, comprehensive research in terms of sampling site, 284 

number of samples, and other biological characteristics are needed to provide complete information for sympatric and taxa 285 

species of Emerita sp. nov. 286 
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Morphological and molecular characterization of mole crab (Genus: 1 

Emerita) in the Cilacap coastlines of Indonesia, with particular focus on 2 

genetic diversity of Emerita sp. nov.  3 

  4 

Abstract. Previous studies reported Emerita emeritus is the only species of the Genus Emerita inhabiting the coastal ecosystem of the 5 
Cilacap Regency. A recent study reported the presence of suspected new Emerita species living on the Cilacap sandy beach but used a 6 
small number of specimens and no reports about genetic diversity. This study used more Emerita samples than the previous study. This 7 
study aimed to identify Emerita specimens based on the morphology and the cytochrome c oxidase 1 gene and analyzed the genetic 8 
diversity of Emerita sp. nov. Emerita samples were collected from three different beaches in Cilacap Regency, Central Java, Indonesia. 9 
Morphological identification placed the samples into two different morphotypes. Morphotype A was identified as Emerita emeritus. 10 
Morphotype B was determined as Emerita sp. nov. Molecular data support the placement of Emerita samples into Emerita emeritus, and 11 
Emerita sp. nov. Emerita sp. nov. has haplotype diversity of 0.857 ± 0.057, indicating a high genetic diversity. Haplotype H2 was 12 
suggested as the most primitive one because other haplotypes radiated from it. This study concluded that two sympatric Emerita species 13 
inhabit Cilacap coastlines, and Emerita sp. nov. has high genetic diversity. 14 

Keywords: Albunea, genetic variation, Hyppa, polymorphism, sand crabs 15 

Abbreviations:  COI= cytochrome c oxidase 1 16 

Running title: Morphological and molecular characterization of mole crabs  17 

INTRODUCTION 18 

Classical taxonomy and systematic utilized morphological data during species characterization (Erlank et al., 2018; 19 

Shu et al., 2022). In some animal groups, morphology characteristics are entirely satisfactory (Chan et al. 2016; Mauroka 20 

et al. 2018; Korovchinsky 2019). However, in other groups, this character may lead to identification mistakes, especially in 21 

groups with limited morphological differences, such as in mole crab from the Genus Albunea (Boko and MacLaughlin 22 

2010), cryptic species (Karanovic 2015; Bilgin et al. 2015; Bekker et al. 2016; Kusbiyanto 2020) or group with limited and 23 

undeveloped morphological characters, such as egg, larvae, and early juvenile (Ko et al. 2013; Palero et al. 2016; 24 

Palecanda 2020)  25 

Mole crabs, locally known as ‘yutuk,’ belong to Decapoda from the superfamily Hippoidea. It consists of three 26 

different families of Albuneidae, Blepharipodidae, and Hippidae, which are divided into Emerita and Hippa genera. 27 

Moreover, ten species have been identified and described under Genus Emerita (Boyko and McLaughlin 2010). This 28 

crustacean group is widely distributed over the World (Boyko and McLaughlin 2010), and the distribution has been 29 

elaborated by Mahapatro et al. (2018). In Indonesia, these crabs inhibit sandy coastlines from the West Coast of Sumatera 30 

to Moluccas (Wardiatno et al., 2015; Boyko and Harvey, 1999).  31 

Previous studies reported that the three genera of Hippoidea have been described from Indonesia waters (Bhagawati et 32 

al. 2016; Pramithasari et al. 2017; Nugroho et al. 2018; Butet et al. 2019; Hartoko et al. 2019; Bhagawati et al. 2020). 33 

Other studies described Emerita emeritus as the only species of genus Emerita found on the southern coastlines of Java 34 

(Nugroho et al. 2018; Dewi et al. 2019; Krisanti et al. 2020; Suryanti et al. 2020), including from Cilacap sandy beaches, 35 

such as Widarapayung beach, District of Binangun (Bhagawati et al. 2016; Haq et al. 2018). However, recent studies 36 

observed morphological and molecular deviations in some samples to the Emerita emeritus characteristics. The possible 37 

presence of the species complex’s sympatric of the Cilacap coastlines was reported (Nuryanto et al., 2020). Even, Hanim 38 

et al. (2017) proposed a scientific name for the new suspected species of Emerita from Pangandaran beach, as Emerita 39 

pangandarensis sp. nov.. Still, the international commission has not approved its zoological nomenclature. However, the 40 

studies by Nuryanto et al. (2020) and Hanim et al. (2017) were conducted in few samples and only focused on species 41 

identification. These studies did not report genetic diversity in newly suspected Emerita species. Molecular 42 

characterization was performed in a higher number of specimens and data types. Additionally, it assessed the genetic 43 

diversity of new suspected Emerita species collected from the southern coast of Cilacap, Central Java, Indonesia.  44 

Species identification and population genetic studies were conducted using various molecular markers (Nuryanto et al., 45 

2017; Butet et al., 2019; Nuryanto et al., 2019; Elvyra et al., 2020; Setyaningrum et al., 2022; Riani et al. 2021). The 46 

cytochrome c oxidase 1 (COI) gene is a common marker used in species determination (Ko et al., 2013; Muchlisin et al., 47 



 

2013; Dahruddin et al., 2016; Irmawati et al., 2017; Syaifudin et al. 2020) and population genetic studies (Song et al. 2013; 48 

Zhang et al. 2014; Fahmi 2015; Nuryanto et al. 2019). Therefore, this research aimed to characterize samples of genus 49 

Emerita based on morphological and molecular characteristics and assess the genetic diversity using the cytochrome c 50 

oxidase 1 gene. 51 

MATERIALS AND METHODS  52 

Research location and sampling sites  53 
The samples of mole crabs were collected from the sandy coastal region of the Cilacap Regency, Central Java, 54 

Indonesia. Additionally, the sampling was carried out in Jetis beach in the District of Nusawungu as well as Kenari Indah 55 

and Widarapayung beaches in the District of Binangun, Cilacap Regency, Central Java, Indonesia (Figure 1).  56 

 57 

 58 
Figure 1. Peta Sampling Location of Emerita at Jetis Beach, Kenari Indah and Widarapayung (source: google maps, modified 59 

by S.S. Asmarani, 2022) 60 

 61 

 62 

Mole crabs sampling 63 
Emerita specimens were collected manually using two traditional fishing gears called “sodo nets” and “sorok bamboo” 64 

(Figure 2). Furthermore, local fishers performed samples collection and handling. Abdominal tissue samples were cut off 65 

for approximately 5 mm
2
 and preserved using 96% alcohol in 2 ml screw lid tubes. 66 

 67 

 68 
Figure 2. Fishing gears for collecting mole crab (Emerita) samples (A. sodo nets and B. sorok bamboo)  69 

 70 

Procedures 71 
Morphological characterization 72 

Freshly collected crabs were brought to Animal Taxonomy Laboratory, Faculty of Biology Jenderal Sudirman 73 

University. The samples were washed thoroughly using freshwater, and morphological characterization was carried out 74 

based on the diagnostic character essential for identifying crustaceans. According to NG (1998), several diagnostic 75 

characteristics for identifying crustaceans are carapax, anterolateral side, dorsal surface, frontal side, buccal 76 

cavern/mouthpart, and locomotion (dactyl and pereopod), abdominal segments, and gonopods. 77 

Observations on the genus Emerita were performed by referring to the diagnostic character used by Sankolli (1965), 78 

Bhagawati et al. (2016, 2020); Boyko & Harvey (1999), Haig, (1986); Osawa & Chan (2010), and Wardiatno et al. (2015). 79 



 

These characteristics are the color and shape of the carapax; the position, number, and shape of the slits (Carapace 80 

Groove/CG) on the carapax surface; spines on the anterior carapax; a curved shape of the margin on the latero-anterior; 81 

and the shape and number of fine spines on the latero-anterior portion. Carapax height measurements were conducted on 82 

the front, middle, and back of the body, with the shape and size of the eyestalk. The merus distal and dactyl form on the 83 

maxilliped-3 and the first pereopod, while spines and hairs form on the margin of the first pereopod dactyl. Pleopods are 84 

formed in the abdominal segment as pleural. 85 

 86 

DNA isolation and marker amplification  87 

Genomic DNA was isolated from abdominal tissue samples using the Quick-DNA™ Miniprep Plus kit from Zymo’s 88 

research. The processes were conducted based on the procedures provided by the company. The extracted DNA was 89 

migrated in 1% agarose electrophoresis and stained using ethidium bromide. The COI gene marker fragments were 90 

amplified using FishF2 and FishR2 primers (Ward et al. 2005) in Primus 25 Peqlab Thermocycler. Subsequently, the 91 

amplification reactions consisted of 1x buffer PCR, 2 mM MgCl2, 0.2 mM of each primer, 0.2 mM dNTP mix, 1 U Taq 92 

polymerase, and 2.0 ng / μl template DNA. The final volume to 50 μl of the mixtures was adjusted by adding DNA-RNA-93 

free water. The pre-denaturation step at 95°C started thermal cycles for 4 minutes. The amplification reactions were 94 

performed for 35 cycles with denaturation steps that lasted for 30 seconds at 95°C, followed by annealing at 53°C for 120 95 

seconds, and terminated by extension steps 60 for minutes at 72°C.  Additionally, a final elongation step terminated the 96 

cycles after 5 minutes, at 72°C. The amplified COI marker was stained using ethidium bromide in 1.5% agarose gel and 97 

documented using the GelDoc apparatus (BioRad).  98 

Marker sequencing and editing 99 

Nucleotide sequencing of the used marker was conducted in the Molecular Genetic Laboratory of PT Genetika Science 100 

Indonesia Jakarta, according to the Sanger method. The study obtained consensus and multiple alignments by assembling 101 

the forward and reverse sequences using ClustalW ver.1.4 in Bioedit (Hall 2011). In addition, it obtained haplotype and 102 

Arlequin data files from its generating process in DnaSP 6 (Rozas et al., 2017).  103 

Data analysis 104 
The taxonomic status of Emerita samples was delineated based on sequence homology to the conspecific relative 105 

available in GenBank. This test was carried out using an essential local alignment search tool (BLAST). This study also 106 

used genetic distance, genetic divergence or a gap of 5% (Candek and Kuntner, 2015; Setyaningrum et al., 2020). Variance 107 

analysis and fixation statistic (Fst) were conducted in Arlequin 3.5 (Excoffier & Lischer 2010) to estimate significant 108 

genetic divergence between the morphotypes. The diversity data was evaluated using Haplotypes (h) and nucleotide (π) 109 

diversities, calculated using Arlequin 3.5. Similarly, the neutrality of the used COI marker was tested using Fs and D 110 

values (Excoffier & Lischer 2010). Evolutionary relationships among haplotypes were estimated based on haplotype 111 

networks reconstructed using the median-joining method in NETWORK software (Bandelt et al. 1999).  112 

RESULTS AND DISCUSSION 113 

Taxonomic status  114 
Morphological identification 115 

A total of 17 individual Emerita samples were analyzed during the study. Morphological identification separated the 116 

samples into two different morphotypes. The first (A) and second (B) morphotypes consisted of 3 and 14 individuals, 117 

respectively (Figures 3A and 3B). However, they have similar general morphological characteristics that lead to Genus 118 

Emerita placement. The body of the Emerita crab is light, dark to blackish gray, with a slightly cylindrical shape with a 119 

wider distal carapace area. The eyestalk is long and slender, extending beyond the second antenna segment. The antennae 120 

are very long with hairy setae, and the segment on the second antenna consists of 3 horn-like and median spines. There are 121 

two oblique elongated protrusions with distinct spines that can be moved at the edges. The carapace has 3 frontal lobes, 122 

with the median very pointed and triangular, separated from the lateral lobe. The surface of the carapace has visible line-123 

shaped slits located post-frontal and post-gastric. The latero-frontal margin has fine spines with sparse hairs. It has a short 124 

abdomen with a long telson, almost half the carapace length. The first pereopods were simple with an oval, lamellate 125 

dactyl, less than twice the width. Dactylus of the first pereopod with 4-5 rigid spines is found in the distal half of the lower 126 

margin, while 1-3 with 2 spines is in the tip. 127 

The morphotypes A and B were differentiated by the following characteristics. The frontal part of the carapace showed 128 

differences in the shape and length of the spines at the base of the second antenna segment, the shape of a hollow between 129 

the three spines at the tip of the carapace, and the post-frontal and post-gastric cleft forms (Fig. 3). Individuals with 130 

morphotype A have eye stalks longer than the spines at the second antenna base (Figure 3A). In contrast, morphotype B 131 

has eye stalks almost the same length as the spines at the second antenna base. Another performance is the concave shape 132 

between the three spines on the frontal carapace. Morphotype A does not form an angle, while B forms a curve. The shape 133 

of the gap found in the post-frontal area is a straight line, neat and flat in morphotype A, but it is elevated in morphotype B 134 



 

with a curved line in the post-stomach. In morphotype A, the arch is not too deep, and its carapace’s right and left ends 135 

have a thin curved slit. In contrast, morphotype B has a narrower curved line. 136 

 137 

 138 
Figure 3. Frontal carapace on morphotype A and morphotype B 139 

 140 

Based on the latero-frontal section on body height, morphotype A had a flatter body shape than B (Figure 4.). There are 141 

differences in the spines at the second antenna base from the lateral side between morphotypes A and B. Furthermore, 142 

Morphotype A has slightly curved outer spines, while B tends to be straight. The latero-frontal margin of the carapace, 143 

which contains fine spines with sparse hairs between the two morphotypes, has different spine shapes, arch, and the 144 

number of spines. The tip of the spine is not sharp; hence, when touched, it feels like a smooth protrusion. The anterior end 145 

of the margin does not have spines and has a shorter size than that of morphotype B. The shape of the posterior carapace 146 

margin curve in morphotype A is more prominent without spines. In contrast, it is more sloping in morphotype B, which 147 

has fine spines. 148 

 149 

 150 
Figure 4. Latero-frontal carapace in morphotype A and morphotype B 151 

 152 

Morphotypes A and B had different shapes on the distal part of the merus of the third maxilliped (Figure 5). Sankolli 153 

(1965), Kazmi and Siddiqui (2006), Boyko (2002), and Bhagawati et al. characterize morphotype A as having features 154 

similar to Emerita emeritus (Linnaeus, 1756) (2016; 2020). Morphotype A has the first pereopod dactyl oval, measuring 155 

less than twice the largest width. There are distinct spines on margins and occupy nearly the distal third of the lower part. 156 

Morphotype B has the character of the first pereopod dactyl, which is similar to morphotype A. However, the spines on the 157 

margins are smaller and possess the same size. 158 

 159 

 160 
Figure 5. The distal part of the merus of the third maxilliped: Morphotype A; Morphotype B; and C. schematic of Emerita 161 

emeritus (Linnaeus 1756.), ovigerous females from Madras (Sonkolli 1965) 162 

 163 



 

 164 
Figure 6. First pereopod on morphotype A, morphotype B, and schematic of Emerita emeritus (Linnaeus 1756.), 165 

ovigerous females from Madras (Sonkolli, 1965) 166 

 167 

Based on their morphological characteristics, morphotypes A and B have many similarities (Emerita) and differences, 168 

suggesting the occurrence of new species. However, it has been well-known that mole crabs from the superfamily 169 

Hippoidea show high variability in morphology (Poore 2004; Ahyong et al. 2009; Schnabel and Ahyong 2009). This 170 

condition may lead to misidentification when performed based on morphological characters. Molecular data confirmed the 171 

possible occurrence of Sympatric species of Emerita emeritus in the Cilacap coastlines (Nuryanto et al. 2020) inferred 172 

from several specimens. Therefore, further study is still needed using more samples to strengthen the data on new Emerita 173 

species in the areas.  174 

 175 

Molecular characterization 176 

Sequence identity tests to the closest relative in GenBank revealed that three individuals (KI1, KI3, and WP9) of the 177 

morphotype A have high sequence identities to Emerita emeritus KR047035 ranging from 96.12 % to 96.25 %. In contrast, 178 

the sequence identities to Emerita sp. ranged from 85.60 % to 85.74 %. The remaining 14 individuals of the morphotype B 179 

showed low identities to Emerita emeritus KR 047035 in GenBank, ranging between 84.78% and 86.87%. The sequence 180 

identity of the remaining 14 specimens of the morphotype B to Emerita sp. MZ571198 was high ranging from 98.83 to 181 

100% (Table 1). 182 

 183 
Table 1. The BLAST parameters of Emerita samples from Cilacap coastlines to their conspecific relatives in GenBank 184 

Samples 

Emerita emeritus KR047035 Emerita sp. MZ571198 

Coverage Expect Value 
Genetic identity 

(%) 
Coverage Expect Value Genetic identity (%) 

K1 (A) 100 0.00 96.12 99 0.00 85.74 

K3 (A) 100 0.00 96.12 99 0.00 85.74 

WP9 (A) 99 0.00 96.25 100 0.00 85.60 

J3 (B) 96 2e179 86.87 100 0.00 98.83 

J4 (B) 97 2e-125 84.78 99 0.00 99.15 

J6 (B) 99 0.00 86.48 100 0.00 99.84 

J7 (B) 99 0.00 86.44 100 0.00 99.16 

J8 (B) 99 0.00 86.45 99 0.00 100 

KI4 (B) 99 0.00 86.48 100 0.00 99.84 

KI5 (B) 99 0.00 86.32 100 0.00 99.67 

WP3 (B) 99 0.00 86.32 100 0.00 99.51 

WP5 (B) 98 0.00 86.64 99 0.00 99.83 

WP8 (B) 99 0.00 86.42 100 0.00 99.85 

CLPE8* (B) 99 0.00 86.84 100 0.00 99.84 

CLP4* (B) 98 2e-169 86.57 100 0.00 99.82 

CLP11* (B) 98 5e-171 86.75 100 0.00 100 

CLP15* (B) 98 5e-171 86.75 100 0.00 100 

 185 

Genetic distance and genetic gap 186 



 

Table 2 summarizes the genetic distance and gap between morphotype A and E. emeritus KR047035 and morphotype 187 

B and Emerita sp. MZ571198. The genetic gap was estimated based on the difference between the maximum and the 188 

minimum genetic distance of species. 189 

 190 
Table 2. Genetic distance and gap within and among species (%) 191 

Population Emerita emeritus Emerita sp.  

Emerita emeritus 0.00 – 3.20 16.80 – 19.00 

Emerita sp. 16.80 – 0.190 0.00 – 1.70 

The gap between E. emeritus and Emerita sp. 16.80-3.20 = 13.6  

 192 

Genetic divergence 193 

Variance analysis and Fst value indicated that the two morphotypes showed significant genetic differences with a p-194 

value of 0.005 (Table 3). The significant genetic difference between the two indicated that both belong to two different 195 

species, proved by the BLAST result. 196 

 197 
Table 3. Variance and Fst analysis indicate significant genetic divergence between two Emerita morphotypes 198 

Source of variation d.f Sum of squares Variance components Percentage of variation 

Between morphotypes 1 1.303 0.143Va 26.53 

Within morphotypes 17 6.750 0.397 73.47 

Total 18 8.053 0.540  

Fixation index (Fst): 0.265 

p-value (Va and Fst) 0.0059 

 199 

Amino acid composition 200 

The morphotypes were also subjected to amino acid composition to define molecular divergence, as summarized in 201 

Table 4. 202 

 203 
Table 4. Amino acid composition of each morphotype (%) 204 

Nucleotide 
Morphotype 

Morphotype A Morphotype B 

A 24.34 19.60 

T 29.72 33.41 

G 27.39 28.93 

C 18.54 18.05 

 205 

This research delineated the samples of morphotype A as Emerita emeritus. This is due to the strong genetic and 206 

conspecific identities of 96.12% to 96.25% and 85.60% to 85.74% for Emerita sp (MZ571198). Morphotype A was 207 

delineated into E. emeritus because genetic divergence within species may range from 0% to 4.6% (da Silva et al. 2014) or 208 

higher (Weis et al. 2014). Genetic divergence between morphotype A and Emerita emeritus KR047035 was below 4.6% 209 

(da Silva et al. 2014). The highest value was 3.88%, within the allowable range of 4% to 5%, as a moderate level of 210 

genetic identity for species delineation (Jeffery et al. 2011). This study has selected the value because the mutation rate of 211 

the COI gene is species-specific (Karanovic et al. 2015; Palecanda 2020). A genetic threshold between 4% and 5% is 212 

permissible for genetic species determination, although additional considerations should be accounted for (Higashi et al. 213 

2011; Jeffrey et al. 2011). Previous studies also utilized a genetic threshold of 5% during species determination (Candek 214 

and Kuntner 2015; Kusbiyanto et al. 2020; Riani et al. 2021). 215 

The remaining 14 samples were identified as Emerita sp. nov. because of their high genetic identity (98.83% to 100%) 216 

to Emerita sp. MZ571198. In contrast, morphotype B had a low genetic identity (84.78% to 86.87%) to Emerita emeritus 217 

KR047035. This value is widely used as a genetic threshold in species delineation during animal barcoding (Hubert et al., 218 

2010; Candek and Kuntner, 2015).  219 

The division of morphotypes A and B into two distinct species is due to a genetic distance ranging from 16.80% to 220 

19.00%, with a genetic gap of % (Table 2). Moreover, the two morphotypes also showed significant genetic variances and 221 

fixation index (p = 0.0059, Table 3) with different compositions of nucleotide content, especially in Adenine (A) and 222 

Thymine (T) composition (Table 4). Amino acid AT was higher than GC in both morphotypes, but the content of A and T 223 

was different. The phenomena were also reported in fish (Elvyra et al., 2020). The molecular difference observed in this 224 

study is in line with morphotypes A and B morphology. Therefore, morphotypes A and B delineated as Emerita emeritus 225 

and Emerita sp. nov. was reliable.  226 

This study also proved that the CO1 gene is a good marker for taxonomic identification at the species level. The COI 227 

gene’s reliability as a barcode is highly variable among animal species (Sachithanandam et al. 2012; Balkhis et al. 2011; 228 

Winarni et al. 2021). Similar phenomena were also reported from several locations across Indonesia (Muchlisin et al. 229 

2013; Irmawati et al. 2017; Pramono et al. 2017) and other regions (Aquilino et al. 2011; Triantafyllidis et al. 2011). 230 



 

Historical demography and genetic diversity of Emerita sp. nov. 231 
Historical demography 232 

Tajima’s D value was -1.563 (p = 0.044). That statistically significant results assumed that the used COI marker was 233 

under selection pressure. Instead of accepting selection pressure on the used marker, the negative sign of the D value 234 

indicated a recent population bottleneck and neutrality of the marker (Tajima1989; Jong et al. 2011). The negative 235 

symptoms and non-significant Fs (-1.580, p= 0.147) could assume that the marker was neutral and indicated a population 236 

bottleneck (Table 5). The assumption was based on the fact that Fus’ Fs values are believed to be more sensitive than 237 

Tajimas’ D. According to Jong et al. (2011) and Mohammed et al. (2021), the sensitivity of Fus’ Fs values because it is 238 

calculated based on nucleotide diversity. A similar phenomenon was also reported in fish (Setyaningrum et al. 2022). 239 

Therefore, the used COI marker could be assumed as a neutral marker for assessing the genetic diversity of the Emerita sp 240 

population in the Cilacap coastlines. 241 
 242 
Table 5. Species, number of individuals (N), number of haplotypes (nhp), haplotype diversity (h), nucleotide diversity (µ), Tajima’D, 243 
and Fu’s Fs values 244 

Species N nhp h µ D p-sig. Fs p-sig. 

Emerita sp. 15 7 0.857 ± 0.057 0.005 ± 0.003 -1.563* 0.044 -1.580ns 0.147 

Note: *= significant, ns= not significant 245 
 246 

Genetic diversity 247 

Multiple sequences alignment resulted in a total of 418 bp COI gene fragments from 14 individuals Emerita sp. nov. 248 

collected from the coastlines of Widarapayung Wetan, Widarapayung Kulon, and Sedayu Villages, District of Binagun, 249 

Cilacap Regency, Central Java, Indonesia. Furthermore, 12 out of 418 bp were polymorphic, resulting in 7 haplotypes, and 250 

the haplotype diversity was 0.857 ± 0.057 (Table 5). This data indicates that the Emerita sp. nov. population in the Cilacap 251 

coastlines has high genetic diversity. The nucleotide diversity value (µ) was 0.005 ± 0.003, which revealed low nucleotide 252 

diversity and a relatively low rate of evolution in the Emerita sp. nov. population on the Cilacap coastlines. The haplotype 253 

network (Figure 3) shows that haplotypes were separated by 2 to 5 mutation steps. However, the mutation was widely 254 

distributed in the population, as indicated by high diversity (0.857 ± 0.057). High haplotype diversity assessed using the 255 

COI gene was widespread in animal phyla (Dorn et al. 2011; Dung et al. 2013; Song et al. 2013; Zhang et al. 2014; 256 

Nuryanto et al. 2019). At the same time, low haplotype diversity was also common in animal populations (Setyaningrum et 257 

al. 2022). The COI gene’s study may show a complex pattern of diversity levels, even within species (Pavesi et al. 2011; 258 

Parmaksiz and Eksi 2017). The phenomena are also observed in population studies using other markers, such a 259 

microsatellite (Esa and Rahim 2013; Gouskov et al. 2016; Abbas et al. 2017; Achrem et al. 2017; Cheng et al. 2017) and d-260 

loop (Zhong et al. 2013; Liu et al. 2016; Lau et al. 2018; Parmaksiz 2019; Ariyaraphong et al. 2021; Zhang et al. 2022). 261 

This study cannot be compared with previous results because there is no population genetic study on mole crabs, 262 

especially on the presumable Emerita sp. nov. The only population study was conducted by Pramithasari et al. (2017), who 263 

compared mole crabs (Albunea symmysta) populations in Java and Sumatra. However, their study used morphological 264 

data, and the comparison to Pramithasari et al. (2017) was not congruent. This fact implies that more studies on the 265 

population genetics of mole crabs are needed. 266 

Evolutionary relationships among Emerita sp. nov. individuals 267 
The evolutionary process of the Emerita sp. nov. population on the southern coast of Cilacap is presented in the 268 

haplotype network (Figure 7). Star-like haplotype network in Figure 7 showed that haplotype 2 was the most primitive. 269 

Meanwhile, H2 was the center of the network, and other haplotypes evolved from (H2) as the most abundant (Balkhis et 270 

al. 2011; Song et al. 2012). The result contradicted the general acceptance that primitive haplotype has the highest 271 

abundance in the population (Adamson et al. 2012; Barasa et al. 2014; Basvar et al. 2018; 2019). The low frequency of H2 272 

observed was assumed because of the small population (14 individuals). However, this assumption should be proven based 273 

on a further study using a high number of analyzed individuals. 274 

 275 

Figure 7. Haplotype networks indicating evolutionary relationships among Emerita sp. individuals 276 



 

 277 

According to the analyzed data, this study concluded that mole crabs (Genus Emerita) in the Cilacap coastlines 278 

consisted of two distinct sympatric species (Emerita emeritus and Emerita sp. nov). Emerita sp. nov. had high haplotype 279 

diversity and was more abundant than Emerita emeritus. As a result, comprehensive research in terms of sampling site, 280 

number of samples, and other biological characteristics are needed to provide complete information for sympatric and taxa 281 

species of Emerita sp. nov. 282 
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Abstract. Bhagawati D, Nuryanto A, Winarni ET, Pulungsari AE. 2022. Morphological and molecular characterization of mole crab 

(Genus: Emerita) in the Cilacap coastlines of Indonesia, with particular focus on genetic diversity of Emerita sp. nov. Biodiversitas 23: 

2395-2404. Previous studies reported Emerita emeritus is the only species of the Genus Emerita inhabiting the coastal ecosystem of the 

Cilacap District. A recent study reported the presence of suspected new Emerita species living on the Cilacap sandy beach but used a 

small number of specimens and no reports about genetic diversity. This study used more Emerita samples than the previous study. This 

study aimed to identify Emerita specimens based on the morphology and the cytochrome c oxidase 1 gene and analyzed the genetic 

diversity of Emerita sp. nov. Emerita samples were collected from three different beaches in Cilacap District, Central Java, Indonesia. 

Morphological identification placed the samples into two different morphotypes. Morphotype A was identified as Emerita emeritus. 

Morphotype B was determined as Emerita sp. nov. Molecular data support the placement of Emerita samples into Emerita emeritus, and 

Emerita sp. nov. Emerita sp. nov. has haplotype diversity of 0.857±0.057, indicating a high genetic diversity. Haplotype H2 was 

suggested as the most primitive one because other haplotypes radiated from it. This study concluded that two sympatric Emerita species 

inhabit Cilacap coastlines, and Emerita sp. nov. has high genetic diversity. 

Keywords: Albunea, genetic variation, Hyppa, polymorphism, sand crabs 

Abbreviations:  COI: cytochrome c oxidase 1 

INTRODUCTION 

Classical taxonomy and systematic utilized 

morphological data during species characterization (Erlank 

et al. 2018; Shu et al. 2022). In some animal groups, 

morphology characteristics are entirely satisfactory (Chan 

et al. 2016; Mauroka et al. 2018; Korovchinsky 2019). 

However, in other groups, this character may lead to 

identification mistakes, especially in groups with limited 

morphological differences, such as in mole crab from the 

Genus Albunea (Boko and MacLaughlin 2010), cryptic 

species (Karanovic 2015; Bilgin et al. 2015; Bekker et al. 

2016; Kusbiyanto et al. 2020) or group with limited and 

undeveloped morphological characters, such as egg, larvae, 

and early juvenile (Ko et al. 2013; Palero et al. 2016; 

Palecanda et al. 2020)  

Mole crabs, locally known as ‘yutuk,’ belong to 

Decapoda from the superfamily Hippoidea. It consists of 

three different families of Albuneidae, Blepharipodidae, 

and Hippidae, which are divided into Emerita and Hippa 

genera. Moreover, ten species have been identified and 

described under Genus Emerita (Boyko and McLaughlin 

2010). This crustacean group is widely distributed over the 

World (Boyko and McLaughlin 2010), and the distribution 

has been elaborated by Mahapatro et al. (2018). In 

Indonesia, these crabs inhibit sandy coastlines from the 

West Coast of Sumatera to Moluccas (Wardiatno et al. 

2015; Boyko and Harvey 1999).  

Previous studies reported that the three genera of 

Hippoidea have been described from Indonesia waters 

(Bhagawati et al. 2016; Pramithasari et al. 2017; Nugroho 

et al. 2018; Butet et al. 2019; Hartoko et al. 2019; 

Bhagawati et al. 2020). Other studies described Emerita 

emeritus as the only species of genus Emerita found on the 

southern coastlines of Java (Nugroho et al. 2018; Dewi et 

al. 2019; Krisanti et al. 2020; Desi et al. 2020), including 

from Cilacap sandy beaches, such as Widarapayung beach, 

Sub-district of Binangun (Bhagawati et al. 2016; Haq et al. 

2018). However, recent studies observed morphological 

and molecular deviations in some samples to the Emerita 

emeritus characteristics. The possible presence of the 

sympatric species complex of the Cilacap coastlines was 

reported (Nuryanto et al. 2020). Even, Hanim et al. (2017) 

proposed a scientific name for the new suspected species of 

Emerita from Pangandaran beach, as Emerita pangandarensis 

sp. nov.. Still, the international commission has not approved 

its zoological nomenclature. However, the studies by 

Hanim et al. (2017) and Nuryanto et al. (2020) were 

conducted in few samples and only focused on species 

identification. These studies did not report genetic diversity 

in newly suspected Emerita species. Molecular 

characterization was performed in a higher number of 

specimens and data types. Additionally, it assessed the 
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genetic diversity of new suspected Emerita species 

collected from the southern coast of Cilacap, Central Java, 

Indonesia.  

Species identification and population genetic studies 

were conducted using various molecular markers 

(Nuryanto et al. 2017; Butet et al. 2019; Nuryanto et al. 

2019; Elvyra et al. 2020; Riani et al. 2021; Setyaningrum et 

al. 2022). The cytochrome c oxidase 1 (COI) gene is a 

common marker used in species determination (Ko et al. 

2013; Muchlisin et al. 2013; Dahruddin et al. 2016; 

Irmawati et al. 2017; Syaifudin et al. 2020) and population 

genetic studies (Song et al. 2013; Zhang et al. 2014; Fahmi 

2015; Nuryanto et al. 2019). Therefore, this research aimed 

to characterize samples of genus Emerita based on 

morphological and molecular characteristics and assess the 

genetic diversity using the cytochrome c oxidase 1 gene. 

MATERIALS AND METHODS  

Research location and sampling sites  

The samples of mole crabs were collected from the 

sandy coastal region of the Cilacap District, Central Java, 

Indonesia. Additionally, the sampling was carried out in 

Jetis beach in the Sub-district of Nusawungu as well as 

Kenari Indah and Widarapayung beaches in the Sub-district 

of Binangun, Cilacap District, Central Java, Indonesia 

(Figure 1).  

Mole crabs sampling 

Emerita specimens were collected manually using two 

traditional fishing gears called “sodo nets” and “sorok 

bamboo” (Figure 2). Furthermore, local fishers performed 

samples collection and handling. Abdominal tissue samples 

were cut off for approximately 5 mm
2
 and preserved using 

96% alcohol in 2 ml screw lid tubes. 

 

 

 

 
 

Figure 1. Sampling location map of Emerita at Jetis, Kenari Indah and Widarapayung Beaches (source: google maps, modified by S.S. 

Asmarani 2022) 

 

 

 

  
 

 

Figure 2. Fishing gears for collecting mole crab (Emerita) samples. A. sodo nets. B. sorok bamboo 

A B 
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Procedures 

Morphological characterization 

Freshly collected crabs were brought to Animal 

Taxonomy Laboratory, Faculty of Biology Jenderal 

Soedirman University. The samples were washed 

thoroughly using freshwater, and morphological 

characterization was carried out based on the diagnostic 

character essential for identifying crustaceans. According 

to Ng (1998), several diagnostic characteristics for 

identifying crustaceans are carapax, anterolateral side, 

dorsal surface, frontal side, buccal cavern/mouthpart, and 

locomotion (dactyl and pereopod), abdominal segments, 

and gonopods. 

Observations on the genus Emerita were performed by 

referring to the diagnostic character used by Sankolli 

(1965), Haig (1986); Boyko and Harvey (1999), Osawa and 

Chan (2010), Wardiatno et al. (2015) and Bhagawati et al. 

(2016, 2020). These characteristics are the color and shape 

of the carapax; the position, number, and shape of the slits 

(Carapace Groove/CG) on the carapax surface; spines on 

the anterior carapax; a curved shape of the margin on the 

latero-anterior; and the shape and number of fine spines on 

the latero-anterior portion. Carapax height measurements 

were conducted on the front, middle, and back of the body, 

with the shape and size of the eyestalk. The merus distal 

and dactyl form on the maxilliped-3 and the first pereopod, 

while spines and hairs form on the margin of the first 

pereopod dactyl. Pleopods are formed in the abdominal 

segment as pleural. 

 

DNA isolation and marker amplification  

Genomic DNA was isolated from abdominal tissue 

samples using the Quick-DNA™ Miniprep Plus kit from 

Zymo’s research. The processes were conducted based on 

the procedures provided by the company. The extracted 

DNA was migrated in 1% agarose electrophoresis and 

stained using ethidium bromide. The COI gene marker 

fragments were amplified using FishF2 and FishR2 primers 

(Ward et al. 2005) in Primus 25 Peqlab Thermocycler. 

Subsequently, the amplification reactions consisted of 1x 

buffer PCR, 2 mM MgCl2, 0.2 mM of each primer, 0.2 

mM dNTP mix, 1 U Taq polymerase, and 2.0 ng/μL 

template DNA. The final volume to 50 μl of the mixtures 

was adjusted by adding DNA-RNA-free water. The pre-

denaturation step at 95°C started thermal cycles for 4 

minutes. The amplification reactions were performed for 35 

cycles with denaturation steps that lasted for 30 seconds at 

95°C, followed by annealing at 53°C for 120 seconds, and 

terminated by extension steps 60 for minutes at 72°C.  

Additionally, a final elongation step terminated the cycles 

after 5 minutes, at 72°C. The amplified COI marker was 

stained using ethidium bromide in 1.5% agarose gel and 

documented using the GelDoc apparatus (BioRad).  

Marker sequencing and editing 

Nucleotide sequencing of the used marker was 

conducted in the Molecular Genetic Laboratory of PT 

Genetika Science Indonesia Jakarta, according to the 

Sanger method. The study obtained consensus and multiple 

alignments by assembling the forward and reverse 

sequences using ClustalW ver.1.4 in Bioedit (Hall 2011). 

In addition, it obtained haplotype and Arlequin data files 

from its generating process in DnaSP 6 (Rozas et al. 2017).  

Data analysis 

The taxonomic status of Emerita samples was 

delineated based on sequence homology to the conspecific 

relative available in GenBank. This test was carried out 

using an essential local alignment search tool (BLAST). 

This study also used genetic distance, genetic divergence or 

a gap of 5% (Candek and Kuntner 2015; Setyaningrum et 

al. 2022). Variance analysis and fixation statistic (Fst) were 

conducted in Arlequin 3.5 (Excoffier and Lischer 2010) to 

estimate significant genetic divergence between the 

morphotypes. The diversity data was evaluated using 

Haplotypes (h) and nucleotide (π) diversities, calculated 

using Arlequin 3.5. Similarly, the neutrality of the used 

COI marker was tested using Fs and D values (Excoffier 

and Lischer 2010). Evolutionary relationships among 

haplotypes were estimated based on haplotype networks 

reconstructed using the median-joining method in 

NETWORK software (Bandelt et al. 1999).  

RESULTS AND DISCUSSION 

Taxonomic status  

Morphological identification 

A total of 17 individual Emerita samples were analyzed 

during the study. Morphological identification separated 

the samples into two different morphotypes. The first (A) 

and second (B) morphotypes consisted of 3 and 14 

individuals, respectively (Figures 3A and 3B). However, 

they have similar general morphological characteristics that 

lead to Genus Emerita placement. The body of the Emerita 

crab is light, dark to blackish gray, with a slightly 

cylindrical shape with a wider distal carapace area. The 

eyestalk is long and slender, extending beyond the second 

antenna segment. The antennae are very long with hairy 

setae, and the segment on the second antenna consists of 3 

horn-like and median spines. There are two oblique 

elongated protrusions with distinct spines that can be 

moved at the edges. The carapace has 3 frontal lobes, with 

the median very pointed and triangular, separated from the 

lateral lobe. The surface of the carapace has visible line-

shaped slits located post-frontal and post-gastric. The 

latero-frontal margin has fine spines with sparse hairs. It 

has a short abdomen with a long telson, almost half the 

carapace length. The first pereopods were simple with an 

oval, lamellate dactyl, less than twice the width. Dactylus 

of the first pereopod with 4-5 rigid spines is found in the 

distal half of the lower margin, while 1-3 with 2 spines is in 

the tip. 

The morphotypes A and B were differentiated by the 

following characteristics. The frontal part of the carapace 

showed differences in the shape and length of the spines at 

the base of the second antenna segment, the shape of a 

hollow between the three spines at the tip of the carapace, 

and the post-frontal and post-gastric cleft forms (Figure 3). 
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Individuals with morphotype A have eye stalks longer than 

the spines at the second antenna base (Figure 3A). In 

contrast, morphotype B has eye stalks almost the same 

length as the spines at the second antenna base. Another 

performance is the concave shape between the three spines 

on the frontal carapace. Morphotype A does not form an 

angle, while B forms a curve. The shape of the gap found 

in the post-frontal area is a straight line, neat and flat in 

morphotype A, but it is elevated in morphotype B with a 

curved line in the post-stomach. In morphotype A, the arch 

is not too deep, and its carapace’s right and left ends have a 

thin curved slit. In contrast, morphotype B has a narrower 

curved line. 

Based on the latero-frontal section on body height, 

morphotype A had a flatter body shape than B (Figure 4.). 

There are differences in the spines at the second antenna 

base from the lateral side between morphotypes A and B. 

Furthermore, morphotype A has slightly curved outer 

spines, while B tends to be straight. The latero-frontal 

margin of the carapace, which contains fine spines with 

sparse hairs between the two morphotypes, has different 

spine shapes, arch, and the number of spines. The tip of the 

spine is not sharp; hence, when touched, it feels like a 

smooth protrusion. The anterior end of the margin does not 

have spines and has a shorter size than that of morphotype 

B. The shape of the posterior carapace margin curve in 

morphotype A is more prominent without spines. In 

contrast, it is more sloping in morphotype B, which has 

fine spines. 

Morphotypes A and B had different shapes on the distal 

part of the merus of the third maxilliped (Figure 5). 

Sankolli (1965), Kazmi and Siddiqui (2006), Boyko 

(2002), and Bhagawati et al. characterize morphotype A as 

having features similar to Emerita emeritus (Linnaeus, 

1756) (2016; 2020). Morphotype A has the first pereopod 

dactyl oval, measuring less than twice the largest width. 

There are distinct spines on margins and occupy nearly the 

distal third of the lower part. Morphotype B has the 

character of the first pereopod dactyl, which is similar to 

morphotype A. However, the spines on the margins are 

smaller and possess the same size (Figure 6). 

Based on their morphological characteristics, 

morphotypes A and B have many similarities (Emerita) and 

differences, suggesting the occurrence of new species. 

However, it has been well-known that mole crabs from the 

superfamily Hippoidea show high variability in 

morphology (Poore 2004; Ahyong et al. 2009; Schnabel 

and Ahyong 2010). This condition may lead to 

misidentification when performed based on morphological 

characters. Molecular data confirmed the possible 

occurrence of Sympatric species of Emerita emeritus in the 

Cilacap coastlines (Nuryanto et al. 2020) inferred from 

several specimens. Therefore, further study is still needed 

using more samples to strengthen the data on new Emerita 

species in the areas.  

  

 

 
 

Figure 3. Frontal carapace on morphotype A and morphotype B 

 

 

 
 

Figure 4. Latero-frontal carapace in morphotype A and 

morphotype B 

 

 

 
 

Figure 5. The distal part of the merus of the third maxilliped: 

Morphotype A; Morphotype B; and C. schematic of Emerita 

emeritus (Linnaeus 1756.), ovigerous females from Madras 

(Sonkolli 1965) 

 

 

 
Figure 6. First pereopod on morphotype A, morphotype B, and 

schematic of Emerita emeritus (Linnaeus 1756.), ovigerous 

females from Madras (Sonkolli 1965) 

A B 
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Molecular characterization 

Sequence identity tests to the closest relative in 

GenBank revealed that three individuals (KI1, KI3, and 

WP9) of the morphotype A have high sequence identities 

to Emerita emeritus KR047035 ranging from 96.12% to 

96.25%. In contrast, the sequence identities to Emerita sp. 

ranged from 85.60% to 85.74%. The remaining 14 

individuals of the morphotype B showed low identities to 

Emerita emeritus KR 047035 in GenBank, ranging 

between 84.78% and 86.87%. The sequence identity of the 

remaining 14 specimens of the morphotype B to Emerita 

sp. MZ571198 was high ranging from 98.83 to 100% 

(Table 1). 

Genetic distance and genetic gap 

Table 2 summarizes the genetic distance and gap 

between morphotype A and E. emeritus KR047035 and 

morphotype B and Emerita sp. MZ571198. The genetic gap 

was estimated based on the difference between the 

maximum and the minimum genetic distance of species. 

Genetic divergence 

Variance analysis and Fst value indicated that the two 

morphotypes showed significant genetic differences with a 

p-value of 0.005 (Table 3). The significant genetic 

difference between the two indicated that both belong to 

two different species, proved by the BLAST result. 

Amino acid composition 

The morphotypes were also subjected to amino acid 

composition comparison to define molecular divergence, as 

summarized in Table 4.  

This research delineated the samples of morphotype A 

as Emerita emeritus. This is due to the strong genetic and 

conspecific identities of 96.12% to 96.25% and 85.60% to 

85.74% for Emerita sp (MZ571198). Morphotype A was 

delineated into E. emeritus because genetic divergence 

within species may range from 0% to 4.6% (da Silva et al. 

2011) or higher (Weis et al. 2014). Genetic divergence 

between morphotype A and Emerita emeritus KR047035 

was below 4.6% (da Silva et al. 2011). The highest value 

was 3.88%, within the allowable range of 4% to 5%, as a 

moderate level of genetic identity for species delineation 

(Jeffery et al. 2011). This study has selected the value 

because the mutation rate of the COI gene is species-

specific (Karanovic et al. 2015; Palecanda et al. 2020). A 

genetic threshold between 4% and 5% is permissible for 

genetic species determination, although additional 

considerations should be accounted for (Higashi et al. 

2011; Jeffrey et al. 2011). Previous studies also utilized a 

genetic threshold of 5% during species determination 

(Candek and Kuntner 2015; Kusbiyanto et al. 2020; Riani 

et al. 2021). 

The remaining 14 samples were identified as Emerita 

sp. nov. because of their high genetic identity (98.83% to 

100%) to Emerita sp. MZ571198. In contrast, morphotype 

B had a low genetic identity (84.78% to 86.87%) to 

Emerita emeritus KR047035. This value is widely used as 

a genetic threshold in species delineation during animal 

barcoding (Hubert et al. 2010; Candek and Kuntner 2015).  

The division of morphotypes A and B into two distinct 

species is due to a genetic distance ranging from 16.80% to 

19.00%, with a genetic gap of 13.6% (Table 2). Moreover, 

the two morphotypes also showed significant genetic 

variances and fixation index (p=0.0059, Table 3) with 

different compositions of nucleotide content, especially in 

Adenine (A) and Thymine (T) composition (Table 4). 

Amino acid AT was higher than GC in both morphotypes, 

but the content of A and T was different. The phenomena 

were also reported in fish (Elvyra et al. 2020). The 

molecular difference observed in this study is in line with 

morphotypes A and B morphology. Therefore, 

morphotypes A and B delineated as Emerita emeritus and 

Emerita sp. nov. was reliable.  

This study also proved that the CO1 gene is a good 

marker for taxonomic identification at the species level. 

The COI gene’s reliability as a barcode is highly variable 

among animal species (Balkhis et al. 2011; Sachithanandam et 

al. 2012; Winarni et al. 2021). Similar phenomena were also 

reported from several locations across Indonesia 

(Muchlisin et al. 2013; Irmawati et al. 2017; Pramono et al. 

2017) and other regions (Aquilino et al. 2011; 

Triantafyllidis et al. 2011). 

Historical demography and genetic diversity of Emerita 

sp. nov. 

Historical demography 

Tajima’s D value was -1.563 (p=0.044). That 

statistically significant results assumed that the used COI 

marker was under selection pressure. Instead of accepting 

selection pressure on the used marker, the negative sign of 

the D value indicated a recent population bottleneck and 

neutrality of the marker (Tajima 1989; Jong et al. 2011). 

The negative symptoms and non-significant Fs (-1.580, 

p=0.147) could assume that the marker was neutral and 

indicated a population bottleneck (Table 5). The 

assumption was based on the fact that Fus’ Fs values are 

believed to be more sensitive than Tajimas’ D. According 

to Jong et al. (2011) and Mohammed et al. (2021), the 

sensitivity of Fus’ Fs values because it is calculated based 

on nucleotide diversity. A similar phenomenon was also 

reported in fish (Setyaningrum et al. 2022). Therefore, the 

used COI marker could be assumed as a neutral marker for 

assessing the genetic diversity of the Emerita sp. 

population in the Cilacap coastlines. 
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Table 1. The BLAST parameters of Emerita samples from Cilacap coastlines to their conspecific relatives in GenBank 

 

Samples 
Emerita emeritus KR047035 Emerita sp. MZ571198 

Coverage Expect Value Genetic identity (%) Coverage Expect Value Genetic identity (%) 

K1 (A) 100 0.00 96.12 99 0.00 85.74 

K3 (A) 100 0.00 96.12 99 0.00 85.74 

WP9 (A) 99 0.00 96.25 100 0.00 85.60 

J3 (B) 96 2e179 86.87 100 0.00 98.83 

J4 (B) 97 2e-125 84.78 99 0.00 99.15 

J6 (B) 99 0.00 86.48 100 0.00 99.84 

J7 (B) 99 0.00 86.44 100 0.00 99.16 

J8 (B) 99 0.00 86.45 99 0.00 100 

KI4 (B) 99 0.00 86.48 100 0.00 99.84 

KI5 (B) 99 0.00 86.32 100 0.00 99.67 

WP3 (B) 99 0.00 86.32 100 0.00 99.51 

WP5 (B) 98 0.00 86.64 99 0.00 99.83 

WP8 (B) 99 0.00 86.42 100 0.00 99.85 

CLPE8* (B) 99 0.00 86.84 100 0.00 99.84 

CLP4* (B) 98 2e-169 86.57 100 0.00 99.82 

CLP11* (B) 98 5e-171 86.75 100 0.00 100 

CLP15* (B) 98 5e-171 86.75 100 0.00 100 

 

 

 

Table 2. Genetic distance and gap within and among species (%) 

 

Population Emerita emeritus Emerita sp.  

Emerita emeritus 0.00-3.20 16.80-19.00 

Emerita sp. 16.80-0.190 0.00-1.70 

The gap between E. 

emeritus and Emerita sp. 

16.80-3.20 = 13.6  

 

Table 4. Amino acid composition of each morphotype (%) 

 

Nucleotide 
Morphotype 

Morphotype A Morphotype B 

A 24.34 19.60 

T 29.72 33.41 

G 27.39 28.93 

C 18.54 18.05 

 

 

Table 3. Variance and Fst analysis indicate significant genetic divergence between two Emerita morphotypes 

 

Source of variation d.f Sum of squares Variance components Percentage of variation 

Between morphotypes 1 1.303 0.143Va 26.53 

Within morphotypes 17 6.750 0.397 73.47 

Total 18 8.053 0.540  

Fixation index (Fst): 0.265 

p-value (Va and Fst) 0.0059 

 

 
 

Table 5. Species, number of individuals (N), number of haplotypes (nhp), haplotype diversity (h), nucleotide diversity (µ), Tajima’D, 

and Fu’s Fs values 

 

Species N nhp h µ D p-sig. Fs p-sig. 

Emerita sp. nov 15 7 0.857 ± 0.057 0.005 ± 0.003 -1.563* 0.044 -1.580ns 0.147 

Note: *significant, ns: not significant 

 

 

 

Genetic diversity 

Multiple sequences alignment resulted in a total of 418 

bp COI gene fragments from 14 individuals Emerita sp. 

nov. collected from the coastlines of Jetis, Sub-district of 

Nusawungu, Kenari Indah and Widarapayung, Sub-district 

of Binagun, Cilacap District, Central Java, Indonesia. 

Furthermore, 12 out of 418 bp were polymorphic, resulting 

in 7 haplotypes, and the haplotype diversity was 

0.857±0.057 (Table 5). This data indicates that the Emerita 

sp. nov. population in the Cilacap coastlines has high 

genetic diversity. The nucleotide diversity value (µ) was 

0.005±0.003, which revealed low nucleotide diversity and a 

relatively low rate of evolution in the Emerita sp. nov. 

population on the Cilacap coastlines. The haplotype 

network (Figure 3) shows that haplotypes were separated 

by 2 to 7 mutation steps. However, the mutation was 

widely distributed in the population, as indicated by high 

haplotype diversity (0.857±0.057). High haplotype 
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diversity assessed using the COI gene was widespread in 

animal phyla (Dorn et al. 2011; Dung et al. 2013; Song et 

al. 2013; Zhang et al. 2014; Nuryanto et al. 2019). At the 

same time, low haplotype diversity was also common in 

animal populations (Setyaningrum et al. 2022). The COI 

gene’s study may show a complex pattern of diversity 

levels, even within species (Pavesi et al. 2011; Parmaksiz 

and Eksi 2017). The phenomena are also observed in 

population studies using other markers, such as 

microsatellite (Esa and Rahim 2013; Gouskov et al. 2016; 

Abbas et al. 2017; Achrem et al. 2017; Cheng et al. 2017) 

and d-loop (Zhong et al. 2013; Liu et al. 2016; Lau et al. 

2018; Parmaksiz 2019; Ariyaraphong et al. 2021; Zhang et 

al. 2022). 

This study cannot be compared with previous results 

because there is no population genetic study on mole crabs, 

especially on the presumable Emerita sp. nov. The only 

population study was conducted by Pramithasari et al. 

(2017), who compared mole crabs (Albunea symmysta) 

populations in Java and Sumatra. However, their study 

used morphological data, and the comparison to 

Pramithasari et al. (2017) was not congruent. This fact 

implies that more studies on the population genetics of 

mole crabs are needed. 

Evolutionary relationships among Emerita sp. nov. 

individuals 

The evolutionary process of the Emerita sp. nov. 

population on the southern coast of Cilacap is presented in 

the haplotype network (Figure 7). Star-like haplotype 

network in Figure 7 showed that haplotype 2 was the most 

primitive. Meanwhile, H2 was the center of the network, 

and other haplotypes evolved from (H2) as the most 

abundant (Balkhis et al. 2011; Song et al. 2012). The result 

contradicted the general acceptance that primitive 

haplotype has the highest abundance in the population 

(Adamson et al. 2012; Barasa et al. 2014; Baisvar et al. 

2018, 2019). The low frequency of H2 observed was 

assumed because of the small population (14 individuals). 

However, this assumption should be proven based on a 

further study using a high number of analyzed individuals. 

 

 
 

 
Figure 7. Haplotype networks indicating evolutionary relationships 

among Emerita sp. nov. individuals 

 

According to the analyzed data, this study concluded 

that mole crabs (Genus Emerita) in the Cilacap coastlines 

consisted of two distinct sympatric species (Emerita 

emeritus and Emerita sp. nov). Emerita sp. nov. had high 

haplotype diversity and was more abundant than Emerita 

emeritus. As a result, comprehensive research in terms of 

sampling site, number of samples, and other biological 

characteristics are needed to provide complete information 

for sympatric and taxa species of Emerita sp. nov. 
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