Elsevier Editorial System(tm) for Journal of

Infection and Public Health

Manuscript Draft

Manuscript Number: JIPH-D-17-00289R1

Title: Molecular Characterization of Dengue Viruses Isolated from Dengue Patients in Central Java, Indonesia

Article Type: Original Articles

Keywords: Dengue; serotype; genotype; Purwokerto; Indonesia

Corresponding Author: Dr. R. Tedjo Sasmono, Ph.D.

Corresponding Author's Institution: Eijkman Institute for Molecular Biology

First Author: Endang S Kusmintarsih, Prof. Dr.

Order of Authors: Endang S Kusmintarsih, Prof. Dr.; Rahma Hayati; Oktaviani Turnip; Benediktus Yohan; Suhestri Suryaningsih; Hery Pratiknyo; Dionisius Denis; R. Tedjo Sasmono, Ph.D.

Abstract: Dengue is hyper-endemic in Indonesia. Purwokerto city in Central Java province is routinely ravaged by the disease. Despite the endemicity of dengue in this city, there is still no data on the virological aspects of dengue in the city. We conducted a molecular surveillance study of the circulating dengue viruses (DENV) in Purwokerto city to gain information on the virus origin, serotype and genotype distribution, and phylogenetic characteristics of DENV. A cross-sectional dengue molecular surveillance study was conducted in Purwokerto. Sera were collected from dengue-suspected patients attending three hospitals in the city. Diagnosis was performed using dengue NS1 antigen and IgG/IgM antibodies detection. DENV serotyping was performed using Simplexa Dengue real-time RT-PCR. Sequencing was conducted to obtain full-length DENV Envelope (E) gene sequences, which were then used in phylogenetic and genotypic analyses. Patients' clinical and demographic data were collected and analyzed. A total of 105 dengue-suspected patients' sera were collected, in which 80 (76%) were positive for IgM and/or IgG, and 57 (54.2%) were confirmed as dengue by NS1 antigen and/or DENV RNA detection using RT-PCR. Serotyping was successful for 47 isolates. All four serotypes circulated in the area with DENV-3 as the predominant serotype. Phylogenetic analyses grouped the isolates into Genotype I for DENV-1, Cosmopolitan genotype for DENV-2, and Genotype I and II for DENV-3 and -4, respectively. The analyses also revealed the close relatedness of Purwokerto isolates to other DENV strains from Indonesia and neighboring countries. In summary, we reveal the molecular and virological characteristics of DENV in Purwokerto, Banyumas regency, Central Java. The genotype and phylogenetic analyses indicate the endemicity of the circulating DENV in the city. Our serotype and genotype data provide references for future dengue molecular epidemiology studies and disease management in the region.

Suggested Reviewers: Rajendra Pilankatta praj74@cukerala.ac.in

Pei Wang april_autumn@163.com

Yongxia Shi shiyx@iqtc.cn

Response to Reviewer

REVIEW OF MANUSCRIPT NUMBER: JIPH-D-17-00289

TITLE: MOLECULAR CHARACTERIZATION OF DENGUE VIRUSES ISOLATED FROM DENGUE PATIENTS IN CENTRAL JAVA, INDONESIA

Reviewer #1:

INTRODUCTION

In this study, the authors conducted a prospective cross-sectional molecular surveillance study in Purwokerto to gain information on DENV molecular characteristics, in particular the serotype distribution and genotype diversity of DENV circulating in the city.

CRITIQUE

Introduction

The authors should include some literature on prevailing and past dengue serotype and genotype distributions in the surrounding regions to describe its past importance, while also substantiating the importance of determining its molecular epidemiology in this study.

Response:

Thank you for the suggestion. The published data on dengue virus (DENV) serotypes and genotypes distribution in Indonesia, in particular Central Java is limited. In this study, one of our aims was to add data on dengue virus diversity in the region. To complement the historical data on DENV in the region, we have added a reference to our previous data from Semarang, a city in Central Java, approximately 188 km from Purwokerto, where we described DENV serotypes and genotypes distribution of circulating virus in 2012 (Fahri, et al. PLoS NTD 2013) in the Introduction (page 4).

Materials and Methods

1. The authors did not clearly define the sampling criteria for the study.

Response:

We have re-written our sampling criteria in the Materials and Methods section to better defining the approach that we used. We also added information regarding the use of WHO-SEARO 2011 guideline to determine the clinical manifestations as follows:

"Dengue-suspected patients were recruited from inpatient wards of three hospitals in the city, namely RSUD Prof. Dr. Margono Soekardjo central hospital, RSU Sinar Kasih, and RSU St. Elisabeth during period of June through August 2015. Inclusion criteria included patients with fever > 38°C during the first five days of fever, accompanied with at least one clinical signs of dengue such as rash, arthralgia, malaise, retro-orbital pain, signs of DHF or DSS. We excluded fever patients with a clear symptoms of upper respiratory tract infections and/or obviously diagnosed as non-dengue and unwilling to participate in this study. The hematology data were obtained from the routine blood tests performed by the hospitals. All dengue positive cases were categorized clinically either as DF, DHF, DSS, or expanded dengue syndrome according to WHO-SEARO [16]." (page 4)

2. Was the study sample from hospital inpatients or outpatients?

Response:

The study samples were from hospital inpatients. We have updated this information accordingly in the first paragraph of Material and Methods (page 4).

3. Were the cases from Banyumas regency?

Response:

The cases were from Purwokerto city which is the capital of Banyumas regency in Central Java province.

4. The clinical definition of dengue used was not the standard WHO dengue case definition, what was the case definition used?

Response:

We used the WHO-SEARO 2011 guideline to determine the dengue clinical definition. Using this guideline, we classified the clinical manifestations into dengue fever (DF), dengue hemorrhagic fever (DHF), DHF with shock syndrome (DSS,) and expanded dengue syndrome. We have stated this information in the Materials and Methods section (ref 16).

5. The authors did not detail the methodology on obtaining the hematology data.

Response:

Thank you for raising this up. The hematology data were obtained from the routine blood tests performed by the hospitals. We have added the information accordingly in the Materials and Methods section (page 4).

6. The Statistical tests and their inferences were not detailed in the study.

Response:

Thank you for your input. We have corrected the method for statistical analysis in the Materials and Methods section, as follows:

"Statistical analysis was performed using SPSS Statistics software, version 17.0 (SPSS Inc., Chicago, IL) and R statistical software (http://www.r-project.org). Pearson chi-squared test was used to correlate the clinical manifestations and DENV serotypes. One-way ANOVA test was

used to compare groups of hematology data and DENV serotypes. A probability value of p<0.05 was considered statistically significant." (page 7)

7. Data Analysis - Statistical Stability using 95% CI should be employed in this study for hypothesis testing and interval estimation.

Response:

In the statistical analysis, we employed Pearson chi-squared test to correlate the clinical manifestations and DENV serotypes. One-way ANOVA test was used to compare groups of hematology data and DENV serotypes. We used probability value of p<0.05 for significance (page 7).

Results

1. The definition of dengue suspected patients? Were they the patients with clinical suspicion of dengue?

Response:

The dengue-suspected patients were patients with clinical suspicion of dengue. In order to avoid confusion, we revised the manuscript only to use "dengue-suspected patients" term (Materials and Methods section, page 4).

2. Were there a total 105 dengue suspected patients in the study, or 105 serum samples taken from a larger sample of suspected patients.

Response:

A total of 105 serum samples were all dengue-suspected patients' samples collected in this study.

3. The seropositivity of dengue in this sample was 80%, the authors could elaborate more on this finding by comparing to previous findings in the same or surrounding regions.

Response:

Thank you for your important highlight. In our previous study, the seropositivity (as of IgM positivity) of samples from different cities/region in Indonesia ranged from 38.5% to 93.1%, with the overall percentage for Indonesia was 73.7% (Aryati, et al. BMC Infect Dis 2013). The city of Semarang in Central Java recorded seropositivity of 93.1%. The seropositivity of 76% in Purwokerto city is still within the range and comparable to the seropositivity of Indonesia. We have included this in the Discussion section (page 9-10).

4. The algorithm of laboratory testing and lab confirmation was not clearly defined.

Response:

The sample testing algorithm was as follows: dengue-suspected samples were enrolled using the inclusion criteria and tested for dengue IgM and IgG antibodies and NS1 antigen. Hematology profiles were taken from routine laboratory examination in the hospitals. The NS1positive samples were considered as dengue-confirmed samples and tested for the presence of DENV RNA and the corresponding DENV serotype using real-time RT-PCR, simultaneously. The degree of clinical manifestation was determined using WHO-SEARO guideline. Representative samples were subjected to Envelope gene sequencing approach to study the genotype of DENV.

5. Was the Panbio Dengue Duo Elisa (Alere) for primary or secondary dengue done on all samples or those positive by the SD BIOLINE Dengue Duo rapid test.

Response:

We performed tests using Panbio Dengue Duo IgM/IgG ELISA (Alere) to samples that resulted positive using SD BIOLINE Dengue Duo rapid test. This approach was performed to determine the infection status (primary vs secondary infection) of the serologically positive samples. The Panbio Dengue Duo IgM/IgG ELISA can be used to quantitatively determine the infection status.

6. The criteria used for diagnosis of DHF and DF. The study showed 60% were DHF, which is a very high observation compared to the literature, would be interesting for the authors to include more discussion on this finding.

Response:

The higher percentage of DHF manifestation in Purwokerto patients is understandable because in this study, patient recruitments were performed in referral hospitals where severe patients are usually hospitalized (compared to primary health centers where mostly mild patients treated). The higher percentage of DHF was also observed in Semarang in 2012 (Fahri, et al PLoS NTD 2013).

7. Analysis and findings on the positivity rates between NS1 with RT-PCR should also be detailed.

Response:

Thank you for your suggestion. For the confirmation of dengue positive samples, we use NS1 and/or RT-PCR test. We found that most of the positive dengue cases were confirmed by RT-PCR (82%) while only 40% of this positive RT-PCR found to be NS1 positive. However, 18% of dengue positive cases were only positive by NS1. We have added detailed explanation in Result section (page 7).

Discussion

1. Due to the small sample size there were no significant findings for the demographic and clinical data. The study was not able to make any meaningful correlations between the

serotype and other variables collected, however much was discussed without any conclusions.

Response:

Thank you for your comments. In this study we focused more on virological aspects of the DENV isolated in Purwokerto city, i.e. the serotypes and genotypes distribution and their phylogenetic characteristics. We agree that the small sample size was not ideal to generate conclusive results on epidemiology data. We have raised this issue in the Discussion section (page 10) as follows:

"We are aware that the limited sample size obtained in this study may affect the reliability of the data analysis, therefore, no confident conclusion can be drawn for the association of DENV serotypes with demography, clinical, and hematological data."

2. The authors suggested that there was different serotype predominance in different cities in Indonesia, however not as the same time, as it must be noted that the other study samples were of different time points. The authors should elaborate further how this conclusion was obtained as this is an important observation.

Response:

Thank you for the suggestions. The differing DENV serotype predominance in several cities in Indonesia is actually occurred in the past as well as in the current situation. We have added new references that described the serotype distribution in other cities in Indonesia 2009, 2012 in Jakarta and, Surabaya; and recently in 2015 (same year as in Purwokerto), i.e. in Jambi and Bali in the Discussion section (page 11). From the serotype distribution data, we observed the spatiotemporal dynamics of DENV distribution in cities in Indonesia.

3. The dengue serotype lineages was adequately described, however a deeper discussion of the genetic diversity of the Purwokerto strains with surrounding regions would be required as this was the overall focus and strength of the manuscript.

Response:

Thank you for highlighting this. We have discussed the genetic diversity of Purwokerto virus isolates in the Discussion section.

References

Referencing style to be formatted accordingly, for example:

[1] Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF. The global distribution and burden of dengue. Nature. 2013 Apr 25;496(7446):504-7.

[2] Martina BE, Koraka P, Osterhaus AD. Dengue virus pathogenesis: an integrated view. Clinical microbiology reviews. 2009 Oct 1;22(4):564-81.

Response:

Thank you. The references were automatically formatted using Zotero referencing software employing reference style designed for Journal of Infection and Public Health (<u>https://www.zotero.org/styles/?q=journal%20of%20infection%20and%20public%20health</u>).

The reference style was automatically generated by the software according to the suggested style provided by JIPH/Zotero.

Tables and Figures

Table 1, suggest title "Distribution of demographic and clinical parameters for DENV serotypes, Purwokerto, Indonesia, 2015"

Response:

Thank you for your suggestion. We have revised the title accordingly (page 17).

Molecular Characterization of Dengue Viruses Isolated from Dengue Patients in Central Java, Indonesia

Endang S. Kusmintarsih¹, Rahma F. Hayati², Oktaviani N. Turnip^{1,2}, BenediktusYohan²,

Suhestri Suryaningsih¹, Hery Pratiknyo¹, Dionisius Denis² and R. Tedjo Sasmono^{2*}

¹Fakultas Biologi, Universitas Jenderal Soedirman, Jl. dr. Soeparno No. 63, Purwokerto

53122, Indonesia

²Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta 10430, Indonesia

Abstract word count: 293

Word count: 3337

*Corresponding author, email: <u>sasmono@eijkman.go.id</u>

Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta 10430, Indonesia,

Tel. +62-21-3917131, Fax. +62-21-3147982

ABSTRACT

Background

Dengue is hyper-endemic in Indonesia. Purwokerto city in Central Java province is routinely ravaged by the disease. Despite the endemicity of dengue in this city, there is still no data on the virological aspects of dengue in the city. We conducted a molecular surveillance study of the circulating dengue viruses (DENV) in Purwokerto city to gain information on the virus origin, serotype and genotype distribution, and phylogenetic characteristics of DENV. *Methods*

A cross-sectional dengue molecular surveillance study was conducted in Purwokerto. Sera were collected from dengue-suspected patients attending three hospitals in the city. Diagnosis was performed using dengue NS1 antigen and IgG/IgM antibodies detection. DENV serotyping was performed using Simplexa Dengue real-time RT-PCR. Sequencing was conducted to obtain full-length DENV Envelope (E) gene sequences, which were then used in phylogenetic and genotypic analyses. Patients' clinical and demographic data were collected and analyzed.

Results

A total of 105 dengue-suspected patients' sera were collected, in which 80 (76%) were positive for IgM and/or IgG, and 57 (54.2%) were confirmed as dengue by NS1 antigen and/or DENV RNA detection using RT-PCR. Serotyping was successful for 47 isolates. All four serotypes circulated in the area with DENV-3 as the predominant serotype. Phylogenetic analyses grouped the isolates into Genotype I for DENV-1, Cosmopolitan genotype for DENV-2, and Genotype I and II for DENV-3 and -4, respectively. The analyses also revealed the close relatedness of Purwokerto isolates to other DENV strains from Indonesia and neighboring countries.

Conclusion

In summary, we reveal the molecular and virological characteristics of DENV in Purwokerto, Banyumas regency, Central Java. The genotype and phylogenetic analyses indicate the endemicity of the circulating DENV in the city. Our serotype and genotype data provide references for future dengue molecular epidemiology studies and disease management in the region.

Keywords: Dengue; serotype; genotype; Purwokerto; Indonesia

1. Introduction

Dengue is considered as the most prevalent arthropod-borne viral disease in the world with significant burden to people in tropical and subtropical regions [1]. The clinical manifestations of the disease range from the mild dengue fever (DF) to the more severe cases of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) [2]. The disease is caused by dengue virus (DENV), a positive-sense single stranded RNA virus member of Flaviviridae family [3]. The 10.7 kb RNA genome encodes three structural (C, prM/M, E) and seven non-structural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) proteins [3,4]. The diverse characteristics of the virus is depicted by the presence of four serotypes (DENV-1, -2, -3, and -4), in which each serotype can be further divided into phylogenetically distinct clusters termed genotypes [5,6]. These genotypes vary in their geographical distributions, epidemic potential, fitness, and virulence [6,7].

Indonesia has been experiencing epidemic cycles of dengue since its first introduction in the country in 1968 in Jakarta and Surabaya [8]. The country suffered the highest economic burden of dengue in Southeast Asia region [9]. The frequent dengue cases is often followed by increasing numbers of infections and severity which affected all 34 provinces in the country [8,10]. As most countries in Southeast Asia except Singapore and Malaysia, dengue surveillance in Indonesia remains largely passive [11]. Therefore, local surveillance is important to gain comprehensive information on dengue epidemiology which can be used to improve control strategies and management of the disease.

Banyumas regency in Central Java, Indonesia is affected by dengue in an annual basis [12]. Purwokerto, the capital city of Banyumas has experienced frequent dengue outbreaks with higher risks of dengue infection compared to other towns in surrounding area in Banyumas regency [13]. Apart of information on the socio-economic, epidemiology, and vector data, to the best of our knowledge, there is still no report on the virological aspects of dengue in this city where no data on circulating serotypes and diversity of the genotypes are available. Previously, we have reported dengue molecular and virological characteristics in Semarang in 2012, a city in Central Java which resided approximately 188 km from Purwokerto [14]. In this study, we conducted a prospective cross-sectional molecular surveillance study in Purwokerto to gain information on DENV molecular characteristics, in particular the serotype distribution and genotype diversity of DENV circulating in the city.

2. Materials and methods

2.1. Study design, study site and patient recruitment

We conducted a cross-sectional dengue molecular surveillance study in Purwokerto city, Banyumas regency, Central Java, Indonesia. This city is located at the southern part of Central Java, at the altitude of 75 m above sea level with 7°26′ south latitude and 109°14′ east longitude. Dengue-suspected patients were recruited from inpatient wards of three hospitals in the city, namely RSUD Prof. Dr. Margono Soekardjo central hospital, RSU Sinar Kasih, and RSU St. Elisabeth during period of June through August 2015. Inclusion criteria included patients with fever > 38°C during the first five days of fever, accompanied with at least one clinical signs of dengue such as rash, arthralgia, malaise, retro-orbital pain, signs of DHF or DSS. We excluded fever patients with a clear symptoms of upper respiratory tract infections and/or obviously diagnosed as non-dengue and unwilling to participate in this study. The hematology data were obtained from the routine blood tests performed by the hospitals. All dengue positive cases were categorized clinically either as DF, DHF, DSS, or expanded dengue syndrome according to WHO-SEARO [15].

Peripheral venous blood was collected in serum separator tubes and taken to the laboratory for serum separation. Serum was kept frozen at -80°C until analysis. Ethical approval for the involvement of human participants was granted by the Research Ethics Commission of the Faculty of Medicine, Universitas Jenderal Soedirman, approval No. 065/KEPK/IV/2015.

2.2. Dengue diagnosis, nucleic acid extraction and serotyping

The SD BIOLINE Dengue Duo rapid test (Dengue NS1 Ag + IgG/IgM) (Standard Diagnostics, Alere, Korea) was used to detect the presence of NS1 antigen and IgG/IgM antibodies to DENV. Further serological diagnosis was performed using Panbio Dengue Duo ELISA (Alere), in which the IgG/IgM scores were used to determine the primary versus secondary infection, performed according to the kit's instructions. The DENV RNA was extracted using MagNA Pure Total Nucleic Acid extraction kit (Roche, Mannheim, Germany) and performed using automated MagNA Pure LC 2.0 extraction system (Roche), according to protocol described by the manufacturer. The resulting RNA was then assayed using Simplexa Dengue real-time RT-PCR (DiaSorin, Saluggia, Italy) assay which simultaneously detect the presence of DENV and its serotype [16]. Strict controls were applied on RNA extraction and RT-PCR procedures to prevent cross-contamination.

2.3. DENV E gene sequencing

The sequencing of DENV E genes were performed at Eijkman Institute's sequencing facility, using RNA directly extracted from patients' sera. Superscript III Reverse Transcriptase (Invitrogen-Thermo Scientific, Carlsbad, CA, USA) was used to reverse-transcribed the DENV RNA into cDNA which was then PCR-amplified using *Pfu* Turbo DNA Polymerase (Stratagene-Agilent Technologies, La Jolla, CA, USA). PCR-amplified DNA was purified from 0.8% gel using QIAquick gel extraction kit (Qiagen, Hilden, Germany). The purified amplicon was used in cycle sequencing reactions using eight overlapping primers for each serotype from both strands and BigDyeDideoxy Terminator sequencing kits v.3.1 (Applied Biosystems-Thermo Scientific), as described elsewhere [17]. Purified DNA was subjected to capillary sequencing performed on 3130x1 Genetic Analyzer (Applied Biosystems). Sequence reads were assembled using SeqScape v.2.5 software (Applied Biosystems) with manual inspection performed where ambiguities observed.

2.4. Phylogenetic analysis

Phylogenetic analysis was conducted by aligning full-length E gene sequences of Purwokerto isolates with other publicly available DENV sequences worldwide retrieved from GenBank as of March, 2016. All nonrelated sequences were removed and finally 60 taxa which are the most closely related to Purwokerto isolates were selected per serotype to clarify the tree view. These sequences were subjected to robust phylogenetic analyses. Dataset for each serotype was prepared using BEAUti v.1.8.3 graphical interface with the tip of each isolate calibrated using the year of isolation. Bayesian Markov Chain Monte Carlo (MCMC) method was implemented for phylogenetic reconstruction and molecular clock analyses as implemented in BEAST v.1.8.3 using General Time Reversible (GTR) model with four Gamma parameters (G_4) and invariant (1) sites, relaxed uncorrelated lognormal molecular clock and Bayesian skyline prior, with 100 million generations and sampled for every 1000th iteration and 10% burn-in employed. The initial estimated evolutionary rate was set at 7.6 x 10⁻⁴ substitutions per site per year, as previously described [18]. MCMC trace was analyzed using Tracer

v.1.5.0 to monitor adequate Effective Sampling Size (ESS) for all parameters. TreeAnnotator v.1.8.3 was used to create Maximum clade credibility (MCC) tree which visualized in FigTree v.1.4.0.

The classification of genotypes in each serotype was based on classifications by Goncalvez et al. [19], Twiddy et al. [20], Lanciotti et al. [21], and Lanciotti et al. [22], for DENV-1, -2, -3 and -4, respectively.

2.5. Statistical analysis

Statistical analysis was performed using SPSS Statistics software, version 17.0 (SPSS Inc., Chicago, IL) and R statistical software (http://www.r-project.org). Pearson chi-squared test was used to correlate the clinical manifestations and DENV serotypes. One-way ANOVA test was used to compare groups of hematology data and DENV serotypes. A probability value of p<0.05 was considered statistically significant.

3. Results

3.1. Patients characteristics, clinical manifestation, and DENV serotypes

A total of 105 serum samples from dengue-suspected patients were collected during the study. The age of the patients ranging from 3 to 65 years (mean \pm SD = 29.5 \pm 15.6 years). Among them, 80 (76%) were positive for IgM and/or IgG, and 57 (54.2%) were confirmed to have dengue infection by NS1 antigen and/or DENV RNA detection using RT-PCR (82% positivity by RT-PCR and/or NS1 and 18% positivity by NS1 only). These confirmed cases occurred almost evenly among all age groups with most cases affected adults aged between 21 and 30 years (Figure 1A). Forty-seven out of 57 confirmed cases were positive for DENV by real-time RT-PCR. Among these 47 patients, 24 (51%) were male and 23 (49%) were female. We observed more secondary infections (57%) compared to primary infections

(Table 1). Serotyping revealed the presence of all four DENV serotypes. The DENV-3 was the predominant serotype (26 or 55%), followed by DENV-1 (11 or 23%) and equal number of DENV-2 and -4 cases (5 or 11% each) (Figure 1B).

From 47 dengue-confirmed patients with known infecting serotypes, 28 (60%) were DHF and 19 (40%) were DF. We did not find DSS and expanded dengue syndrome in this study. Most of the patients (32 or 68%) experienced thrombocytopenia (platelet count <100,000/ μ L), while severe thrombocytopenia (<50,000/ μ L) was observed in 15 patients (32%). The characteristics of the patients together with proportion of the infecting serotypes, diagnosis, infection status, severity, and hematological data are shown in Table 1.

3.2. DENV genotypes and phylogenetic relationships

Full-length E gene sequences of 16 isolates, comprising all four serotypes, were successfully obtained. The E gene sequences have been deposited into GenBank repository and granted accession number of KY709181-KY709196. Three out of 11 DENV-1 isolates were genotyped according to Goncalvez classification [19] and identified as Genotype I (Figure 2). Two of them were grouped together in a lineage which include Indonesian strains imported to Taiwan and Okinawa-Japan in 2014 [23,24] (Figure 2). The other DENV-1 Purwokerto isolate was closely related to strain isolated in Tokyo-Japan in 2014. These isolates were grouped together in a lineage of strains from Indonesia city of Surabaya isolated in 2010 (Figure 2).

Among five DENV-2 isolates detected in this study, four were genotyped. All of these isolates belonged to Cosmopolitan genotype according to Twiddy classification [20] (Figure 3). Although grouped into single Cosmopolitan genotype and collected within the same study time, these 4 isolates were further differentiated into three distinct lineages. One isolate was closely related with strains from Bali isolated in 2011-2012 and grouped together with strains

from Indonesian city of Makassar isolated in 2007-2008 [25] and Singapore isolated in 2004 (Figure 3, lineage 1). Two isolates formed a monophyletic lineage consisting of mostly strains from Indonesian Sumatra in 2010 [26] and Jakarta in 2009 (unpublished), Singapore, Brunei and China (Figure 3, lineage 2). The remaining isolate was grouped with other Indonesia strains from Sukabumi isolated in 2012 [27] and Jakarta in 2004 [28] and 2013 [29].

For DENV-3, seven out of 26 isolates were successfully sequenced and identified as Genotype I (Figure 4) according to Lanciotti classification [21]. Similar with DENV-2, these isolates were also clustered into three different lineages. Two isolates were grouped together and closely related to Indonesia strain from Surabaya in 2013 [30]. Three isolates were grouped together in a lineage consisting of strains from Jakarta, Bali and other city in Indonesia isolated from travelers returning to Western Australia [31]. The remaining two isolates were grouped together and closely related to strain from Semarang, Central Java [14] and strains form another cities in Indonesia [26], as well as those from Malaysia [32] and China in 2010.

We genotyped two out of five DENV-4 isolates as Genotype II according to Lanciotti classification [22]. These isolates were grouped together with strains from Indonesia, Southeast Asia, and Micronesia (Figure 5). One of them was closely related to the strain from Bali in 2010 [31], other city in Indonesia in 2009, and imported cases in Taiwan in 2009 [32]. The other isolate was grouped together with strain from Indonesia in 2010 [26].

4. Discussion

Similar with many other urban areas in Indonesia, Purwokerto is endemic for dengue and ravaged by the disease annually. While dengue is endemic, to the best of our knowledge, no dengue virological data in Purwokerto have been reported. Therefore, our study provides the In our study population, most (76%) of patients were positive for dengue IgM/IgG antibodies while 54.2% of them were positive for NS1 antigen and/or RT-PCR detection. Moreover, about 60% of patients were secondary infection. In our previous study, we observed the seropositivity of samples from different cities/region in Indonesia ranged from 38.5% to 93.1%, with the overall percentage for Indonesia was 73.7% [33]. The seropositivity of 76% in Purwokerto city is still within the observed range and comparable to the seropositivity of Indonesia. Altogether, these reflect the considerable burden of dengue in the community. As urbanized area, Purwokerto has a greater risk of dengue infections compared to its surrounding area in Banyumas regency [13]. Urbanization becomes a prevalent factor for dengue infections as the city has become economically more developed since the establishment of universities in the city which increase the number of urban population, especially students, in the city.

In term of disease manifestation, we revealed the occurrence of both DF and DHF. We observed majority of dengue cases (60%) were DHF. This was similar to study in Semarang in 2012 in which 74% of the cases were DHF [14] The relationship of infecting serotype with clinical manifestation has been reported [34, 35]. We did not find possible relationship of infecting serotype with demography, hematology, and clinical manifestation (Table 1). We also did not find correlation of infecting serotype with thrombocytopenia as previously reported in Singapore [36]. Association between DENV-1 and DENV-3 with primary infection which has been reported in Thailand [35], however, this was not observed in Purwokerto. The possible relationship of clinical manifestation with demography and hematology were also analyzed (data not shown). Again, no significant correlation was found among them. We are aware that the limited sample size obtained in this study may affect the reliability of the data analysis, therefore, no confident conclusion can be drawn for the association of DENV serotypes with demography, clinical, and hematological data.

Our study was more focused on the virological aspects of DENV. To assess the dynamic of DENV in Purwokerto, we compared our data with data from nearby city of Semarang (located about188 km from Purwokerto), because no historical virological data of dengue in Purwokerto are available. We observed distinct serotype predominance between the two cities. The majority of the DENV isolated in Semarang was DENV-1 [14] while the most predominant serotype in Purwokerto was DENV-3. The history of DENV-3 predominance was recorded in several cities in Indonesia including Jakarta [28], Palembang [37], and Bali in 2015 [38]. In another nearby city of Bandung (about 244 km from Purwokerto), DENV-4 was the most frequent serotype detected, followed by DENV-3 as the second most detected [39]. In other cities in Indonesia, different serotype predominance was also observed such as in Jakarta in 2010 [40], Surabaya in 2012 [41], and Jambi in 2015 [17]. Altogether, these findings reveal the differing DENV serotype predominance in different cities and thus demonstrate the spatial and temporal dynamics of DENV distribution in Indonesia.

Phylogenetic analysis was performed to determine the genotypes of DENV and the origin and relationships with other DENV strains from other regions in Indonesia and neighboring countries. Although Purwokerto DENV-1 viruses were grouped into single genotype, i.e. Genotype I, apparently, they were separated into two lineages, suggesting the genetic diversity of these strains. We did not find Genotype IV of DENV-1 which was previously found in other cities in Indonesia, such as in Sukabumi [27], Makassar [25], and Surabaya [41]. This finding enhances the notion of possible lineage replacement in DENV-1 in Indonesia from Genotype IV to Genotype I as this genotype was recorded to replace the

older Genotype IV in recent studies in Jambi in 2015 [17], Sukabumi in 2013 [27], Semarang in 2012 [14], Makassar (2007-2010) [25], and Surabaya in 2009 [42].

The DENV-2 isolates from Purwokerto were identified as Cosmopolitan genotype. These isolates were grouped together with other Indonesia strains and those from Southeast Asia and China. Cosmopolitan genotype has been spread worldwide as it has been found in Southeast Asia, India, Middle East, Africa and Australia [20]. To date, this genotype is the common genotype circulating in Indonesia and has been found in Palembang [37], Jakarta [28], Surabaya [41,42], Semarang [14], Makassar [25], Sukabumi [27], Jambi [17], and Bali [38]. Based on the presence of various DENV-2 lineages in Purwokerto, it is plausible that the strains had undergone a local evolution, resulting in more genetically divergent strains as depicted by the presence of three separate lineages. One important finding about DENV-2 isolates in Purwokerto is the presence of isolate that is closely related with DENV-2 strains originated from Bali (Figure 3, lineage 1) that were associated with the large outbreak in 2011-2012 [31]. The fact that this lineage is also present in Purwokerto may need to be continuously monitored for its potential to cause outbreak in the region as has been reported in Bali.

The DENV-3 isolates were classified as Genotype I. This genotype was the common genotype in Southeast Asia region [21]. Similar to DENV-2, the DENV-3 isolates also show a considerable genetic diversity as depicted by the presence of three distinct lineages. The Purwokerto DENV-3 isolates were closely related to other Indonesia strains especially those from Semarang [14], Jakarta [28], and Surabaya [42]. We did not observed the close-relatedness with DENV strains from outside Indonesia (except the imported cases in China), which suggest that these predominant viruses were of local origin and not imported from other countries.

For DENV-4 isolates, phylogenetic analysis revealed that the two isolates were grouped into Genotype II and formed two separate lineages. This genotype was frequently found in Southeast Asia and America [22]. The Purwokerto's DENV-4 isolates were closely related to virus sampled in Indonesia in 2009 to 2010, and the imported virus strain collected in Taiwan presumed to be originated from Indonesia in 2010 [32]. These phylogenetic data suggest the endemic nature of DENV-4 in Purwokerto.

In conclusion, we provide the first molecular and virological characteristics of DENV in Purwokerto, Banyumas regency, Central Java, Indonesia. Although the serotype predominance of DENV in Purwokerto was different from the nearby cities, the genotypes of the isolates were apparently similar to those commonly found in other cities in Indonesia. The phylogenetic and genotypic analyses suggested that an endemic cycle of transmission has been established in Purwokerto with all four DENV serotypes circulating. DENV isolates imported from other countries was not detected. High number of travel and urbanization might be the contributing factors to the distribution of serotype and genotypes. Purwokerto is one of the transit route connecting cities in Java Island, especially for land transport. Continuous DENV molecular and virological surveillance efforts will be useful to further understand the dynamic of dengue disease in this region and contributes to the disease prevention and management program.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgment

The authors are grateful to all the patients, clinicians and other medical staff involved in this study. This study was funded by HIKOM competitive grant and APBN grant from the

Ministry of Research, Technology, and Higher Education of the Republic of Indonesia to

ESK and RTS, respectively.

5. References

- [1] Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature 2013;496:504–7. doi:10.1038/nature12060.
- [2] Martina BEE, Koraka P, Osterhaus ADME. Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev 2009;22:564–81. doi:10.1128/CMR.00035-09.
- [3] Henchal EA, Putnak JR. The dengue viruses. Clin Microbiol Rev 1990;3:376–96.
- [4] Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, et al. Dengue: a continuing global threat. Nat Rev Microbiol 2010;8:S7-16. doi:10.1038/nrmicro2460.
- [5] Holmes EC. RNA virus genomics: a world of possibilities. J Clin Invest 2009;119:2488–95. doi:10.1172/JCI38050.
- [6] Holmes EC, Burch SS. The causes and consequences of genetic variation in dengue virus. Trends Microbiol 2000;8:74–7.
- [7] Holmes EC, Twiddy SS. The origin, emergence and evolutionary genetics of dengue virus. Infect Genet Evol 2003;3:19–28.
- [8] Sumarmo. Dengue haemorrhagic fever in Indonesia. Southeast Asian J Trop Med Public Health 1987;18:269–74.
- [9] Shepard DS, Undurraga EA, Halasa YA. Economic and disease burden of dengue in Southeast Asia. PLoS Negl Trop Dis 2013;7:e2055. doi:10.1371/journal.pntd.0002055.
- [10] Setiati TE, Wagenaar JF, de Kruif MD, Mairuhu AT, van Gorp EC, Soemantri A. Changing epidemiology of dengue haemorrhagic fever in Indonesia. Bull WHO 2006;30:1–14.
- [11] Karyanti MR, Uiterwaal CSPM, Kusriastuti R, Hadinegoro SR, Rovers MM, Heesterbeek H, et al. The changing incidence of dengue haemorrhagic fever in Indonesia: a 45-year registry-based analysis. BMC Infect Dis 2014;14:412. doi:10.1186/1471-2334-14-412.
- [12] Wijayanti SPM, Sunaryo S, Suprihatin S, McFarlane M, Rainey SM, Dietrich I, et al. Dengue in Java, Indonesia: Relevance of Mosquito Indices as Risk Predictors. PLoS Negl Trop Dis 2016;10:e0004500. doi:10.1371/journal.pntd.0004500.
- [13] Wijayanti SPM, Porphyre T, Chase-Topping M, Rainey SM, McFarlane M, Schnettler E, et al. The Importance of Socio-Economic Versus Environmental Risk Factors for Reported Dengue Cases in Java, Indonesia. PLoS Negl Trop Dis 2016;10:e0004964. doi:10.1371/journal.pntd.0004964.
- [14] Fahri S, Yohan B, Trimarsanto H, Sayono S, Hadisaputro S, Dharmana E, et al. Molecular surveillance of dengue in Semarang, Indonesia revealed the circulation of an old genotype of dengue virus serotype-1. PLoS Negl Trop Dis 2013;7:e2354. doi:10.1371/journal.pntd.0002354.
- [15] WHO-SEARO. Comprehensive guidelines for prevention and control of dengue and dengue haemorrhagic fever. Revised and expanded. New Delhi, India: World Health Organization; 2011.
- [16] Sasmono RT, Aryati A, Wardhani P, Yohan B, Trimarsanto H, Fahri S, et al. Performance of Simplexa dengue molecular assay compared to conventional and SYBR green RT-PCR for detection of dengue infection in Indonesia. PloS One 2014;9:e103815. doi:10.1371/journal.pone.0103815.
- [17] Haryanto S, Hayati RF, Yohan B, Sijabat L, Sihite IF, Fahri S, et al. The molecular and clinical features of dengue during outbreak in Jambi, Indonesia in 2015. Pathog Glob Health 2016;110:119–29. doi:10.1080/20477724.2016.1184864.
- [18] Costa RL, Voloch CM, Schrago CG. Comparative evolutionary epidemiology of dengue virus serotypes. Infect Genet Evol 2012;12:309–14. doi:10.1016/j.meegid.2011.12.011.

- [19] Goncalvez AP, Escalante AA, Pujol FH, Ludert JE, Tovar D, Salas RA, et al. Diversity and evolution of the envelope gene of dengue virus type 1. Virology 2002;303:110–9.
- [20] Twiddy SS, Farrar JJ, Vinh Chau N, Wills B, Gould EA, Gritsun T, et al. Phylogenetic relationships and differential selection pressures among genotypes of dengue-2 virus. Virology 2002;298:63–72.
- [21] Lanciotti RS, Lewis JG, Gubler DJ, Trent DW. Molecular evolution and epidemiology of dengue-3 viruses. J Gen Virol 1994;75 (Pt 1):65–75. doi:10.1099/0022-1317-75-1-65.
- [22] Lanciotti RS, Gubler DJ, Trent DW. Molecular evolution and phylogeny of dengue-4 viruses. J Gen Virol 1997;78 (Pt 9):2279–84.
- [23] Wang S-F, Chang K, Lu R-W, Wang W-H, Chen Y-H, Chen M, et al. Large Dengue virus type 1 outbreak in Taiwan. Emerg Microbes Infect 2015;4:e46. doi:10.1038/emi.2015.46.
- [24] Chang S-F, Yang C-F, Hsu T-C, Su C-L, Lin C-C, Shu P-Y. Laboratory-Based Surveillance and Molecular Characterization of Dengue Viruses in Taiwan, 2014. Am J Trop Med Hyg 2016;94:804–11. doi:10.4269/ajtmh.15-0534.
- [25] Sasmono RT, Wahid I, Trimarsanto H, Yohan B, Wahyuni S, Hertanto M, et al. Genomic analysis and growth characteristic of dengue viruses from Makassar, Indonesia. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis 2015;32:165–77. doi:10.1016/j.meegid.2015.03.006.
- [26] Warrilow D, Northill JA, Pyke AT. Sources of dengue viruses imported into Queensland, Australia, 2002-2010. Emerg Infect Dis 2012;18:1850–7. doi:10.3201/eid1811.120014.
- [27] Nusa R, Prasetyowati H, Meutiawati F, Yohan B, Trimarsanto H, Setianingsih TY, et al. Molecular surveillance of Dengue in Sukabumi, West Java province, Indonesia. J Infect Dev Ctries 2014;8:733–41.
- [28] Ong SH, Yip JT, Chen YL, Liu W, Harun S, Lystiyaningsih E, et al. Periodic reemergence of endemic strains with strong epidemic potential-a proposed explanation for the 2004 Indonesian dengue epidemic. Infect Genet Evol 2008;8:191–204.
- [29] Lardo S, Utami Y, Yohan B, Tarigan SM, Santoso WD, Nainggolan L, et al. Concurrent infections of dengue viruses serotype 2 and 3 in patient with severe dengue from Jakarta, Indonesia. Asian Pac J Trop Med 2016;9:134–40. doi:10.1016/j.apjtm.2016.01.013.
- [30] Kotaki T, Yamanaka A, Mulyatno KC, Labiqah A, Sucipto TH, Churrotin S, et al. Phylogenetic analysis of dengue virus type 3 strains primarily isolated in 2013 from Surabaya, Indonesia. Jpn J Infect Dis 2014;67:227–9.
- [31] Ernst T, McCarthy S, Chidlow G, Luang-Suarkia D, Holmes EC, Smith DW, et al. Emergence of a new lineage of dengue virus type 2 identified in travelers entering Western Australia from Indonesia, 2010-2012. PLoS Negl Trop Dis 2015;9:e0003442. doi:10.1371/journal.pntd.0003442.
- [32] Huang J-H, Su C-L, Yang C-F, Liao T-L, Hsu T-C, Chang S-F, et al. Molecular characterization and phylogenetic analysis of dengue viruses imported into Taiwan during 2008-2010. Am J Trop Med Hyg 2012;87:349–58. doi:10.4269/ajtmh.2012.11-0666.
- [33] Aryati, Trimarsanto H, Yohan B, Wardhani P, Fahri S, Sasmono RT. Performance of commercial dengue NS1 ELISA and molecular analysis of NS1 gene of dengue viruses obtained during surveillance in Indonesia. BMC Infect Dis 2013;13:611. doi:10.1186/1471-2334-13-611.

1

16

- [34] Balmaseda A, Hammond SN, Perez L, Tellez Y, Saborio SI, Mercado JC, et al. Serotype-specific differences in clinical manifestations of dengue. Am J Trop Med Hyg 2006;74:449–56.
- [35] Fried JR, Gibbons RV, Kalayanarooj S, Thomas SJ, Srikiatkhachorn A, Yoon I-K, et al. Serotype-specific differences in the risk of dengue hemorrhagic fever: an analysis of data collected in Bangkok, Thailand from 1994 to 2006. PLoS Negl Trop Dis 2010;4:e617. doi:10.1371/journal.pntd.0000617.
- [36] Yung C-F, Lee K-S, Thein T-L, Tan L-K, Gan VC, Wong JGX, et al. Dengue serotypespecific differences in clinical manifestation, laboratory parameters and risk of severe disease in adults, singapore. Am J Trop Med Hyg 2015;92:999–1005. doi:10.4269/ajtmh.14-0628.
- [37] Corwin AL, Larasati RP, Bangs MJ, Wuryadi S, Arjoso S, Sukri N, et al. Epidemic dengue transmission in southern Sumatra, Indonesia. Trans R Soc Trop Med Hyg 2001;95:257–65.
- [38] Megawati D, Masyeni S, Yohan B, Lestarini A, Hayati RF, Meutiawati F, et al. Dengue in Bali: Clinical characteristics and genetic diversity of circulating dengue viruses. PLoS Negl Trop Dis 2017;11:e0005483. doi:10.1371/journal.pntd.0005483.
- [39] Kosasih H, Alisjahbana B, Nurhayati null, de Mast Q, Rudiman IF, Widjaja S, et al. The Epidemiology, Virology and Clinical Findings of Dengue Virus Infections in a Cohort of Indonesian Adults in Western Java. PLoS Negl Trop Dis 2016;10:e0004390. doi:10.1371/journal.pntd.0004390.
- [40] Lestari CSW, Yohan B, Yunita A, Meutiawati F, Hayati RF, Trimarsanto H, et al. Phylogenetic and evolutionary analyses of dengue viruses isolated in Jakarta, Indonesia. Virus Genes 2017. doi:10.1007/s11262-017-1474-7.
- [41] Wardhani P, Aryati A, Yohan B, Trimarsanto H, Setianingsih TY, Puspitasari D, et al. Clinical and virological characteristics of dengue in Surabaya, Indonesia. PloS One 2017;12:e0178443. doi:10.1371/journal.pone.0178443.
- [42] Yamanaka A, Mulyatno KC, Susilowati H, Hendrianto E, Ginting AP, Sary DD, et al. Displacement of the predominant dengue virus from type 2 to type 1 with a subsequent genotype shift from IV to I in Surabaya, Indonesia 2008-2010. PloS One 2011;6:e27322. doi:10.1371/journal.pone.0027322.

Table 1. Distribution of demographic and clinical parameters for RT-PCR confirmed dengue

patients in Purwokerto, Indonesia, 2015.

	N	DENV-1	DENV-2 (N=5)	DENV-3 (N=26)	DENV-4 (N=5)	<i>p</i> value ^{<i>a</i>}	
Parameters		(N=11)					
Gender			•	•			
Male	24	5	2	15	2	0.781 ^{<i>a</i>}	
Female	23	6	3	11	3		
Infection type							
Primary	20	4	3	12	1	0 570a	
Secondary	27	7	2	14	4	0.578^{a}	
NS1 antigen detection	*			• •	·		
Positive	19	4	3	12	2	0.864 ^{<i>a</i>}	
Negative	26	7	2	14	3		
Severity							
DF	19	5	3	11	0	0.227 ^{<i>a</i>}	
DHF	28	6	2	15	5		
Hematology data ^b				• •	·		
Thrombocyte (/µL)	NA	88,182±68,111	123,200±73,916	75,209±48,474	77,400±48,624	0.376 ^c	
Hemoglobin (g/dL)	NA	12.99±1.76	14.24±2.07	13.84±1.67	12.44±1.38	0.197 ^c	

*Two samples have no information of NS1 antigen detection

^aPearson Chi-squared test

^bMean±STDEV

^cOne Way ANOVA Test

FIGURE LEGENDS:

Figure 1. The distribution of dengue cases in Purwokerto in 2015 determined by the age of dengue-confirmed patients (A) and the percentage of circulating DENV serotypes (B).

Figure 2. Phylogeny of the most closely related DENV-1 genotypes generated by Bayesian inference method as implemented in BEAST using GTR+G+I evolution model calculated using E gene sequences. The red labels indicated the isolates from Purwokerto and the blue labels indicated other strains from Indonesia. Arabic numbers in red denote the lineages.

Figure 3. Phylogeny of the most closely related DENV-2 Cosmopolitan genotype generated by Bayesian inference method as implemented in BEAST using GTR+G+I evolution model calculated using E gene sequences. The red labels indicated the isolates from Purwokerto and the blue labels indicated other strains from Indonesia. Arabic numbers in red denote the lineages.

Figure 4. Phylogeny of the most closely related DENV-3 genotypes generated by Bayesian inference method as implemented in BEAST using GTR+G+I evolution model calculated using E gene sequences. The red labels indicated the isolates from Purwokerto and the blue labels indicated other strains from Indonesia. Arabic numbers in red denote the lineages.

Figure 5. Phylogeny of the most closely related DENV-4 genotypes generated by Bayesian inference method as implemented in BEAST using GTR+G+I evolution model calculated using E gene sequences. The red labels indicated the isolates from Purwokerto and the blue labels indicated other strains from Indonesia. Arabic numbers in red denote the lineages.

	Molecular Characterization of Dengue Viruses Isolated from Dengue
	Patients in Central Java, Indonesia
	Endang S. Kusmintarsih ¹ , Rahma F. Hayati ² , Oktaviani N. Turnip ^{1,2} , BenediktusYohan ² ,
	Suhestri Suryaningsih ¹ , Hery Pratiknyo ¹ , Dionisius Denis ² and R. Tedjo Sasmono ^{2*}
	¹ Fakultas Biologi, Universitas Jenderal Soedirman, Jl. dr. Soeparno No. 63, Purwokerto
	53122, Indonesia
	² Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta 10430, Indonesia
I	Abstract word count: 289293
I	Word count: 3337
	*Corresponding author, email: sasmono@eijkman.go.id
	Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta 10430, Indonesia,
	Tel. +62-21-3917131, Fax. +62-21-3147982

Background

Dengue is hyper-endemic in Indonesia. Purwokerto city in Central Java province is routinely ravaged by the disease. Despite the endemicity of dengue in this city, there is still no data on the virological aspects of dengue in the city. We conducted a molecular surveillance study of the circulating dengue viruses (DENV) in Purwokerto city to gain information on the virus origin, serotype and genotype distribution, and phylogenetic characteristics of DENV.

<u>Methods</u>

A cross-sectional dengue molecular surveillance study was conducted in Purwokerto. Sera were collected from dengue-suspected patients attending three hospitals in the city. Diagnosis was performed using dengue NS1 antigen and IgG/IgM antibodies detection. DENV serotyping was performed using Simplexa Dengue real-time RT-PCR. Sequencing was conducted to obtain full-length DENV Envelope (E) gene sequences, which were then used in phylogenetic and genotypic analyses. Patients' clinical and demographic data were collected and analyzed.

<u>Results</u>

A total of 105 dengue-suspected patients' sera were collected, in which 80 (76%) were positive for IgM and/or IgG, and 57 (54.2%) were confirmed as dengue by NS1 antigen and/or DENV RNA detection using RT-PCR. Serotyping was successful for 47 isolates. All four serotypes circulated in the area with DENV-3 as the predominant serotype. Phylogenetic analyses grouped the isolates into Genotype I for DENV-1, Cosmopolitan genotype for DENV-2, and Genotype I and II for DENV-3 and -4, respectively. The analyses also revealed the close relatedness of Purwokerto isolates to other DENV strains from Indonesia and neighboring countries.

Conclusion

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

In summary, we reveal the molecular and virological characteristics of DENV in Purwokerto, Banyumas regency, Central Java. The genotype and phylogenetic analyses indicate the endemicity of the circulating DENV in the city. Our serotype and genotype data provide references for future dengue molecular epidemiology studies and disease management in the region.

Keywords: Dengue; serotype; genotype; Purwokerto; Indonesia

1. Introduction

Dengue is considered as the most prevalent arthropod-borne viral disease in the world with significant burden to people in tropical and subtropical regions [1][+]. The clinical manifestations of the disease range from the mild dengue fever (DF) to the more severe cases of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) [2][2]. The disease is caused by dengue virus (DENV), a positive-sense single stranded RNA virus member of Flaviviridae family [3][4]. The 10.7 kb RNA genome encodes three structural (C, prM/M, E) and seven non-structural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) proteins [3,4][4,4]. The diverse characteristics of the virus is depicted by the presence of four serotypes (DENV-1, -2, -3, and -4), in which each serotype can be further divided into phylogenetically distinct clusters termed genotypes [5,6][5,6]. These genotypes vary in their geographical distributions, epidemic potential, fitness, and virulence [6,7][6,7].

Indonesia has been experiencing epidemic cycles of dengue since its first introduction in the country in 1968 in Jakarta and Surabaya [8][8]. The country suffered the highest economic burden of dengue in Southeast Asia region [9][9]. The frequent dengue cases is often followed by increasing numbers of infections and severity which affected all 34 provinces in the country [8,10][8,10]. As most countries in Southeast Asia except Singapore and Malaysia, dengue surveillance in Indonesia remains largely passive [11][11]. Therefore, Formatted: Font: (Default) Times New Roman, 12 pt Field Code Changed

Formatted: Font: (Default) Times New Roman, 12 pt Field Code Changed

Field Code Changed Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt Field Code Changed

Field Code Changed Formatted: Font: (Default) Times New Roman, 12 pt **Field Code Changed** Formatted: Font: (Default) Times New Roman, 12 pt **Field Code Changed** Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt **Field Code Changed Field Code Changed** Formatted: Font: (Default) Times New Roman, 12 pt **Field Code Changed** Formatted: Font: (Default) Times New Roman, 12 pt

local surveillance is important to gain comprehensive information on dengue epidemiology which can be used to improve control strategies and management of the disease.

Banyumas regency in Central Java, Indonesia is affected by dengue in an annual basis

[12][12]. Purwokerto, the capital city of Banyumas has experienced frequent dengue

outbreaks with higher risks of dengue infection compared to other towns in surrounding area in Banyumas regency [13][+13]. Apart of information on the socio-economic, epidemiology, and vector data, to the best of our knowledge, there is still no report on the virological aspects of dengue in this city where n.-No data on circulating serotypes and diversity of the genotypes are available. <u>Previously, we have reportedThe nearest area with the reported</u> dengue molecular and virological characteristics was-in Semarang in 2012, a city in Central Java which resided approximately 200188 km from Purwokerto [14]. In this city, all four dengue were circulated with DENV 1 as predominant serotype . The genotype of the eirculating DENV in Semarang in 2012 were Genotype I and II for DENV 1, Cosmopolitan genotype for DENV 2, and Genotype 1 for DENV 3. In this study, we conducted a prospective cross-sectional molecular surveillance study in Purwokerto to gain information on DENV molecular characteristics, in particular the serotype distribution and genotype diversity of DENV circulating in the city.

2. Materials and methods

2.1. Study design, study site and patient recruitment

We conducted a cross-sectional dengue molecular surveillance study in Purwokerto city, Banyumas regency, Central Java, Indonesia. This city is located at the southern part of Central Java, at the altitude of 75 m above sea level with 7°26′ south latitude and 109°14′ east longitude. Patients with clinical suspicion of dengueDengue-suspected patients were recruited from inpatients wards of three hospitals in the city, namely RSUD Prof. Dr. Formatted: Font: (Default) Times New Roman, 12 pt

Field Code Changed

Formatted: Font: (Default) Times New Roman, 12 pt Field Code Changed

Formatted: Font: Not Bold

Margono Soekardjo central hospital, RSU Sinar Kasih, and RSU <u>St.</u> Elizsabeth during period of June through August 2015. Inclusion criteria included patients with fever > 38°C during the first five days of fever, accompanied with at least one clinical signs of dengue such as rash, arthralgia, malaise, retro-orbital pain, signs of DHF or DSS. We excluded fever patients with a clear symptoms of upper respiratory tract infections and/or obviously diagnosed as non-dengue and unwilling to participate in this study. <u>The hematology data were obtained</u> from the routine blood tests performed by the hospitals. All dengue positive cases were categorized clinically either as DF, DHF, DSS, or expanded dengue syndrome according to <u>WHO-SEARO [15][+6]</u>.

Peripheral venous blood was collected in serum separator tubes and taken to the laboratory for serum separation. Serum was kept frozen at -80°C until analysis. Ethical approval for the involvement of human participants was granted by the Research Ethics Commission of the Faculty of Medicine, Universitas Jenderal Soedirman, approval No. 065/KEPK/IV/2015.

2.2. Dengue diagnosis, nucleic acid extraction and serotyping

The SD BIOLINE Dengue Duo rapid test (Dengue NS1 Ag + IgG/IgM) (Standard Diagnostics, Alere, Korea) was used to detect the presence of NS1 antigen and IgG/IgM antibodies to DENV. Further serological diagnosis was performed using Panbio Dengue Duo ELISA (Alere), in which the IgG/IgM scores were used to determine the primary versus secondary infection, performed according to the kit's instructions. The DENV RNA was extracted using MagNA Pure Total Nucleic Acid extraction kit (Roche, Mannheim, Germany) and performed using automated MagNA Pure LC 2.0 extraction system (Roche), according to protocol described by the manufacturer. The resulting RNA was then assayed using Simplexa Dengue real-time RT-PCR (DiaSorin, Saluggia, Italy) assay which simultaneously detect the presence of DENV and its serotype [16][+5][+4][+4]]. Strict controls

Field Code Changed

Formatted: Font: Times New Roman, 12 pt

were applied on RNA extraction and RT-PCR procedures to prevent cross-contamination. All dengue positive cases were categorized clinically either as DF, DHF, DSS, or expanded dengue syndrome according to WHO SEARO [16][15][15].

2.3. DENV E gene sequencing

The sequencing of DENV E genes were performed at Eijkman Institute's sequencing facility, using RNA directly extracted from patients' sera. Superscript III Reverse Transcriptase (Invitrogen-Thermo Scientific, Carlsbad, CA, USA) was used to reverse-transcribed the DENV RNA into cDNA which was then PCR-amplified using *Pfu* Turbo DNA Polymerase (Stratagene-Agilent Technologies, La Jolla, CA, USA). PCR-amplified DNA was purified from 0.8% gel using QIAquick gel extraction kit (Qiagen, Hilden, Germany). The purified amplicon was used in cycle sequencing reactions using eight overlapping primers for each serotype from both strands and BigDyeDideoxy Terminator sequencing kits v.3.1 (Applied Biosystems-Thermo Scientific), as described elsewhere [17][+16][+17][+16][+17][+16][+16]]. Purified DNA was subjected to capillary sequencing performed on 3130x1 Genetic Analyzer (Applied Biosystems). Sequence reads were assembled using SeqScape v.2.5 software (Applied Biosystems) with manual inspection performed where ambiguities observed.

2.4. Phylogenetic <u>a</u>Analysis

Phylogenetic analysis was conducted by aligning full-length E gene sequences of Purwokerto isolates with other publicly available DENV sequences worldwide retrieved from GenBank as of March, <u>201620176</u>. All nonrelated sequences were removed and finally 60 taxa which are the most closely related to Purwokerto isolates were selected per serotype to clarify the tree view. These sequences were subjected to robust phylogenetic analyses. Dataset for each serotype was prepared using BEAUti v.1.8.3 graphical interface with the tip of each isolate

Field Code Changed Formatted: Font: Times New Roman, 12 pt

Formatted: Font: Times New Roman, 12 pt Field Code Changed

calibrated using the year of isolation. Bayesian Markov Chain Monte Carlo (MCMC) method	
was implemented for phylogenetic reconstruction and molecular clock analyses as	
implemented in BEAST v.1.8.3 using General Time Reversible (GTR) model with four	
Gamma parameters (G ₄) and invariant (I) sites, relaxed uncorrelated lognormal molecular	
clock and Bayesian skyline prior, with 100 million generations and sampled for every 1000 th	
iteration and 10% burn-in employed. The initial estimated evolutionary rate was set at 7.6 x	
10 ⁻⁴ substitutions per site per year, as previously described [18][17][18][17][17]. MCMC	Formatted: Font: Times New Roman, 12 pt
trace was analyzed using Tracer v.1.5.0 to monitor adequate Effective Sampling Size (ESS)	Field Code Changed
for all parameters. TreeAnnotator v.1.8.3 was used to create Maximum clade credibility	
(MCC) tree which visualized in FigTree v.1.4.0.	
The classification of genotypes in each serotype was based on classifications by Goncalvez et	Formatted: Indent: First line: 0"
al. [19] [18][19][18][18] , Twiddy et al. [20] [19][20][19][19] , Lanciotti et al.	Field Code Changed
	Formatted: Font: Times New Roman, 12 pt
[21][20][21][20][20], and Lanciotti et al. [22][21][22][21][21], for DENV-1, -2, -3 and -4,	Field Code Changed
	Formatted: Font: Times New Roman, 12 pt
respectively.	Field Code Changed
	Formatted: Font: Times New Roman, 12 pt
	Field Code Changed
2.5. Statistical aAnalysis	Formatted: Font: Times New Roman, 12 pt
Statistical analysis was performed using SPSS Statistics software, version 17.0 (SPSS	Formatted: No bullets or numbering
Inc., Chicago, IL), and R statistical software (http://www.r-project.org). Pearson chi-squared	
test was used to correlate the clinical manifestations and DENV serotypes. One-way ANOVA	

test was used to compare groups of hematology data and DENV serotypes. A probability

Statistical Analysis was performed using SPSS Statistics software, version... (SPSS Inc.,

value of *p*-<-0.05 was considered statistically significant.

CChicago, IL).

Formatted: Font: Italic

Formatted: No bullets or numbering

3. Results

 3.1. Patients characteristics, clinical manifestation, and DENV serotypes

A total of 105 serum samples from dengue-suspected patients were collected during the study. The age of the patients ranging from 3 to 65 years (mean \pm SD = 29.5 \pm 15.6 years). Among them, 80 (76%) were positive for IgM and/or IgG, and 57 (54.2%) were confirmed to have dengue infection by NS1 antigen and/or DENV RNA detection using RT-PCR (82%) positivity e-dengue cases by RT-PCR and/or NS1 and 138% was-positivitye by NS1 only).

These confirmed cases occurred almost evenly among all age groups with most cases affected adults aged between 21 and 30 years (Figure 1A). Forty-seven out of 57 confirmed cases were positive for DENV by real-time RT-PCR. Among these 47 patients, 24 (51%) were male and 23 (49%) were female. We observed more secondary infections (57%) compared to primary infections (Table 1). Serotyping revealed the presence of all four DENV serotypes. The DENV-3 was the predominant serotype (26 or 55%), followed by DENV-1 (11 or 23%) and equal number of DENV-2 and -4 cases (5 or 11% each) (Figure 1B).

From 47 dengue-confirmed patients with known infecting serotypes, 28 (60%) were DHF and 19 (40%) were DF. We did not find DSS and expanded dengue syndrome in this study. Most of the patients (32 or 68%) experienced thrombocytopenia (platelet count <100,000/µL), while severe thrombocytopenia (<50,000/µL) was observed in 15 patients (32%). The characteristics of the patients together with proportion of the infecting serotypes, diagnosis, infection status, severity, and hematological data are shown in Table 1.

Formatted: Font: Symbol
Formatted: Font: Symbol

3.2. DENV genotypes and phylogenetic relationships

Full-length E gene sequences of 16 isolates, comprising all four serotypes, were successfully obtained. The E gene sequences have been deposited into GenBank repository and granted accession number of KY709181-KY709196. Three out of 11 DENV-1 isolates were

genotyped according to Goncalvez classification [19][18][19][18][18] and identified as	Field Code Changed
Genotype I (Figure 2). Two of them were grouped together in a lineage which include	
Indonesian strains imported to Taiwan and Okinawa-Japan in 2014	
[23,24][22,23][23,24][22,23][22,23] (Figure 2). The other DENV-1 Purwokerto isolate was	Field Code Changed
closely related to strain isolated in Tokyo-Japan in 2014. These isolates were grouped	
together in a lineage consisting of strains from Indonesia city of Surabaya isolated in 2010	
(Figure 2).	
Among five DENV-2 isolates detected in this study, four were genotyped. All of these	
isolates belonged to Cosmopolitan genotype according to Twiddy classification	
[20][19][20][19][19] (Figure 3). Although grouped into single Cosmopolitan genotype and	Field Code Changed
collected within the same study time, these 4 isolates were further differentiated into three	
distinct lineages. One isolate was closely related with strains from Bali isolated in 2011-2012	
and grouped together with strains from Indonesian city of Makassar isolated in 2007-2008	
[25][24][25][24][24] and Singapore isolated in 2004 (Figure 3, lineage 1). Two isolates	Field Code Changed
formed a monophyletic lineage consisting of mostly strains from Indonesian Sumatra in 2010	
[26][25][26][25][25]] and Jakarta in 2009 (unpublished), Singapore, Brunei and China (Figure	Field Code Changed
3, lineage 2). The remaining isolate was grouped with other Indonesia strains from Sukabumi	
isolated in 2012 [27][27][26][27][26][26] and Jakarta in 2004 [28][28][27][28][27][27][27]	Field Code Changed
2013 [<u>29][29][28][28][28][28]</u> .	Field Code Changed Field Code Changed
For DENV-3, seven out of 26 isolates were successfully sequenced and identified as	
Genotype I (Figure 4) according to Lanciotti classification <u>[21]+20][21][20][20]</u> . Similar with	Field Code Changed
DENV-2, these isolates were also clustered into three different lineages. Two isolates were	
grouped together and closely related to Indonesia strain from Surabaya in 2013	
[30][30][29][30][29][29]. Three isolates were grouped together in a lineage consisting of	Field Code Changed
strains from Jakarta, Bali and other city in Indonesia isolated from travelers returning to	

	Western Australia [31][31][30][31][30][30]. The remaining two isolates were grouped	 Field Code Changed	
	together and closely related to strain from Semarang, Central Java [14][31][31] and strains	Field Code Changed	
	form another cities in Indonesia [26][25][26][25][25], as well as those from Malaysia	Field Code Changed	
	[<u>32][32][31][32][32] and China in 2010.</u>	Field Code Changed	
	We genotyped two out of five DENV-4 isolates as Genotype II according to Lanciotti		
ĺ	classification [22][21][22][21][21]. These isolates were grouped together with strains from	Field Code Changed	
	Indonesia, Southeast Asia, and Micronesia (Figure 5). One of them was closely related to the		
ĺ	strain from Bali in 2010 [31] [31] [30] [31] [30] [30], other city in Indonesia in 2009, and	Field Code Changed	
	imported cases in Taiwan in 2009 [32][32][31][32][32]. The other isolate was grouped	Field Code Changed	
	together with strain from Indonesia in 2010 [26] [25] [26] [25] [25].	Field Code Changed	

4. Discussion

Similar with many other urban areas in Indonesia, Purwokerto is endemic for dengue and ravaged by the disease annually. While dengue is endemic, to the best of our knowledge, no dengue virological data in Purwokerto have been reported. Therefore, our study provides the first information on the serological profile, serotype distribution, virus genetic diversity and the origins of the DENV circulating in the area.

In our study population, most (76%) of patients were positive for dengue IgM/IgG antibodies while 54.2% of them were positive for NS1 antigen and/or RT-PCR detection. Moreover, about 60% of patients were secondary infection. In our previous study, we observed the seropositivity (as of IgM positivity) of samples from different cities/region in Indonesia ranged from 38.5% to 93.1%, with the overall percentage for Indonesia was 73.7% [33][33][33][32]. The seropositivity of 76% in Purwokerto city is still within the observed range and comparable to the seropositivity of Indonesia. As there's mno historical data of dengue in Purwokerto, we compare our data with the data from the nearby city Semarang in 2012

Formatted: Normal

Formatted: Font: Times New Roman, 12 pt Field Code Changed

I	(located about188 km from Purwokerto) [14] [31] [31]. We observed higher seropositivity in	Formatted: Font: Times New Roman, 12 pt
	Purwokerto compared to Semarang in 2012 reflecting the increase of dengue cases in this	
	area. In Semarang, 55% of the patients were positive for IgM/IgG and/or NS1 test and 47%	
	were confirmed dengue positive by RT PCR. Altogether, these reflect the considerable	
l	burden of dengue in the community. As urbanized area, Purwokerto has a greater risk of	
I	dengue infections compared to its surrounding area in Banyumas regency [13][13].	Formatted: Font: Times New Roman, 12 pt
ļ	Urbanization becomes a prevalent factor for dengue infections as the city has become	Field Code Changed
	economically more developed since the establishment of universities in the city which	
	increase the number of urban population, especially students, in the city.	
I	In term of disease manifestation, we revealed the occurrence of both DF and DHF.	
	We observed majority of dengue cases (60%) were DHF. This was similar to study in	
	Semarang in 2012 in which 74% of the cases were DHF [14][31][31] The relationship of	Field Code Changed
	infecting serotype with clinical manifestation has been reported <u>34</u> .	 Field Code Changed
	35] [33,34][33,34][33,34] . We did not find possible relationship of infecting serotype with	
l	demography, hematology, and clinical manifestation (Table 1). We also did not find	
	correlation of infecting serotype with thrombocytopenia as previously reported in Singapore	
I	[36][36][35][35][35]]. Association between DENV-1 and DENV-3 with primary infection	 Field Code Changed
	which has been reported in Thailand [35][35][34][34][34][34], however, this was not observed in	Field Code Changed
ļ	Purwokerto. The possible relationship of clinical manifestation with demography and	
	hematology were also analyzed (data not shown). Again, no significant correlation was found	
	among them. We are aware that the limited sample size obtained in this study may affect the	
	reliability of the data analysis, therefore, no confident conclusion can be drawn for the	
	association of DENV serotypes with demography, clinical, and hematological data.	
	Our study was more focused on the virological aspects of DENV. To assess the	
	dynamic of DENV in Purwokerto, we compared our data with data from nearby city of	

Semarang (located about188 km from Purwokerto), because no historical virological data of
dengue in Purwokerto are available. We observed distinct serotype predominance between
the two cities. The majority of the DENV isolated in Semarang was DENV-1 [14][31][31]
while the most predominant serotype in Purwokerto was DENV-3. The history of DENV-3
predominance was recorded in several cities in Indonesia including Jakarta
[28][27][28][27][28][27][27], and Palembang [37][37][36][36][36][36], and Bali in 2015
[38][38][37] In another nearby city of Bandung (about 244 km from Purwokerto), DENV-4
was the most frequent serotype detected, followed by DENV-3 as the second most detected
[39][39][38][37][37][37]. In other cities in Indonesia, different serotype predominance was
also observed such as in Jakarta in 2010 [40] [26] [39], Surabaya in 2012 [41] [40], and Jambi
in 2015 [17] [16]. Altogether, these findings reveal demonstrate the differing DENV serotype
predominantice in different cities and thus demonstrate in Indonesia. However it is important
to note that other studies compared were from different time points. Nevertheless, our data

will add to the spatial and temporal dynamics of DENV distribution in Indonesia through

time.

Phylogenetic analysis was performed to determine the genotypes of DENV and the origin and relationships with other DENV strains from other regions in Indonesia and neighboring countries. Although Purwokerto DENV-1 viruses were grouped into single genotype, i.e. Genotype I, apparently, they were separated into two lineages, suggesting the genetic diversity of these strains. We did not find Genotype IV of DENV-1 which was previously found in other cities in Indonesia, such as in Sukabumi [27][27][26][27][26][26][26], and Makassar [25][24][25][24][24], and Surabaya [41][40]. This finding enhances the notion of possible lineage replacement in DENV-1 in Indonesia from Genotype IV to Genotype I as this genotype was recorded to replace the older Genotype IV in more recent studies in Jambi in 2015 [17][46][47][46][46], Sukabumi in 2013 [27][27][26][27][26][26], Semarang in 2012

Field Code Changed

Field Code Changed Field Code Changed Field Code Changed

Field Code Changed

Field Code Changed Field Code Changed Field Code Changed

Field Code Changed

Field Code Changed Field Code Changed

Field Code Changed Field Code Changed

[14] [31][31] , Makassar (2007-2010) [25] [24][25][24][24] , and Surabaya in 2009	Field Code Changed
	Field Code Changed
<u>[42][41][38][38][38]</u> .	Field Code Changed
The DENV-2 isolates from Purwokerto were identified as Cosmopolitan genotype.	
These isolates were grouped together with other Indonesia strains and those from Southeast	
Asia and China. Cosmopolitan genotype has been spread worldwide as it has been found in	
Southeast Asia, India, Middle East, Africa and Australia [20][19][20][19][19]. To date, this	Field Code Changed
genotype is the common genotype circulating in Indonesia and has been found in Palembang	
<u>[37][36][36][36], Jakarta <u>[28][28][27][28][27][27]</u>, Surabaya</u>	Field Code Changed
<u>[41,42][40,41][41][38][38][38]</u> , Semarang <u>[14][31][31], Makassar <u>[25][24][25][24][24]</u>,</u>	Field Code Changed
[-1,-2][-0,-1][-1][-0][-0][-0][-0][-0][-0][-0][-0][-0][-0	Field Code Changed Field Code Changed
Sukabumi <u>[27][27][26][27][26][26]</u> , Bali [37], and J ambi <u>[17][16][17][16][16]., and Bali</u>	Field Code Changed
[29][29] Deard on the mesones of various DENW 2 lineages in Dumusleasts, it is plausible	Field Code Changed
[38] [38]. Based on the presence of various DENV-2 lineages in Purwokerto, it is plausible	Field Code Changed
that the strains had undergone a local evolution, resulting in more genetically divergent	Field Code Changed
strains as depicted by the presence of three separate lineages. One important finding about	
DENV-2 isolates in Purwokerto is-that the presence of isolate that is closely related with	
DENV-2 strains originated from Bali (Figure 3, lineage 1) that were associated with the large	
outbreak in 2011-2012 [31][31][30][31][30][30]. The fact that this lineage is also present in	Field Code Changed
Purwokerto may need to be continuously monitored for its potential to cause outbreak in the	
region as has been reported in Bali.	
The DENV-3 isolates were classified as Genotype I. This genotype was the common	
genotype in Southeast Asia region [21][20][21][20][20]. Similar to DENV-2, the DENV-3	Field Code Changed
isolates also show a considerable genetic diversity as depicted by the presence of three	
distinct lineages. The Purwokerto DENV-3 isolates were closely related to other Indonesia	
strains especially those from Semarang [14][31][31], Jakarta [28][28][27][28][27][28][27]], and	Field Code Changed
	Field Code Changed
Surabaya [42][41][38][38][38]. We did not observed the close-relatedness with DENV strains	

from outside Indonesia (except the imported cases in China), which suggest that these predominant viruses were of local origin and not imported from other countries.

For DENV-4 isolates, phylogenetic analysis revealed that the two isolates were grouped into Genotype II and formed two separate lineages. This genotype was frequently found in Southeast Asia and America [22][21][22][21][22][21][21]]. The Purwokerto's DENV-4 isolates were closely related to virus sampled in Indonesia in 2009 to 2010, and the imported virus strain collected in Taiwan presumed to be originated from Indonesia in 2010 [32][32][31][32][32]]. These phylogenetic data suggest the endemic nature of DENV-4 in Purwokerto.

Field Code Changed

Field Code Changed

In conclusion, we provide the first molecular and virological characteristics of DENV in Purwokerto, Banyumas regency, Central Java, Indonesia. Although the serotype predominance of DENV in Purwokerto was different from the nearby cities, the genotypes of the isolates were apparently similar to those commonly found in other cities in Indonesia. The phylogenetic and genotypic analyses suggested that endemic cycles of transmission has<u>an</u> endemic cycle of transmission has been established in Purwokerto with all four DENV serotypes circulatinge. DENV isolates imported from other countries was not detected. High number of travel and urbanization might be the contributing factors to the distribution of serotype and genotypes. Purwokerto is one of the transit route connecting cities in Java Island, especially for land transport. Continuous DENV molecular and virological surveillance efforts will be useful to further understand the dynamic of dengue disease in this region and contributes to the disease prevention and management program.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgement

The authors are grateful to all the patients, clinicians and other medical staff involved in this study. This study was funded by HIKOM competitive grant and APBN grant from the Ministry of Research, Technology, and Higher Education of the Republic of Indonesia to ESK and RTS, respectively.

l

5. References

[1]	Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global
	distribution and burden of dengue. Nature 2013;496:504-7. doi:10.1038/nature12060.
[2]	Martina BEE, Koraka P, Osterhaus ADME. Dengue virus pathogenesis: an integrated
1-1-	view. Clin Microbiol Rev 2009;22:564–81. doi:10.1128/CMR.00035-09.
[3]	Henchal EA, Putnak JR. The dengue viruses. Clin Microbiol Rev 1990;3:376–96.
[4]	Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, et al. Dengue: a
	continuing global threat. Nat Rev Microbiol 2010;8:S7-16. doi:10.1038/nrmicro2460.
[5]	Holmes EC. RNA virus genomics: a world of possibilities. J Clin Invest
	<u>2009;119:2488–95. doi:10.1172/JCI38050.</u>
[6]	Holmes EC, Burch SS. The causes and consequences of genetic variation in dengue
	virus. Trends Microbiol 2000;8:74–7.
[7]	Holmes EC, Twiddy SS. The origin, emergence and evolutionary genetics of dengue
	virus. Infect Genet Evol 2003;3:19–28.
[8]	Sumarmo. Dengue haemorrhagic fever in Indonesia. Southeast Asian J Trop Med Public
	<u>Health 1987;18:269–74.</u>
[9]	Shepard DS, Undurraga EA, Halasa YA. Economic and disease burden of dengue in
	Southeast Asia. PLoS Negl Trop Dis 2013;7:e2055. doi:10.1371/journal.pntd.0002055.
[10]	Setiati TE, Wagenaar JF, de Kruif MD, Mairuhu AT, van Gorp EC, Soemantri A.
	Changing epidemiology of dengue haemorrhagic fever in Indonesia. Bull WHO
	<u>2006;30:1–14.</u>
[11]	Karyanti MR, Uiterwaal CSPM, Kusriastuti R, Hadinegoro SR, Rovers MM,
	Heesterbeek H, et al. The changing incidence of dengue haemorrhagic fever in
	Indonesia: a 45-year registry-based analysis. BMC Infect Dis 2014;14:412.
	<u>doi:10.1186/1471-2334-14-412.</u>
[12]	Wijayanti SPM, Sunaryo S, Suprihatin S, McFarlane M, Rainey SM, Dietrich I, et al.
	Dengue in Java, Indonesia: Relevance of Mosquito Indices as Risk Predictors. PLoS
	Negl Trop Dis 2016;10:e0004500. doi:10.1371/journal.pntd.0004500.
[13]	Wijayanti SPM, Porphyre T, Chase-Topping M, Rainey SM, McFarlane M, Schnettler
	E, et al. The Importance of Socio-Economic Versus Environmental Risk Factors for
	Reported Dengue Cases in Java, Indonesia. PLoS Negl Trop Dis 2016;10:e0004964.
	doi:10.1371/journal.pntd.0004964.
[14]	Fahri S, Yohan B, Trimarsanto H, Sayono S, Hadisaputro S, Dharmana E, et al.
	Molecular surveillance of dengue in Semarang, Indonesia revealed the circulation of an
	old genotype of dengue virus serotype-1. PLoS Negl Trop Dis 2013;7:e2354.
	doi:10.1371/journal.pntd.0002354.
[15]	WHO-SEARO. Comprehensive guidelines for prevention and control of dengue and
	dengue haemorrhagic fever. Revised and expanded. New Delhi, India: World Health
	Organization; 2011.
16	Sasmono RT, Aryati A, Wardhani P, Yohan B, Trimarsanto H, Fahri S, et al.
	Performance of Simplexa dengue molecular assay compared to conventional and SYBR
	green RT-PCR for detection of dengue infection in Indonesia. PloS One
	2014;9:e103815. doi:10.1371/journal.pone.0103815.
1171	Harvanto S. Havati R.F. Vohan B. Sijabat I. Sihite IF. Fahri S. et al. The molecular and

[17] Haryanto S, Hayati RF, Yohan B, Sijabat L, Sihite IF, Fahri S, et al. The molecular and clinical features of dengue during outbreak in Jambi, Indonesia in 2015. Pathog Glob Health 2016;110:119–29. doi:10.1080/20477724.2016.1184864.

[18] Costa RL, Voloch CM, Schrago CG. Comparative evolutionary epidemiology of dengue virus serotypes. Infect Genet Evol 2012;12:309–14. doi:10.1016/j.meegid.2011.12.011.

Formatted: Bibliography, Widow/Orphan control, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Field Code Changed

l

- [19] Goncalvez AP, Escalante AA, Pujol FH, Ludert JE, Tovar D, Salas RA, et al. Diversity and evolution of the envelope gene of dengue virus type 1. Virology 2002;303:110–9.
 [20] Twiddy SS, Farrar JJ, Vinh Chau N, Wills B, Gould EA, Gritsun T, et al. Phylogenetic relationships and differential selection pressures among genotypes of dengue-2 virus. Virology 2002;298:63–72.
- [21] Lanciotti RS, Lewis JG, Gubler DJ, Trent DW. Molecular evolution and epidemiology of dengue-3 viruses. J Gen Virol 1994;75 (Pt 1):65–75. doi:10.1099/0022-1317-75-1-65.
- [22] Lanciotti RS, Gubler DJ, Trent DW. Molecular evolution and phylogeny of dengue-4 viruses. J Gen Virol 1997;78 (Pt 9):2279–84.
- [23] Wang S-F, Chang K, Lu R-W, Wang W-H, Chen Y-H, Chen M, et al. Large Dengue virus type 1 outbreak in Taiwan. Emerg Microbes Infect 2015;4:e46. doi:10.1038/emi.2015.46.
- [24] Chang S-F, Yang C-F, Hsu T-C, Su C-L, Lin C-C, Shu P-Y. Laboratory-Based Surveillance and Molecular Characterization of Dengue Viruses in Taiwan, 2014. Am J Trop Med Hyg 2016;94:804–11. doi:10.4269/ajtmh.15-0534.
- [25] Sasmono RT, Wahid I, Trimarsanto H, Yohan B, Wahyuni S, Hertanto M, et al. Genomic analysis and growth characteristic of dengue viruses from Makassar, Indonesia. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis 2015;32:165–77. doi:10.1016/j.meegid.2015.03.006.
- [26] Warrilow D, Northill JA, Pyke AT. Sources of dengue viruses imported into Queensland, Australia, 2002-2010. Emerg Infect Dis 2012;18:1850–7. doi:10.3201/eid1811.120014.
- [27] Nusa R, Prasetyowati H, Meutiawati F, Yohan B, Trimarsanto H, Setianingsih TY, et al. Molecular surveillance of Dengue in Sukabumi, West Java province, Indonesia. J Infect Dev Ctries 2014;8:733–41.
- [28] Ong SH, Yip JT, Chen YL, Liu W, Harun S, Lystiyaningsih E, et al. Periodic reemergence of endemic strains with strong epidemic potential-a proposed explanation for the 2004 Indonesian dengue epidemic. Infect Genet Evol 2008;8:191–204.
- [29] Lardo S, Utami Y, Yohan B, Tarigan SM, Santoso WD, Nainggolan L, et al. Concurrent infections of dengue viruses serotype 2 and 3 in patient with severe dengue from Jakarta, Indonesia. Asian Pac J Trop Med 2016;9:134–40. doi:10.1016/j.apjtm.2016.01.013.
- [30] Kotaki T, Yamanaka A, Mulyatno KC, Labiqah A, Sucipto TH, Churrotin S, et al. Phylogenetic analysis of dengue virus type 3 strains primarily isolated in 2013 from Surabaya, Indonesia. Jpn J Infect Dis 2014;67:227–9.
- [31] Ernst T, McCarthy S, Chidlow G, Luang-Suarkia D, Holmes EC, Smith DW, et al. Emergence of a new lineage of dengue virus type 2 identified in travelers entering Western Australia from Indonesia, 2010-2012. PLoS Negl Trop Dis 2015;9:e0003442. doi:10.1371/journal.pntd.0003442.
- [32] Huang J-H, Su C-L, Yang C-F, Liao T-L, Hsu T-C, Chang S-F, et al. Molecular characterization and phylogenetic analysis of dengue viruses imported into Taiwan during 2008-2010. Am J Trop Med Hyg 2012;87:349–58. doi:10.4269/ajtmh.2012.11-0666.
- [33] Aryati, Trimarsanto H, Yohan B, Wardhani P, Fahri S, Sasmono RT. Performance of commercial dengue NS1 ELISA and molecular analysis of NS1 gene of dengue viruses obtained during surveillance in Indonesia. BMC Infect Dis 2013;13:611. doi:10.1186/1471-2334-13-611.

- [34] Balmaseda A, Hammond SN, Perez L, Tellez Y, Saborio SI, Mercado JC, et al. Serotype-specific differences in clinical manifestations of dengue. Am J Trop Med Hyg 2006;74:449–56.
- [35] Fried JR, Gibbons RV, Kalayanarooj S, Thomas SJ, Srikiatkhachorn A, Yoon I-K, et al. Serotype-specific differences in the risk of dengue hemorrhagic fever: an analysis of data collected in Bangkok, Thailand from 1994 to 2006. PLoS Negl Trop Dis 2010;4:e617. doi:10.1371/journal.pntd.0000617.
- [36] Yung C-F, Lee K-S, Thein T-L, Tan L-K, Gan VC, Wong JGX, et al. Dengue serotypespecific differences in clinical manifestation, laboratory parameters and risk of severe disease in adults, singapore. Am J Trop Med Hyg 2015;92:999–1005. doi:10.4269/ajtmh.14-0628.
- [37] Corwin AL, Larasati RP, Bangs MJ, Wuryadi S, Arjoso S, Sukri N, et al. Epidemic dengue transmission in southern Sumatra, Indonesia. Trans R Soc Trop Med Hyg 2001;95:257–65.
- [38] Megawati D, Masyeni S, Yohan B, Lestarini A, Hayati RF, Meutiawati F, et al. Dengue in Bali: Clinical characteristics and genetic diversity of circulating dengue viruses. PLoS Negl Trop Dis 2017;11:e0005483. doi:10.1371/journal.pntd.0005483.
- [39] Kosasih H, Alisjahbana B, Nurhayati null, de Mast Q, Rudiman IF, Widjaja S, et al. The Epidemiology, Virology and Clinical Findings of Dengue Virus Infections in a Cohort of Indonesian Adults in Western Java. PLoS Negl Trop Dis 2016;10:e0004390. doi:10.1371/journal.pntd.0004390.
- [40] Lestari CSW, Yohan B, Yunita A, Meutiawati F, Hayati RF, Trimarsanto H, et al. Phylogenetic and evolutionary analyses of dengue viruses isolated in Jakarta, Indonesia. Virus Genes 2017. doi:10.1007/s11262-017-1474-7.
- [41] Wardhani P, Aryati A, Yohan B, Trimarsanto H, Setianingsih TY, Puspitasari D, et al. Clinical and virological characteristics of dengue in Surabaya, Indonesia. PloS One 2017;12:e0178443. doi:10.1371/journal.pone.0178443.
- [42] Yamanaka A, Mulyatno KC, Susilowati H, Hendrianto E, Ginting AP, Sary DD, et al. Displacement of the predominant dengue virus from type 2 to type 1 with a subsequent genotype shift from IV to I in Surabaya, Indonesia 2008-2010. PloS One 2011;6:e27322. doi:10.1371/journal.pone.0027322.

Table 1. Distribution of demographic and clinical parameters for RT-PCR confirmed dengue

patients in Purwokerto, Indonesia, 2015 Demography and clinical data of RT-PCR-confirmed

dengue patients in Purwokerto in 2015..

		DENV-1	DENV-2	DENV-3	DENV-4	
Parameters	Ν	(N=11)	(N=5)	(N=26)	(N=5)	<i>p</i> •value ^a
Gender						
Male	24	5	2	15	2	0.781^{a}
Female	23	6	3	11	3	0.781
Infection type						
Primary	20	4	3	12	1	0.578^{a}
Secondary	27	7	2	14	4	0.378
NS1 antigen detection	*					
Positive	19	4	3	12	2	0.864^{a}
Negative	26	7	2	14	3	0.804
Severity						
DF	19	5	3	11	0	0.227^{a}
DHF	28	6	2	15	5	0.227
Hematology data ^b						
Thrombocyte (/uL)	NA	88,182±68,111	123,200±73,916	75,209±48,474	77,400±48,624	0.376 ^c
Hemoglobin <u>(g/dL)</u>	NA	12.99±1.76	14.24±2.07	13.84±1.67	12.44±1.38	0.197 ^c
Two samples have no i	nformation of	of NS1 antigen det	ection			

^aPearson Chi-squared test

^bMean±STDEV

^cOne Way ANOVA Test

Formatted: Font: (Default) Times New Roman, 10 pt

l

FIGURE LEGENDS:

Figure 1. The distribution of dengue cases in Purwokerto in 2015 determined by the age of dengue-confirmed patients (A) and the percentage of circulating DENV serotypes (B).

Figure 2. Phylogeny of the most closely related DENV-1 genotypes generated by Bayesian inference method as implemented in BEAST using GTR+G+I evolution model calculated using E gene sequences. The red labels indicated the isolates from Purwokerto and the blue labels indicated other strains from Indonesia. Arabic numbers in red denote the lineages.

Figure 3. Phylogeny of the most closely related DENV-2 Cosmopolitan genotype generated by Bayesian inference method as implemented in BEAST using GTR+G+I evolution model calculated using E gene sequences. The red labels indicated the isolates from Purwokerto and the blue labels indicated other strains from Indonesia. Arabic numbers in red denote the lineages.

Figure 4. Phylogeny of the most closely related DENV-3 genotypes generated by Bayesian inference method as implemented in BEAST using GTR+G+I evolution model calculated using E gene sequences. The red labels indicated the isolates from Purwokerto and the blue labels indicated other strains from Indonesia. Arabic numbers in red denote the lineages.

Figure 5. Phylogeny of the most closely related DENV-4 genotypes generated by Bayesian inference method as implemented in BEAST using GTR+G+I evolution model calculated using E gene sequences. The red labels indicated the isolates from Purwokerto and the blue labels indicated other strains from Indonesia. Arabic numbers in red denote the lineages.

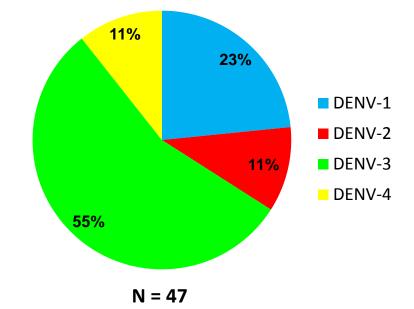
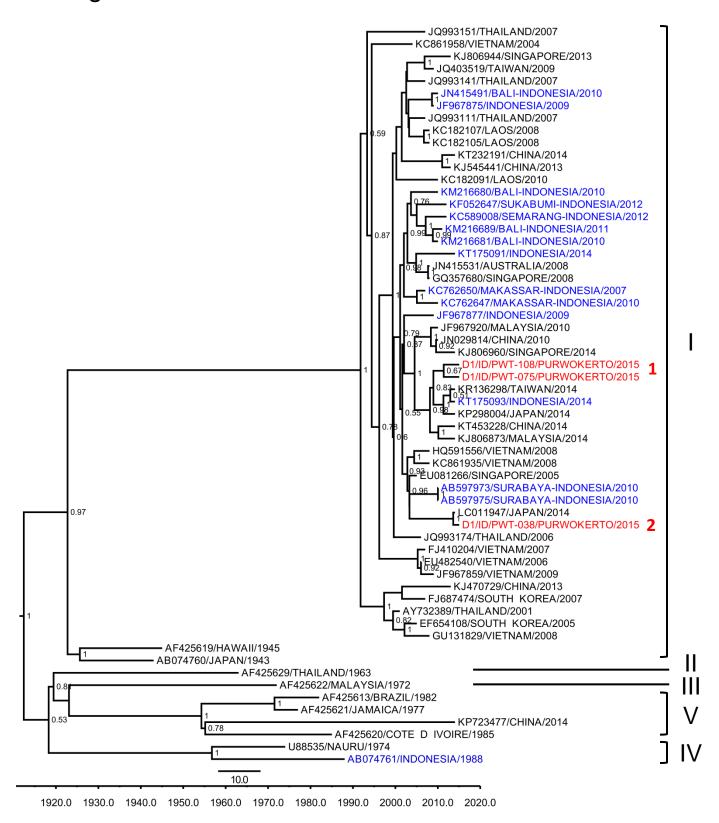



Figure 2

Figure 3

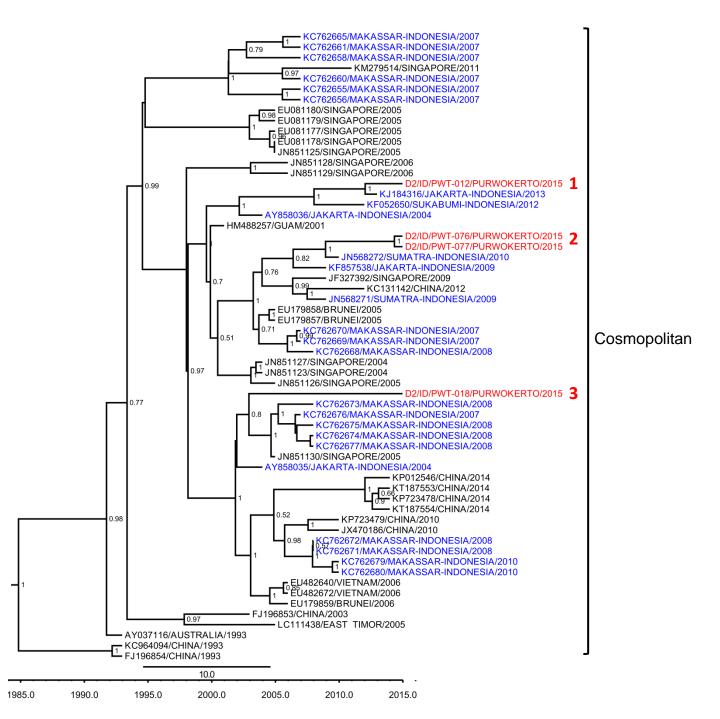
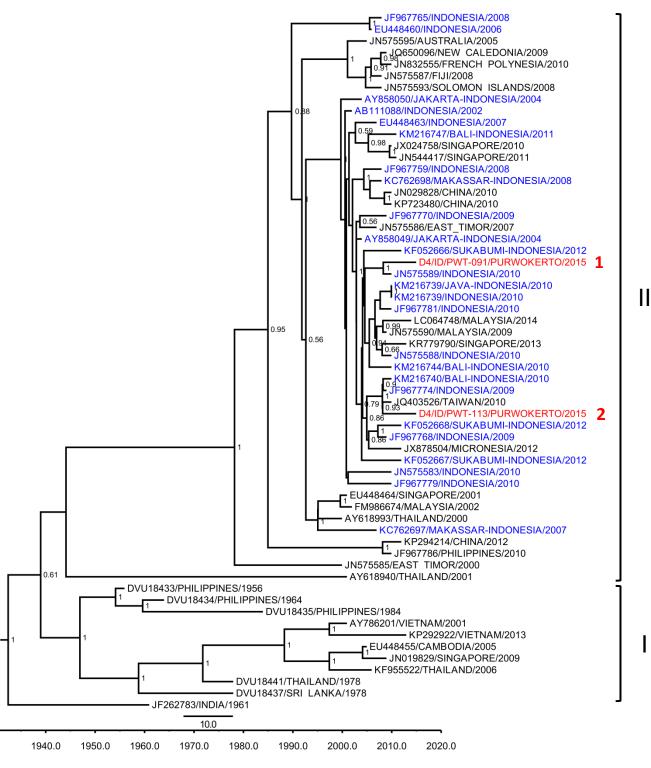



Figure 4

