Volume 2553

Proceedings of the 16th Joint Conference on Chemistry (JCC 2021)

Visualizing the latest up-front of chemistry research and education for better future

Purwokerto, Indonesia • 9 September 2021

Editors • Uyi Sulaeman, Hassan Y. Aboul-Enein, Ahmad Zuhairi Abdullah, Zaheer Ul-Haq Qasmi, Warakorn Limbut, Jas Raj Subba and Mardiyah Kurniasih

Summaries of the latest breakthroughs in the **physical sciences** Scilight AIP Publishing

Conference Proceedings

HOME BROWSE MORE ▼

Table of Contents

PROCEEDINGS OF THE 16TH JOINT **CONFERENCE ON CHEMISTRY (JCC** 2021): Visualizing the latest up-front of chemistry research and education for better future

Conference date: 9 September 2021 Location: Purwokerto. Indonesia

ISBN: 978-0-7354-4281-8

Editors: Uyi Sulaeman, Hassan Y. Aboul-Enein, Ahman Zuhairi Abdullah, Zaheer Ul-

Haq Qasmi, Warakorn Limbut, Jas Raj Subba and Mardiyah Kurniasih

Volume number: 2553 Published: Nov 22, 2022

> DISPLAY: 20 50 100 all

PRELIMINARY

Virtual Conference September 9, 2021

The Committee of the 16th Joint Conference on Chemistry

Advisory Board

Prof. Dr. Ir. Suwarto, M.S (Rector, UNSOED)

Prof. Dr. Ir. Akhmad Sodiq, M.Sc.agr (Vice Rector of Academic Affair, UNSOED) Drs. Sunardi, M.Si (The Dean of Faculty of Mathematics and Natural Science, UNSOED)

Person in Charge

Amin Fatoni, Ph.D. (The Head of Chemistry Department UNSOED)

Steering Committee :

Dr. Yuniawan Hidayat, M.Si (UNS, Indonesia) Dr. Sri Kadarwati M. Si. (UNNES, Indonesia) Khabibi, S.Si.,M.Si (UNDIP, Indonesia) Cucun A Riyanto, S.Pd., M.Sc (UKSW, Indonesia)

Editorial Board :

Prof. Dr. Hassan Y. Aboul Enein (National Research Center, Egypt)

Prof. Dr. Ahmad Zuhairi Abdullah (Universiti Sains Malaysia, Malaysia)

Prof. Dr. Zaheer Ul-Haq Qasmi (University of Karachi, Pakistan)

Assoc. Prof. Dr. Warakorn Limbut (Prince of Songkla University, Thailand)

Dr. Jas Raj Subba (Royal University of Bhutan, Bhutan)

Dr. Angga Hermawan (Shinshu University, Japan)

Uyi Sulaeman, Ph.D (UNSOED, Indonesia)

Assoc. Prof. Dr. Dadan Hermawan, M.Si (UNSOED, Indonesia)

Prof. Dr. Muhammad Cholid Djunaidi, M.Si (UNDIP, Indonesia)

Yayuk Astuti, Ph.D (UNDIP, Indonesia)

Dr. Witri Wahyu Lestari (UNS, Indonesia)

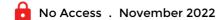
Dr.rer.nat. Atmanto Heru Wibowo, S.Si., M.Si. (UNS, Indonesia)

Dr. Woro Sumarni, M.Si (UNNES, Indonesia)

Dr. Triastuti Sulistyaningsih, M.Si (UNNES, Indonesia)

Dewi Kurnianingsih Arum Kusuma Hastuti, S.Si., M.S (UKSW, Indonesia)

November Rianto Aminu, S.Si., M.Sc (UKSW, Indonesia)


Dr. Hartiwi Diastuti, M.Si (UNSOED, Indonesia)

Dr. Puji Lestari, M.Si (UNSOED, Indonesia)

Mardiyah Kurniasih, M.Sc. (UNSOED, Indonesia)

Zusfahair, M.Si (UNSOED, Indonesia)

Dr. Ponco Iswanto, M.Si (UNSOED, Indonesia)

Preface: The 16th Joint Conference on Chemistry 2021 (16th JCC)

AIP Conference Proceedings 2553, 010001 (2022); https://doi.org/10.1063/12.0012151

:

뤔 No Access . November 2022

Committee: The 16th Joint Conference on Chemistry 2021 (16th JCC)

AIP Conference Proceedings 2553, 010002 (2022); https://doi.org/10.1063/12.0015105

:

ARTICLES

No Access . November 2022

The adsorption capacity of clay cetyltrimethylammonium/magnetite against the metal ion Cr(VI)

Choiril Azmiyawati, Ahmad Al Mutashim Billah and Adi Darmawan

AIP Conference Proceedings 2553, 020001 (2022); https://doi.org/10.1063/5.0103671

: **SHOW ABSTRACT**

No Access . November 2022

Intermolecular interaction and molecular dynamics study of carboxymethyl Chitosan... Vitamin C molecular complex for understanding encapsulation and kinetics-controlled released mechanism

Cholifatul Jannah, Dwi Hudiyanti, Vivitri Dewi Prasasty and Parsaoran Siahaan

AIP Conference Proceedings 2553, 020002 (2022); https://doi.org/10.1063/5.0103717

SHOW ABSTRACT

:

No Access . November 2022

Degradation of methylene blue in TiO₂-Fe(VI) system with UV radiation

Dian Windy Dwiasi, Anung Riapanitra and Eggy Izzi Saliya

AIP Conference Proceedings 2553, 020003 (2022); https://doi.org/10.1063/5.0103697

: **SHOW ABSTRACT**

Ro Access . November 2022

Encapsulation of hyptolide coated alginate, chitosan, and alginate-chitosan

Meiny Suzery, Bambang Cahyono, Widayat and Lina Apriliana

AIP Conference Proceedings 2553, 020004 (2022); https://doi.org/10.1063/5.0106801

No Access . November 2022

Synthesis of chitosan for removal of methyl orange and malachite green dyes

Tien Setyaningtyas, Mardiyah Kurniasih, Afrizal Diaz Aztiza Nur Azizi, Kapti Riyani and Dwi Kartika

AIP Conference Proceedings 2553, 020005 (2022); https://doi.org/10.1063/5.0103999

: SHOW ABSTRACT

No Access . November 2022

The effect of formaldehyde addition on the distribution of trimethylamine oxide (TMAO) and trimethylamine (TMA) in marine and freshwater fish organs

Farida Ariyani, Umi Anissah, Hedi Indra Januar, Giri Rohmad Barokah and Ajeng Kurniasari Putri

AIP Conference Proceedings 2553, 020006 (2022); https://doi.org/10.1063/5.0104100

: **SHOW ABSTRACT**

🚹 No Access . November 2022

Synthesis of vanadium oxide material and its photocatalytic activity in the degradation of methylene blue

Anung Riapanitra, Tien Setyaningtyas, Kapti Riyani, Roy Andreas, Agni Lili Ariyanti and Uyi

AIP Conference Proceedings 2553, 020007 (2022); https://doi.org/10.1063/5.0103707 : **SHOW ABSTRACT** No Access . November 2022 Ointmen the formulation of bachang mango (Mangifera foetida L.) leaves methanol extract and activity test against Malassezia furfur Dian Riana Ningsih, Anung Riapanitra, Purwati, Zusfahair, Gangga Aji Tetuko and Alin Lutpiani AIP Conference Proceedings 2553, 020008 (2022); https://doi.org/10.1063/5.0103720 : SHOW ABSTRACT No Access . November 2022 Formulation and release profile for encapsulation of Centella asiatica (L.) urban extract in coconut liposomes Khairul Anam, Silvia Handayani and Dwi Hudiyanti AIP Conference Proceedings 2553, 020009 (2022); https://doi.org/10.1063/5.0103925 **SHOW ABSTRACT**

Recovery ion Cu(II) using precipitation method with NaOH for methylene blue degradation

Linda Suyati, Prasetyowati, Gunawan, Didik Setiyo Widodo, Khabibi and Yayuk Astuti

AIP Conference Proceedings 2553, 020010 (2022); https://doi.org/10.1063/5.0104476

: SHOW ABSTRACT

No Access . November 2022

Antimicrobial activity of N-methyl chitosan and correlation with their degree substitution

Mardiyah Kurniasih, Purwati, Intan Romadhani and Ratna Stia Dewi

AIP Conference Proceedings 2553, 020011 (2022); https://doi.org/10.1063/5.0103998

SHOW ABSTRACT

:

No Access . November 2022

Non-invasive neonatal jaundice determination using smartphone camera

Mekar Dwi Anggraeni, Amin Fatoni and Eni Rahmawati

AIP Conference Proceedings 2553, 020012 (2022); https://doi.org/10.1063/5.0103718

: **SHOW ABSTRACT**

Synthesis of copolymer eugenol-trithiol-divinylbenzene via photoinitiated cross-linking reaction as antibacterial compound

Ngadiwiyana, Dihan Vigy Laksana, Damar Nurwahyu Bima, Ismiyarto, Purbowatiningrum Ria Sarjono and Nor Basid Adiwibawa Prasetya

AIP Conference Proceedings 2553, 020013 (2022); https://doi.org/10.1063/5.0103667

SHOW ABSTRACT

:

No Access . November 2022

Potential of extracellular chitinase from Bacillus subtilis B 298 as antifungal against Rhizoctonia solani

Puji Lestari, Suyata Suyata and Ely Setiawan

AIP Conference Proceedings 2553, 020014 (2022); https://doi.org/10.1063/5.0103775

: SHOW ABSTRACT

No Access . November 2022

Analysis and identification of microbial activity of bioactive component fraction in red and green betels

Rifda Naufalin, Erminawati and Ahmad Hasyim

AIP Conference Proceedings 2553, 020015 (2022); https://doi.org/10.1063/5.0103951

SHOW ABSTRACT :

No Access . November 2022

Antioxidant soap formula based on nyamplung seed oil (Calophyllum inopphyllum) with bidara leaves (Ziziphus mauritiana) and ketapang fruit (Terminalia catappa L) additives

Senny Widyaningsih, Moch Chasani and Novia Ariska Pratiwi

AIP Conference Proceedings 2553, 020016 (2022); https://doi.org/10.1063/5.0103812

: **SHOW ABSTRACT**

Ro Access . November 2022

Formulation, characterization and sunscreen potential evaluation of lemongrass (Cymbopogon citratus) oil nanoemulsion

Undri Rastuti, Uyi Sulaeman, Senny Widyaningsih, Sity Khalidah Zia and Ryan Aditya

AIP Conference Proceedings 2553, 020017 (2022); https://doi.org/10.1063/5.0105009

: **SHOW ABSTRACT**

No Access . November 2022

Synthesis and photocatalytic properties of Cr-doped SrTiO₃ with Ti deficiency for enhanced photocatalytic activity

Uyi Sulaeman, Resha Permana Putra, Kapti Riyani and Ahmad Zuhairi Abdullah

AIP Conference Proceedings **2553**, 020018 (2022); https://doi.org/10.1063/5.0104312

AIP Conference Proceedings 2553, 020020 (2022); https://doi.org/10.1063/5.0103678

SHOW ABSTRACT

No Access . November 2022

The potency of ethanolic extracts of betel leaves as an antibiofilm against *methicillin-resistant* Staphylococcus aureus

Ari Asnani, Prabadini Ruwielanisa, Hernayanti and Dwi Utami Anjarwati

AIP Conference Proceedings 2553, 020021 (2022); https://doi.org/10.1063/5.0103681

AIP Conference Proceedings 2553, 020022 (2022); https://doi.org/10.1063/5.0104444

SHOW ABSTRACT

No Access . November 2022

Analysis of students' conceptual understanding on the acidbase remedial program with multi-representation teaching material

Endang Susilaningsih, Sri Haryani and Nurkintan Aprilia

AIP Conference Proceedings 2553, 020023 (2022); https://doi.org/10.1063/5.0103797

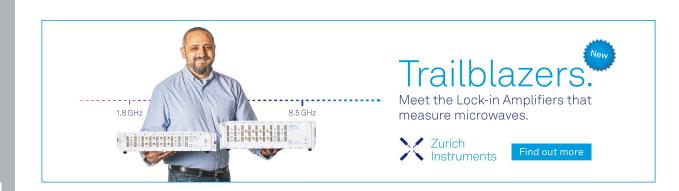
SHOW ABSTRACT

The potential of wild spinach (*Amaranthus dubius* Mart) and cockscomb (*Celosia argentea* Var. *Cristata*) seed oil as a source of vegetable squalene

Hartati Soetjipto and November Rianto Aminu

AIP Conference Proceedings 2553, 020024 (2022); https://doi.org/10.1063/5.0103738 : **SHOW ABSTRACT** No Access . November 2022 Brine shrimp lethality bioassay of Zingiber zerumbet and Z. cassumunar rhizomes extracts. Hartiwi Diastuti, Purwati, Suwandri, Sri Indriani, Restu Pamukasari and Oto Dwi Wibowo AIP Conference Proceedings 2553, 020025 (2022); https://doi.org/10.1063/5.0103680 SHOW ABSTRACT 🚹 No Access . November 2022 Prediction of bilirubin concentration using neonatal forehead images Mekar Dwi Anggraeni, Amin Fatoni and Eni Rahmawati AIP Conference Proceedings 2553, 020026 (2022); https://doi.org/10.1063/5.0103722 : **SHOW ABSTRACT** No Access . November 2022

Basis set validation of sodium dodecyl benzene sulfonate based on infrared spectrum using Ab initio method


Prediction of bilirubin concentration using neonatal forehead images

Cite as: AIP Conference Proceedings 2553, 020026 (2022); https://doi.org/10.1063/5.0103722 **Published Online: 22 November 2022**

Mekar Dwi Anggraeni, Amin Fatoni and Eni Rahmawati

Prediction of Bilirubin Concentration using Neonatal Forehead Images

Mekar Dwi Anggraeni^{1, a)}, Amin Fatoni^{2, b)}, and Eni Rahmawati^{1, c)}

¹Department of Nursing, Faculty of Health Sciences, Universitas Jenderal Soedirman, Jl Dr Soeparno 61,
Purwokerto, Indonesia

²Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Jenderal Soedirman, Jl Dr Soeparno, Purwokerto, Indonesia

a) Corresponding author: mekar.anggraeni@unsoed.ac.id
b) aminfatoni@unsoed.ac.id
c) eni.rahmawati@unsoed.ac.id

Abstract. Neonatal jaundice is one of the most common reasons for hospital admission in the neonatal care unit, which it is associated to significant morbidity and mortality. Neonatal jaundice, indicated with hyper bilirubin in neonatal blood, occur in 60% of >35 weeks neonatal and 80% of <35 weeks neonatal. Therefore, it is important to develop the ease method to predict the hyper bilirubin in neonatal. This study was performed to develop the easy and objective method to determine the bilirubin in neonatal based on the forehead image captured using smartphone camera. Methodology of this research including the capturing of the neonatal forehead with the calibration color chart, followed by analyzing the image using ImageJ software to extract the color intensity of the digital images. The red, green and blue (RGB) colors were then analyzed to find the best correlation between the color intensity of neonatal forehead images with the blood bilirubin concentration. The bilirubin concentration was determined using standard method performed in the hospital based on spectrophotometric method. The smartphone-based methods of neonatal forehead images showed a linear correlation (R2=0.832) between blue color intensity and blood bilirubin concentration of neonatal observed with a regression line of y=-4.954x + 160.45. This result could be used for further self-detection by the mothers of neonatal jaundice or healthcare monitoring mainly in the remote area.

INTRODUCTION

The infant mortality rate (IMR) is one indicator of a country's health status. IMR in Indonesia is the highest in Southeast Asia [1]. IMR in Indonesia is very high at 26.9 per 1000 live births [2]. One of the causes of the high IMR in Indonesia is hyperbilirubinemia in newborns [2]. The results of research conducted by Utami [3] showed that almost (48%) of newborns had hyperbilirubinemia.

Hyperbilirubinemia is a serious health problem. The effects of hyperbilirubinemia in infants are hearing loss [4], general movement disorders [5], speech delay with hearing loss [6], bilirubin encephalopathy, more reflex disorders, opisthotonos, vomiting, and death. Long-term manifestations of hyperbilirubinemia in infants are spasticity, choreoathetosis, and sensorineural deafness [7].

The clinical manifestation of hyperbilirubinemia is discoloration of the skin and sclera. Yellow color in the skin is an indicator of an increase in bilirubin levels which is known through physical examination in infants [8]. Physical examination through visual inspection provides inaccurate data, is highly subjective, highly dependent on experience, and may give inaccurate results [9]. Laboratory tests performed to assess bilirubin levels in the blood provide accurate results, the cost of equipment is expensive, requires special expertise, and primary health facilities are not always

available. A method is needed that can be used by health workers to assess hyperbilirubinemia in infants without invasive measures, providing good results. accurate, real time, easy, and cheap.

Cellular phones (smartphones) are developing very quickly in the world. The use of smartphone camera for detection methods have been previously reported to predict the hemoglobin level [10], food safety[11], iron in water [12] and also and glucose[13]. Smartphone have the potential to be used as an early detection tool for hyperbilirubinemia in newborns using the basic principle of digital image analysis. The neonatal skin color for hyperbilirubin prediction using smartphone could be used to replace the conventional method of visual examination of the inferior palpebral conjunctiva area [8]. The development of a simple tool for early detection of hyperbilirubinemia in neonatal will increase the objectivity of the examination results. The use of cameras on cell phones for early detection of hyperbilirubinemia in newborns is interested in developing country as a program for reduce the infant mortality rate by early hyperbilirubinemia prediction in neonatal.

METHODS

Study design

Thirty-one neonatal has been ask as participant (inform consent filled by mothers) in the district hospital with the inclusion criteria of neonatal with the hyperbilirubinemia. The images have been captured before and after treatment of the neonatal, therefore a range of bilirubin concentration from normal (after treatment) and hyperbilirubinemia (before treatment) could be collected. The blood bilirubin of the neonatal have been analyzed according to the standard method and timelines in the hospital without any researcher intervention.

Neonatal forehead image capturing

Neonatal forehead images were captured using smartphone camera (Redmi, Camera 13 MP, f/2.0, PDAF) under sufficient lighting without using camera flash. A printed reflective color chart reference [14] has been place besides the neonatal (**Fig. 1**). Photograph of neonatal forehead was taken at a distance about 50-60 cm for 3 times.

Figure 1. Neonatal forehead image capturing with a reflective color chart reference.

Image analysis

Neonatal forehead images were transferred from the smartphone to a laptop (MacBook Air, Apple Inc.) without any treatment or adjusting. The forehead digital images were then analyzed using ImageJ software ver. 1.52k (National

Institute of Health, USA. http://imagej.nih.gov/ij). The images were extracted their color intensity of Red, Green and Blue (RGB) by simple hover the laptop mouse over the forehead of the neonatal images. Three difference location have been recorded for their RGB intensity. The standard color chart has been used to correct the images.

Data analysis

Raw data of RGB color intensity of neonatal forehead were collected. The color intensity was then adjusted according to the white, grey and yellow color of the standard color chart. The bilirubin concentration of blood neonatal reported in the medical record of the neonatal has also been collected. Neonatal forehead color intensities as the dependent variables were then analyzed using simple regression (Microsoft Excel) related to the blood bilirubin concentration as the independent variables. The analysis would result a regression line with the regression equation and coefficient of determination. The three RGB color intensity were separately analysis and the color with the highest coefficient of determination has been selected.

RESULTS AND DISCUSSION

Study participants

Neonatal participant data have been collected with birth weight of 1526 to 3900 g. The blood bilirubin concentrations were 11 to 25.9 mg/dL with average of 16.6 mg/dL. The age of neonatal mothers were 19 to 41 years with an average of 32 years. The neonatal jaundice symptoms appear from 2 days to 26 days from birth, with average of 6.9 days. The neonatal were 69% cesarean birth and the rest natural birth. The gestational ages were 31 to 41 weeks. These participants data could be important information for further neonatal jaundice profiles.

Neonatal image capturing and processing

Neonatal mothers' participants have been confirmed their approving for neonatal forehead images capturing using a smartphone. The research assistant was also first explained the description and aimed of this research. There is no compulsion to become a respondent in this study. The forehead has been chosen since forehead is one of the most stable sites of neonatal [15] and also it has a large flat surface for easy image analysis. The image capturing could be repeated to get the best lighting condition and neonatal position. The collected forehead images were then analyzed. Standard color chart was used to correct the images by adding or reducing the color intensity, when the value of color intensity of white and yellow color was significantly (more than 3 point) different with another images. The average color intensities of standard white color in the captured images were R = 201.5, G = 237.5 and B = 239. Whereas the average of color intensities of the yellow standard color chart was R = 202, G = 200.7 and B = 0.8. Various methods have been reported to correct the digital image processing such as the use of white paper [10], software based white balance [16], red label based white balance [17] and standard color chart [14]. The use of standard color chart in this research was performed to easy comparison with various color for further smartphone software development where all standard color available in the sample images.

Regression analysis

The neonatal forehead images color intensity showed a linear relationship between forehead image and blood bilirubin concentration of the participants. RGB color intensity of the neonatal forehead showed that the blue color intensity had highest relationship with the coefficient of determinant of $R^2 = 0.832$ (Fig. 2). The blue color intensity showed the highest relationship between color intensity and bilirubin concentration compare to red and green color intensity. The lowest relationship was the red color intensity; therefore, the yellowest skin represents the lowest blue color intensity and the highest blood bilirubin concentration. The standard color chart intensity of yellow color also showed the RGB values was about red of 200, green of 200 and blue of 0.

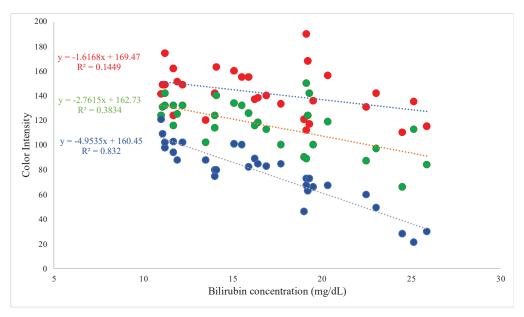


Figure 2. Relationship between neonatal forehead images color intensity and blood bilirubin obtained by hospital laboratory (n=31). Dotted line represents best fit by linear regression.

Factors effecting neonatal jaundice

Neonatal jaundice is common event occur in the first week of birth [18] and it is common causes of the neonatal hospitalization. Imbalance between bilirubin metabolism leads to increase the blood bilirubin concentration. This imbalance of metabolism due to the immature liver for rapid breakdown the red blood cells due to several factors [19]. Gestational age was one of several factors related to neonatal jaundice [19]. Gestational age <39 weeks showed increase the incidence of jaundice [20]. The participants of this research showed that the average of gestational age was 37.8 weeks, with the minimum of 31 weeks and maximum of 41 weeks. Induced labor was also reported slightly increase the neonatal jaundice incidence [21]. The result of data analysis in the participants showed the 43,5% neonatal from the induced labor.

CONCLUSION

The neonatal hyper bilirubin could be predicted using a smartphone camera, with a high correlation between blue color intensity if neonatal forehead images and blood bilirubin concentration. The use of digital image would be useful and more objective than visual observation where the instrumentation not available for neonatal hyper bilirubin detection, especially in the remote area.

ACKNOWLEDGMENT

We would like to thank the Directorate General of Higher Education (DGHE, DIKTI) and the Jenderal Soedirman University for supporting this research through "Penelitian Dasar Unggulan Perguruan Tinggi" grant no T/1422/UN23.18/PT.01.01/2021.

REFERENCES

- 1. World Health Organization, World Health Statistics 2015 (World Health Organization, 2015).
- 2. Indonesian Ministry of Health, Profil Kesehatan Indonesia Tahun 2019 (2019).
- 3. T. Utami, J. Viva Med. 6, 26 (2013).
- A.E. Raditya, Peran hiperbilirubinemia terhadap kejadian gangguan pendengaran sensori pada bayi, Master Thesis, Universitas Gadjah Mada, 2015

- 5. P.A. Pattinama, A.H. Putranti, and G.I. Sarosa, Sari Pediatr. 14, 122 (2016).
- S.N.L. Sari, Y.D. Memy, and A. Ghanie, J. Kedokt. Dan Kesehat. Publ. Ilm. Fak. Kedokt. Univ. Sriwij. 2, 121 (2015).
- 7. B.O. Olusanya, S. Teeple, and N.J. Kassebaum, *Pediatrics* **141**, (2018).
- 8. M.J. Maisels, *Pediatr. Rev.* 27, 443 (2006).
- 9. V.A. Moyer, C. Ahn, and S. Sneed, *Arch. Pediatr. Adolesc. Med.* **154**, 391 (2000).
- 10. M.D. Anggraeni and A. Fatoni, in IOP Conf. Ser. Mater. Sci. Eng. (2017).
- 11. H.W. Yulia and A. Fatoni, J. Farm. Sains Dan Komunitas 15, 7 (2018).
- 12. A. Fatoni and M.D. Zusfahair, in *J. Phys. Conf. Ser.* (2020), p. 12030.
- 13. A. Soni and S.K. Jha, *Anal. Chim. Acta* **996**, 54 (2017).
- 14. J.C.A. Fernandes, J.A.B.C. Neves, M.J.S. Freitas, and J.L. Afonso, in 2008 IEEE Int. Symp. Ind. Electron. (IEEE, 2008), pp. 1025–1028.
- 15. G. Inamori, U. Kamoto, F. Nakamura, Y. Isoda, A. Uozumi, R. Matsuda, M. Shimamura, Y. Okubo, S. Ito, and H. Ota, *Sci. Adv.* 7, eabe 3793 (2021).
- 16. J.-H. Seo, Y.-B. Park, and Y.-J. Park, Eur. J. Integr. Med. 6, 322 (2014).
- 17. Y. Zhao, J. Tao, and P. Tu, Photodiagnosis Photodyn. Ther. 10, 96 (2013).
- 18. A.K. Akobeng, Am. Fam. Physician 71, 947 (2005).
- 19. S.Y. Mojtahedi, A. Izadi, G. Seirafi, L. Khedmat, and R. Tavakolizadeh, *Open Access Maced. J. Med. Sci.* 6, 1387 (2018).
- 20. S. Mitra and J. Rennie, *Br. J. Hosp. Med.* 78, 699 (2017).
- 21. R. Seyedi, M. Mirghafourvand, and S. Osouli Tabrizi, Int. J. Pediatr. 5, 6541 (2017).