Plasma Jet—Treated Lidah Buaya (Aloe Vera) Influences Proliferative-Phase Wound Healing L.H. Nurani,^{a,b} N. Nasruddin,^{b,c,d,*} S. Darmawati,^{b,c,d} E.S. Wahyuningtyas,^{b,e} E.I. Safitri,^{a,f} E. Junita,^a Y.D.A. Ningrum,^a R.P. Rahmawati,^a R.A. Astuti,^a I.M. Sikumbang,^{a,d,g} A. Kartikadewi,^{b,d,h} Y. Sari,ⁱ A.H. Mukaromah,^{b,c,d} D.C. Anita,^{b,j} Tatsuo Ishijima,^k & Toshio Nakatani^l ^aDepartment of Pharmacy, Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia; ^bMuhammadiyah Research Network for Plasma Medicine (M-Plasmed), Semarang, Indonesia; ^cDepartment of Medical Laboratory Science, Faculty of Nursing and Health Sciences, Universitas Muhammadiyah Semarang, Indonesia; ^dInterdisciplinary Research Laboratory for Experimental Plasma Medicine (iPlasmed), Universitas Muhammadiyah Semarang, Indonesia; ^eDepartment of Nursing, Faculty of Health Sciences, Universitas Muhammadiyah Magelang, Indonesia; ^gDepartment of Pharmacy, Faculty of Health Sciences, Universitas Muhammadiyah Magelang, Magelang, Indonesia; ^gDepartment of Pharmacy, Faculty of Medicine, Universitas Muhammadiyah Semarang, Semarang, Indonesia; ^gDepartment of Nursing, Universitas Jenderal Soedirman, Purwokerto, Indonesia; ^gDepartment of Nursing, Universitas Aisyiyah Yogyakarta, Yogyakarta, Yogyakarta, Yogyakart *Address all correspondence to: N. Nasruddin, S.Si, M.Si, PhD, Department of Medical Laboratory Science, Faculty of Nursing and Health Sciences, Universitas Muhammadiyah Semarang, Indonesia; Tel./Fax: +62-024-76740294, E-mail: nasruddin@unimus.ac.id ABSTRACT: An in vivo experimental study was conducted to evaluate the effect of a plasma-treated aloe vera slice on cutaneous acute wound healing using a small animal model. A nonequilibrium atmospheric plasma pressure jet (N-APPJ) was developed. Aloe vera slices with thicknesses of approximately 2 mm were treated by N-APPJ at distances of 5 mm, 10 mm, and 20 mm before application. Possible reactive species on the surfaces of the plasma-treated aloe vera slices were chemically identified. Forty-five male Balb/c mice, aged 7–8 weeks, were classified into 5 groups; control (C), aloe vera slice alone (Av), plasma-treated aloe vera slice at 5-mm distance (PTAv-5), plasma-treated aloe vera slice at 10-mm distance (PTAv-10), and plasma-treated aloe vera slice at 20-mm distance (PAV-20). Wounds were observed for 14 days. Histological evaluation using general staining for re-epithelialization was also conducted. The "dropped-water method" was able to identify surfatic RONS. Additionally, this investigation revealed that sizes of wound areas in groups containing an aloe vera slice, from days 2 to 14, were significantly smaller compared with the control group. During the proliferative phase, wound size in PTAv-20 was smaller than that in both PTAv-5 and PTAv-10. From days 4 to 7, wound size in PTAv-20 was slightly smaller than that in Av; however, wound size in PTAv-5 and PTAv-10 was greater than that in PTAv-20. On day 7, re-epithelialization percentages in Av and PTAv-20 were significantly higher than in C. It was concluded that plasmatreated aloe vera has the ability to influence the proliferative phase of wound healing. **KEY WORDS:** atmospheric plasma jet, plasma medicine, redox, plasma-activated water (PAW), wound, aloe vera, gels #### I. INTRODUCTION In basic, nonchronic wound healing there are three overlapping stages: inflammation, proliferation, and remodeling.¹ Advanced studies showed that signaling biomolecules, namely reactive oxygen and nitrogen species (RONS), have a critical role in support of such processes.^{2,3} An analysis of Medicare beneficiaries identified that 8.2 million people had wounds with or without infections. Medicare cost estimates for acute and chronic wound treatments range from \$28.1 billion to \$96.8 billion.⁴ Interdisciplinary collaboration to tackle such a problem is important. In clinical settings, it is well known that there are many treatment options for improvement of wound healing—from natural agents like hormones,^{5,6} honey,^{7,8} and aloe vera⁹ to technological agents like electrical stimulation¹⁰ and ultra violet light.¹¹ The problem is that very few treatments can cope with conditions in the wound bed throughout all stages of healing. Consequently, finding better treatments is crucial. A treatment consisting of a plasma agent in combination with a natural treatment that already exists, such as aloe vera, could lead to insights. Fundamentally, there are four physical states of observable matter in everyday life: solid, liquid, gas, and plasma. Plasma medicine involves plasma science, pharmacology, life sciences, biomedicine, and other health sciences to functionalize physical plasma for medical treatment.¹² There are nonreactive parts (gases) and reactive parts (ions, energetic and radical particles) in plasma. Conceptually, the medical aspects of plasma are related to its ability to generate biological molecules, such as RONS, which can be controlled physically through their dose and behavior.¹³ RONS in micro-concentrations^{14,15} have efficacy for wound healing, while in high concentrations they can damage living tissue.¹⁶ The efficacy of atmospheric plasma for wound healing has been established.^{17–21} However, harmful effects due to excessive doses have been reported.²² Efforts to combine atmospheric plasma with natural products for wound healing are ongoing.^{23–25} Although RONS are key players, recent investigations into plasma medicine have shown that the positive biomedical effects of RONS are determined by the presence of liquid around target cells. ^{26,27} There are two basic principles in this context: first, the effects of plasma are caused by changes it induces in the liquid zone surrounding cells. Second, liquid phases containing RONS play a pivotal role in plasma-induced biological responses. Woedtke and Weltmann showed that biological plasma effects are primarily mediated through reactive oxygen and nitrogen species influencing cellular redox—regulated processes. Therefore, plasma medicine is considered a field of applied redox biology. ²⁸ As a succulent plant, aloe vera (*Lidah Buaya* in Semarang, Indonesia) is a xerophyte, which means that it is adapted to living in areas of low water availability and characterized by its large water storage tissue. The primary characteristic of the aloe vera plant is its huge water content, ranging 99–99.5%.²⁹ The remaining 0.5–1.0% of solid material contains many potentially active compounds, including water- and fat-soluble vitamins, minerals, enzymes, simple/complex polysaccharides, phenolic compounds, and organic acids. Of the structural components of the aloe vera leaf, the rind comprises 20–30% and the pulp 70–80% of total leaf weight. This research was conducted to evaluate the effectiveness of plasma jet–treated fresh aloe vera slices on acute wound healing in a small animal model. Prior to wound evaluation, the identification and concentration calculation of surface $\rm H_2O_2$ and $\rm NO_2^-$ in fresh aloe vera slice after plasma jet treatment was conducted using noninvasive methods. #### II. METHODS AND MATERIALS #### A. Nonequilibrium Atmospheric Pressure Plasma Jet System The nonequilibrium atmospheric pressure plasma jet (N-APPJ), developed by Teschke et al., 30 was applied. This reactor has been described elsewhere. 19 Briefly, the inner and outer diameters of the capillary quartz tube were modified to be 0.65 and 1.55 mm, respectively. Two electrodes of conductive rounded materials were applied on the tube. Nonconductive material, purchased from Rumah Tanah Liat Citra, Tangerang Selatan, Indonesia, namely tanah lempung, or local clay, was applied to isolate the electrodes. As reported elsewhere,²² characterizations of electrical and optical emission were conducted in the Plasma Laboratory at the Research Center for Sustainable Energy and Technology, Institute of Science and Engineering, Kanazawa University, Japan. The discharge voltage and discharge current were measured with a high-voltage probe (P6015A; Tektronix, Tokyo, Japan) and a current probe (8585C; Pearson Electronics, Palo Alto, CA). When argon gas at flow rates of 0.1, 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0 standard liters per minute (slm), flowed from one end of the quartz tube, at low frequency (~ 18.32 kHz) AC high voltage, with a peak-to-peak voltage of 9.58 kV and current of 55.2 mA, was measured at the upper ring electrode. Medical-grade argon gas with 99.999% purity (Samator, Secang, Magelang, Indonesia) was used as a working gas. Emissions from the plasma jet between 200 and 450 nm were recorded by a photonic multichannel analyzer (PMA-12) (C10029, Hamamatsu Photonics, Hamamatsu, Japan). The emissions were focused on the entrance slit of an optical fiber probe of the PMA-12 using a convex quartz lens with focal length f=100 mm. The exposure time was 19 ms, and the number of accumulations was 30. The light diameter of the optical fiber was 1 mm. The optical emission intensity of the optical system was calibrated using a standard lamp. Optical emission spectroscopy (OES) measurement at approximately 10 mm under the nozzle showed the presence of both hydroxyl radical (OH) and nitrogen-based reactive species in the gas phase during plasma generation (Fig. 1). Relative intensities at wavelengths of 309 and 337 nm reached peaks at a 2-slm flow rate. #### B. Preparation of Fresh Aloe Vera Leaves Fresh aloe vera (L.) *Burm. f.* leaves were collected and authenticated at the Laboratory of Biology, Faculty of Mathematic and Natural Sciences, Universitas Ahmad Dahlan, Yogyakarta, Indonesia. Slices of aloe vera with a thickness of approximately 2 mm and **FIG. 1:** Left: identification of ROS and RNS by OES in varying flow rates. Right: relationship between flow rates and relative intensity at peaks 309 (OH) and 337 nm (second positive system of nitrogen). dimensions of 6×6 mm were manually cut with a knife on a daily basis. Afterward, the slices were stored in a 4°C refrigerator overnight for experimental use the next day. #### Semiquantitative Identification of H₂O₂ on the Surface of Plasma-Treated Aloe Vera Slices The presence of $\rm H_2O_2$ on the surface of an aloe vera slice was identified using a peroxide paper test strip (Merck, Darmstadt, Germany) following 2-min plasma jet treatment at distances of 5, 10, or 20 mm. A colorimetric method with a concentration range of 0.5–25 mg/L $\rm H_2O_2$ was used. To evaluate the possible degradation of the $\rm H_2O_2$, the identification was conducted immediately and 15, 30, 45, and 60-min post-treatment. ### 2. Calculation of Quantitative Concentrations of Hydrogen Peroxide (H,O,) and Nitrite (NO,-) Post-treatment concentrations of $\mathrm{H_2O_2}$ and $\mathrm{NO_2}$ on the surface of the plasma-treated aloe vera slices were analyzed with a peroxidase enzyme for $\mathrm{H_2O_2}$ and a naphthyle-thylenediamine visual colorimetric for $\mathrm{NO_2}$ that used a commercial reagent (Kyoritsu Chemical-Check Lab, Tokyo, Japan, range: 0.05–5.0 mg/L, and Model WAK- $\mathrm{H_2O_2}$, range: 0.02–1.00 mg/L) after plasma jet treatment. This method has been used by other researchers. Samples were classified into three groups based on their applied distance between the surface of the aloe vera slices and the plasma jet reactor nozzle tip. Groups PTAv-5, PTAv-10, and PTAv-20 were APPJ-treated at distances of 5, 10, and 20 mm, respectively. The argon gas flow rate was set at 2 slm. General sample preparation is described in Fig. 2. First, the aloe vera slice was prepared and a plastic ring with a 4-mm diameter was put on its surface. This ring was used for maintaining pure water on the plasma-treated surface area. The visual appearance **FIG. 2:** General preparation for concentration calculation of H₂O₂ and NO₂⁻ on surface of plasma-treated aloe vera slice of the aloe vera surfaces after treatment at 5-, 10, and 20-mm distances is shown in Fig. 3. Immediately following treatment, 0.3 mL of pure water was dropped on the surface of the slice. After approximately 15 s, 0.2 mL of the dropped water was recovered and diluted in another 1.0 mL of pure water. Digital packtest devices (Kyoritsu Chemical-Check Lab., Japan; Model DPM- 1 O₂ and Model DPM- 1 NO₂) were used to measure concentrations of 1 O₂ and 1 NO₂ in the 1.2-mL mixed water. All experiments were performed in triplicate for each group. #### C. Animals and Investigation Protocol Forty-five male Balb/c mice, purchased from Laboratorium Penelitian dan Pengujian Terpadu/Integrated Research and Testing Laboratory (LPPT UGM), Gadjah Mada University, Yogyakarta, Indonesia, were obtained at 7 to 8 weeks of age and maintained under the following controlled conditions: 12-h light-dark cycle, of $25.0 \pm 2.0^{\circ}$ C, and regular mouse chow and water ad libitum. All procedures were in accordance with animal welfare guidelines and were approved by the ethics committee for preclinical investigation in LPPT UGM (00028/04/LPPT/VI/2019). This institution uses the standards of ISO/IEC 17025 and the National Accreditation Committee of Indonesia (Komite Akreditasi Nasional/KAN, Indonesia). #### D. Experimental Design The mice were anaesthetized by injection of ketamine-xylazine (KX) at a dose of 50 and 5 mg/kg, respectively, through intraperitoneal administration.³² The working procedure **FIG. 3:** APPJ treatment on aloe vera surface at 5-, 10-, and 20-mm distances. Ring used for maintaining pure water on surface area following plasma jet treatment. to create a nonchronic wound on experimental mice was as described elsewhere.²⁵ Rounded wounds of 4-mm diameter full skin thickness were made at the panniculus on both sides of the mouse dorsum. They were created using disposable 4-mm biopsy punches. Wound samples were classified as - Hydrocolloid dressing alone (C) - Aloe vera alone (Av) - Plasma-treated aloe vera at a distance of 5 mm (PTAv-5) - Plasma-treated aloe vera at a distance of 10 mm (PTAv-10) - Plasma-treated aloe vera at a distance of 20 mm (PTAv-20) The experimental protocol is shown in Fig. 4. C wounds were covered daily with a hydrocolloid dressing (HD) alone. Av wounds were covered daily with an aloe vera slice alone. PTAv-5, PTAv-10, and PTAv-20 wounds were covered daily with aloe vera slices plasma jet—treated for 2 min at their respective distances of 5, 10, and 20 mm. The argon gas flow rate was set at 2 slm. #### E. Macroscopic Evaluation of Wound Macroscopic evaluations were conducted daily as described elsewhere²⁵ and documented using a digital camera. This procedure was conducted for 14 days. Day 0 was the day that the acute wounds were made. FIG. 4: Experimental procedure days 1–13 #### F. Tissue Processing and Measuring of Re-Epithelialization The mice were euthanized by a high-dose IP injection of KZ7, 11, or 14 days after wound creation. The wound and the surrounding normal skin were harvested, and each specimen was bisected at the wound center. Wounds were fixed in neutral buffered 10% formalin solution, pH 7.4, for approximately 15 h. The samples were then rinsed in 0.01 M PBS for approximately 8 h. Subsequently, they were dehydrated in an alcohol series, cleaned in xylene, and embedded in paraffin to prepare serial 5-µm sections. These sections were stained with haematoxylin-eosin (HE). With the results of the haematoxylin-eosin staining, the percentage of re-epithelialization was calculated using the formula as reported elsewhere: $$Re-epithelialization \ (\%) = \frac{length \ of \ new \ epithelium}{length \ of \ wound \ between \ wound \ edges} \times 100\% \ (1)$$ #### G. Statistical Analysis Data were subjected to statistical analyses using SPSS 16.0. The ratio between the average and original wound areas, as well as percentages of re-epithelialization, were evaluated by ANOVA, followed by the Tukey-Kramer method. P values < 0.05 were considered significant. #### III. RESULTS #### A. Semiquantitative Identification of H,O, Figure 5 shows a surrogate qualitative condition of H_2O_2 on the surface of an aloe vera slice from 0 to 60 min after plasma jet treatment. The immediate and 15-min timepoints in all plasma-treated aloe vera groups (PTAv-5, PTAv-10, and PTAv-20) had detectable H_2O_2 , whereas the 45- and 60-min timepoints did not. In the 30-min timepoint, H_2O_2 was detectable in PTAv-5 but not in PTAv-20. In conclusion, this investigation revealed that the presence of reactive oxygen and nitrogen species produced by an atmospheric pressure plasma jet, as marked by the presence of H_2O_2 , could be identified on the surface of the aloe vera slices for several minutes. #### B. Quantitative Concentration of H_2O_2 and NO_2 Quantitative concentrations of both H_2O_2 and NO_2 on the surface of plasma-treated aloe vera slices were calculated. As shown in Fig. 6, after treatments at distances of 5, 10, and 20 mm, H_2O_2 concentrations of approximately 1.4, 0.8, and 0.4 mg/L were detected. NO_2 concentrations were approximately 0.7, 0.6, and 0.2 mg/L. #### C. Macroscopic Evaluation of Wounds Figure 7 shows the appearances of wounds on days 0, 3, 7, 11, and 14. On days 3 through 14, wounds in groups containing aloe vera were smaller than those in controls. On days 11 and 14, wounds in groups containing aloe vera appeared more mature compared with controls; the surrounding yellowish appearance was likely due to aloe vera **FIG. 5:** (a) representative semiquantitative conditions of H_2O_2 on surface of aloe vera slice for 60 min following plasma jet treatment. H_2O_2 detected immediately and 15 min post-treatment in PTAv-5, PTAv-10, and PTAv-20 but not detected 45 min and 60 min post-treatment. At 30-min post-treatment, H_2O_2 detected in PTAv-5 but not in PTAv-20. PTAv-5: plasma jet-treated aloe vera slice at 5-mm distance; PTAv-10: plasma jet-treated aloe vera slice at 5-mm distance; PTAv-20: plasma jet-treated aloe vera slice at 20-mm distance. (b) H_2O_2 indicator. **FIG. 6:** Relationship between treatment distances and quantitative concentrations of H_2O_2 and NO_2^- immediately post-treatment FIG. 7: Wounds on days 0, 3, 7, 11, and 14 gel. Among groups containing aloe vera, there were differences in area size but surface conditions were similar. #### D. Evaluation of Wound Area Reduction and Re-Epithelialization Figure 8(a) shows a graph of wound area reduction from days 0 to 14. It appears that starting from day-2 wound sizes in the groups containing aloe vera, both alone and treated by plasma jet, were significantly smaller than the controls (p < 0.01). This indicates that the natural ingredients in aloe vera may have properties to accelerate wound healing. **FIG. 8:** (a) Ratio of wound area at different timepoints compared to initial wound area. Days 4–14, significantly smaller wound area in aloe vera groups than in control group. Days 4–7, slightly lower ratio in PTAv-20 than in Av. PTAv-20 may accelerate wound healing; PTAv-5 and PTAv-10 appear to impede it. o, ×, +, β , γ , Δ , and π = significance level of C to Av, PTAv-5, PTAv-10, and PTAv-20; Av to PTAv-10; PTAv-5 to PTAv-20; and PTAv-10 to PTAv-20, respectively. (b) Percentage of re-epithelialization: day 7 percentages in Av and PTAv-20 significantly higher than in C. x and **, significance level of C to PTAv-20 and Av, respectively. Furthermore, it appears that, although PTAv-5, PTAv-10, and PTAv-20 were treated with aloe vera activated by plasma jet, their healing rates were not the same. During the proliferation phase, namely 5, 6, 7, and 8, wound size in PTAv-20 was significantly smaller than that in PTAv-10 (p < 0.05). On day 5, wound size in PTAv-20 was also significantly smaller than that in PTAv-5 (p < 0.05). Figure 8(b) shows that on day 7, the percentages of re-epithelialization in Av, as well as in PTAv-20, were significantly higher than those in controls (Av vs. C: p < 0.05; PTAv-20 vs. C: p < 0.05). This indicates that the ability of plasma jet—activated aloe vera to improve wound healing during the proliferation phase may be correlated with its ability to accelerate re-epithelialization. #### IV. DISCUSSION This investigation reveals that wound area size in experimental groups treated with aloe vera from days 2 to 14 are significantly smaller compared with controls (treated with hydrocolloid dressing only). This suggests that aloe vera has a critical role in accelerating healing during wound inflammation, proliferation, and remodeling. Interestingly, on the last experimental day, day 14, wound areas in the groups containing aloe vera were significantly smaller compared with controls. So far, aloe vera in raw and fresh form, as used in this study, may be an effective alternative to hydrocolloid dressing, which has a relatively high cost. In this investigation, differences in wound area sizes between groups treated with aloe vera slices were apparent on days 5, 6, 7, and 8; however, on day 14, sizes were not significantly different. It is suggested that atmospheric plasma jet, as applied in this investigation, influences the effectiveness of aloe vera slices both positively and negatively. It is also indicated that the applied distance of the plasma jet to the aloe vera surface may be a main factor. On one hand, a distance of 5 to 10 mm increased wound area sizes compared to aloe vera only; on the other hand, a distance of 20 mm decreased them. This investigation also showed that re-epithelialization percentages by day 7 in both Av and PTAv-20 were significantly higher than in C. However, re-epithelialization percentages between Av and PTAv-20 were not significantly different. This suggests that the effects of both are similar. Conversely, PTAv-5 and PTAv-10 showed less effectiveness compared with PTAv-20. Considering that wound healing consists of inflammation, proliferation, and remodeling,¹ it is hypothesized that plasma jet–treated aloe vera slices may modify the physiological mechanism of wound healing during proliferation. Of course, it has been reported that only aloe vera gel with high water content improves wound healing and increases new epithelialization, due to its ability to keep the wound moist.^{33,34} However, plasma jet–treated aloe vera at a distance of 20 mm may be used as a basis in optimizing healing efficacy. Varying plasma jet treatment times may turn out to be the best treatment model. With respect to the recent concept of plasma-liquid interaction,²⁷ modifying the liquid content of aloe vera using plasma may also improve treatment. This research is the first to evaluate the influence of plasma jet–treated fresh aloe vera slices on acute experimental wound healing using an animal model. Our investigation also identified and calculated ${\rm H_2O_2}$ and ${\rm NO_2}$ concentrations as markers of RONS. Why plasma jet–treated fresh aloe vera slices at a distance of 20 mm reduce wound area size during the proliferative phase, while distances of 5 and 10 mm act oppositely, may have to do with the RONS concentration rate. Concentration rates for distances of 5 and 10 mm are higher than that for a distance 20 mm, as presented in this investigation. It is well established that RONS in small concentrations 14,15 have positive wound-healing effects while in excessive concentration are destructive to living tissue. 16 This investigation applied aloe vera leaf in fresh and raw form. Generally, aloe vera leaf consists of three distinct layers:³⁵ - The inner layer containing clear gel, also called the mucilaginous layer - The middle layer containing latex, a bitter yellow sap containing anthraquinones and glycosides - The outer layer containing a protective rind of 15–20 cells Plasma jet-treating aloe vera means that ROS and RNS (RONS) produced by atmospheric plasma are directed to the aloe vera gel on the top of the inner leaf, as shown in Fig. 9(a). A diagnostic method to monitor the delivery of RONS produced by atmospheric plasma jet in living tissue is a critical development in plasma medicine.³⁶ Szili et al. used **FIG. 9:** Possible mechanism of formatting and measuring "surfatic RONS": (a) aloe vera slice layers receiving RONS generated by atmospheric plasma jet; (b) differentiation of surfatic and penetrated RONS in aloe vera layers; (c) dropped-water method for measuring surfatic RONS gel (gelatine gel) as a "tissue model" to evaluate the penetration rate of ROS that were produced by atmospheric plasma jet. It was reported that ROS can penetrate the gel to 150–1.5 mm below the surface.³⁷ Assuming that the penetration rate of ROS in this investigation is almost same as that in Szili et al., it is hypothesized that RONS may penetrate the inner leaf [see Fig. 9(b)]. Logically, the shorter the plasma jet distance, the longer the penetration rate. Clearly, the penetration of RONS generated by plasma jet at 20 mm was shorter than that at 10 and 5 mm. However, this study identified and calculated H₂O₂ and NO₂ as RONS markers using a strip tester and the "dropped-water" method, as shown in Fig. 9(c). We hypothesized that water may only react with RONS on the surface or near the surface of the gel. Consequently, H₂O₂ and NO₂ may only represent what can be called "surfatic RONS (SR)." Below such SR may exist "penetrated RONS (PR)" in a larger amount due to a shorter plasma jet distance which we may have missed. The insight into wound treatment gained by this was that, after the plasma-treated aloe vera slice was applied, the layer containing SR was delivered to the wound first and PR after. However, the gap in our investigation was the lack of data on the amount of RONS delivered. This topic requires further investigation. It was concluded that plasma-treated aloe vera at a distance of 20 mm (PTAv-20) may accelerate acute wound healing, while plasma-treated aloe vera at a distance of 5 mm (PTAv-5) and at a distance of 10-mm (PTAv-10) may impede it. The effectiveness of PTAv-20 is supported by the presence of surfatic as well as penetrated RONS within the aloe vera slice gels. #### **ACKNOWLEDGMENT** This research was supported by the research grant program of the Ministry of Research, Technology and Higher Education, Republic of Indonesia. #### **REFERENCES** - 1. Shaw TJ, Martin P. Wound repair at a glance, J Cell Sci. 2009 Sep 15;122(Pt 18):3209–13. - Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J, Leaper D, Georgopoulos NT. Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J. 2017 Feb;14(1):89–96. - 3. Sen CK, Roy S. Redox signals in wound healing. Biochim Biophys Acta. 2008 Nov;1780(11): 1348–61. - 4. Sen CK. Human wound and its burden: An updated compendium of estimates. Adv Wound Care. 2019 Feb 1;8(2):39–48. - 5. Mukai K, Nakajima Y, Urai T, Komatsu E, Nasruddin, Sugama J, Nakatani T. 17b-estradiol administration promotes delayed cutaneous wound healing in 40-week ovariectomized female mice. Int Wound J. 2014 Oct;13(5):636–44. - Mukai K, Komatsu E, Nakajima Y, Urai T, Nasruddin, Sugama J, Nakatani T. The effect of 17bestradiol on cutaneous wound healing in protein-malnourished ovariectomized female mouse model. PLoS One. 2014 Jan 21;9(12):e115564. - Nakajima Y, Mukai K, Nasruddin, Komatsu E, Iuchi T, Kitayama Y, Sugama J, Nakatani T. Evaluation of the effects of honey on acute-phase deep burn wounds. Evid Based Complement Altern Med. 2013;2013:784959. - 8. Haryanto, Urai T, Mukai K, Suriadi, Sugama J, Nakatani T, Effectiveness of Indonesian honey on the acceleration of cutaneous wound healing: An experimental study in mice. Wounds. 2012 Apr;24 (4):110–9. - 9. Moriyama M, Moriyama H, Uda J, Kubo H, Nakajima Y, Goto A, Akaki J, Yoshida I, Matsuoka N, - Hayakawa T. Beneficial effects of the genus Aloe on wound healing, cell proliferation, and differentiation of epidermal keratinocytes. PLoS One 2016 Oct 13;11(10):e0164799. - Frantz RA. Electrical stimulation. In: Bryant RA, Denise PN, editors. Acute & chronic wounds: Current management concepts. 4th ed. St. Louis: Mosby; 2011. p. 353–9. - Cordrey R. Ultraviolet light and ultrasound. In: Bryant RA, Denise PN, editors. Acute & chronic wounds: Current management concepts. 4th ed. St. Louis: Mosby; 2011. p. 360–3. - Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, van Dijk J, Zimmermann JL. Plasma medicine: An introductory review, New J Physics. 2009 Nov 26;11:5012. - Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A. Applied plasma medicine. Plasma Process Polym. 2008 Aug 12;5(6):503–33. - Soneja A, Drews M, Malinski T. Role of nitric oxide, nitroxidative and oxidative stress in wound healing. Pharmacol Rep. 2005 Feb;57(Suppl.):S108–19. - 15. Sen CK. The general case for redox control of wound repair. Wound Repair Regen. 2003 Nov 12;11(6):431–8. - Branemark PI, Ekholm R, Albrektsson B, Lindstrom J, Lundborg G, Lundskog J. Tissue injury caused by wound disinfectants. J Bone Joint Surg Am. 1967 Jan:49(1):48–62. - 17. Haertel B, Woedtke TV, Weltmann K-D, Lindequist U. Non-thermal atmospheric pressure plasma possible application in wound healing. Biomol Ther. 2014 Nov;22(6):477–90. - Nasruddin, Nakajima Y, Mukai K, Rahayu HSE, Nur M, Ishijima T, Enomoto H, Uesugi Y, Sugama J, Nakatani T. Cold plasma on full-thickness cutaneous wound accelerates healing through promoting inflammation, re-epithelialisation and wound contraction. Clin Plasma Med. 2014 Jul 1:2(1):28–35. - Nasruddin, Nakajima Y, Mukai K, Komatsu E, Rahayu HSE, Nur M, Ishijima T, Enomoto H, Uesugi Y, Sugama J, Nakatani T. A simple technique to improve contractile effect of cold plasma jet on acute mouse wound by dropping water. Plasma Process Polym. 2015 Oct 1;12(10):1128–38. - Bekeschus S, Schmidt A, Weltmann K-D, Woedtke TV. The plasma jet kINPen—a powerful tool for wound healing. Clin Plasma Med. 2016 Jan;4(1):19–28. - Arndt S, Schmidt A, Karrer S, Woedtke TV. Comparing two different plasma devices: kINPen and Adtec SteriPlas regarding their molecular and cellular effects on wound healing. Clin Plasma Med. 2018 Jan;9:24–33. - Darmawatiam S, Rohmani A, Nurani LH, Prastiyanto ME, Dewi SS, Salsabila N, Wahyuningtyas ES, Murdiya F, Sikumbang IM, Rohmah RN, Fatimah YA, Widiyanto A, Ishijima T, Sugama J, Nakatani T, Nasruddin N. When plasma jet is effective for chronic wound bacteria inactivation, is it also effective for wound healing? Clin Plasma Med. 2019 Jun;14:100085. - Nasruddin, Putri IK, Kamal S, Rahayu HSE, Lutfiyati H, Pribadi P, Kusuma TM, Muhlisin Z, Nur M, Nurani LH, Santosa B, Ishijima T, Nakatani T. Evaluation the effectiveness of combinative treatment of cold plasma jet, Indonesian honey, and micro-well dressing to accelerate wound healing. Clin Plasma Med. 2017 March 3;5-6:14–25. - Wahyuningtyas ES, Iswara A, Sari Y, Kamal S, Santosa B, Ishijima T, Nakatani T, Putri IK, Nasruddin N. Comparative study on Manuka and Indonesian Honeys to support the application of plasma jet during proliferative phase on wound healing. Clin Plasma Med. 2018 Aug;12:1–9. - 25. Rahayu HSE, Nasruddin N, Nurani LH, Darmawati S, Rohmani A, Lutfiyati H, Wahyuningtyas ES, Sikumbang IM, Muhlisin Z, Sukeksi A, Nuroini F, Ishijima T, Sugama J, Nakatani T. Ethanolic extract of natural product of Daun sirih (piper betle) leaf may impede the effectiveness of contact style of plasma jet for acute wound. Clin Plasma Med. 2019 Jun;15:100090. - 26. Weltmann K-D, Woedtke TH. Plasma medicine—current state of research and medical application. Plasma Phys Control Fusion. 2017 Nov 3;59(1):014031. - 27. Jablonowski H, Woedtke TV. Research on plasma medicine-relevant plasma—liquid interaction: What happened in the past five years? Clin Plasma Med. 2015 Dec;3(2):42–52. - Woedtke TV, Schmidt A, Bekeschus S, Wende K, Weltmann K-D. Plasma medicine: A field of applied redox biology. In Vivo. 2019 Jul;33(4):1011–26. 29. Radha MH, Laxmipriya NP. Evaluation of biological properties and clinical effectiveness of aloe vera: A systematic review. J Trad Complement Med. 2015 Jan;5(1):21–6. - 30. Teschke M, Kedzierski J, Finantu-Dinu E, Korzec D, Engemann J. High-speed photographs of a dielectric barrier atmospheric pressure plasma jet. IEEE Trans Plasma Sci. 2005 May 23;33(2):310–1. - 31. Sato T, Yokoyama M, Johkura K. A key inactivation factor of HeLa cell viability by a plasma flow. J Phys D Appl Phys. 2011 Aug 26;44(37):372001. - 32. Carpenter JW. Exotic animal formulary. 4th ed. St. Louis: Mosby; 2016. - 33. Erazo S, Lemus I, Garcia R. 1985. Evaluation of the humectant properties of Aloe perryi Baker. Plant Med Phytother. 19(4):240–7. - 34. Morton JF. Folk uses and commercial exploitation of aloe leaf pulp. Econ Botany. 1961 Oct;15:311-9. - Rahman S, Carter P, Bhattarai N. Aloe vera for tissue engineering applications. J Funct Biomater. 2017 Mar: 8(1):6. - Lu X, Keidar M, Laroussi M, Choie E, Szili EJ, Ostrikov K. Transcutaneous plasma stress: From softmatter models to living tissues. Mater Sci Eng R. 2019 May;138:36–59. - 37. Szili EJ, Bradley JW, Short RD. A "tissue model" to study the plasma delivery of reactive oxygen species. J Phys D Appl Phys. 2014 Mar 27;47(15):152002. Customer Login 0 Shopping Cart Library Subscription: Guest BEGELL DIGITAL PORTAL BEGELL DIGITAL LIBRARY BEOOKS JOURNALS REFERENCES & PROCEEDINGS RESEARCH COLLECTIONS Home > Journals > Plasma Medicine > Editorial Board #### Plasma Medicine Editor-in-Chief: **Satoshi Hamaguchi** Associate Editor: **Gregory Fridman** Executive Editors: **Klaus-Dieter Weltmann, Alexander A. Fridman** ISSN Print: 1947-5764 | ISSN Online: 1947-5772 SJR: **0.271**SNIP: **0.316**CiteScore™: **2** | Gain Access | Articles ▼ | Editors | For Authors 🔻 | Submit an Article | Subscribe • | Services and Policies 🔻 | |-------------|------------|---------|---------------|-------------------|-------------|-------------------------| |-------------|------------|---------|---------------|-------------------|-------------|-------------------------| #### Editor-in-Chief #### SATOSHI HAMAGUCHI Center for Atomic and Molecular Technologies, Osaka University, Suita-shi, Osaka 565-0871, Japan #### Associate Editor #### GREGORY FRIDMAN C&J Nyheim Plasma Institute, Drexel University, Camden, NJ 08103, USA; AAPlasma LLC Philadelphia, PA, USA #### **Executive Editors** #### KLAUS-DIETER WELTMANN Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Greifswald, Germany #### ALEXANDER A. FRIDMAN C&J Nyheim Plasma Institute, Drexel University, Camden, NJ 08103, USA #### Editorial Board #### FARZANEH AREFI-KHONSARI Laboratoire de Génie des Procédés Plasmas et Traitement de Surface, ENSCP, Université Pierre et Marie Curie, Paris, France Email: farzi-arefi@enscp.fr; farzi-arefi@chimie-paristech.fr #### VITTORIO COLOMBO Dipartimento di Ingegneria delle Costruzioni Meccaniche, Nucleari, Aeronautiche e di Metallurgia (D.I.E.M.) and C.I.R.A...more Email: colombo@ciram.ing.unibo.it; vittorio.colombo@unibo.it;colombo@ciram3.ing.unibo.it #### PETER FRIEDMAN Department of Rehabilitative and Regenerative Medicine, Columbia University, New York, NY, USA Email: pbc9@cumc.columbia.edu #### RICHARD HAMILTON Department of Emergency Medicine, College of Medicine, Drexel University, Philadelphia, PA, USA Email: Richard.Hamilton@DrexelMed.edu #### MICHAEL KEIDAR Department of Mechanical and Aerospace Engineering, The George Washington University, Science and Engineering Hall, 800 ...more Email: keidar@gwu.edu #### EUN HA CHOI Kwangwoon University, Seoul, South Korea Email: ehchoi@kw.ac.kr #### PIETRO FAVIA CNR-Institute of Nanotechnology (CNR-NANOTEC) UoS Bari, Department of Chemistry, University of Bari Aldo Moro, 70124 Bar...more Email: favia@chimica.uniba.it #### DAVID B. GRAVES College of Chemistry, University of California at Berkeley, Berkeley, CA 94720. USA Email: gravesdav@gmail.com #### MASAFUMI ITO Department of Electrical and Electronic Engineering, Meijo University, Nagoya, Japan Email: ito@meijo-u.ac.jp #### VANDANA MILLER C&J Nyheim Plasma Institute, Drexel University, Camden, NJ 08103, USA Email: vmiller@coe.drexel.edu #### JEAN-MICHEL POUVESLE GREMI UMR 7344 CNRS/Université d'Orléans, Orléans, France Email: michel.pouvesle@univ-orleans.fr #### ELOISA SARDELLA CNR-Institute of Nanotechnology (CNR-NANOTEC) UoS Bari, Department of Chemistry, University of Bari Aldo Moro, 70124 Bari, Italy Email: eloisa.sardella@cnr.it #### HIROMASA TANAKA Plasma Nanotechnology Research Center, Nagoya University, Center for Advanced Medicine and Clinical Research, Nagoya Uni...more Email: htanaka@plasma.engg.nagoya-u.ac.jp #### ERIC ROBERT GREMI UMR 7344 CNRS/Université d'Orléans, Orléans, France Email: eric.robert@univ-orleans.fr #### MASAHARU SHIRATANI Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan Email: siratani@ed.kyushu-u.ac.jp #### VIKTOR N. VASILETS Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia Email: vnvasilets@gmail.com #### Latest Issue #### CHARACTERIZING THE BIOLOGICAL EFFECTS OF PLASMA-ACTIVATED PHYSIOLOGICAL SALINE Tatyana Pavlik, Namik Gusein-Zade #### TRANSIENT SPARK COATING FOR DENTISTRY M. E. Bergmann, Tobias Wieland, V. Straub, F. Engesser, E. Buerkin, M. J. Altenburger, G. A. Urban, Loïc Ledernez #### EFFECTS OF PLASMA-ACTIVATED WATER ON SOYBEAN AND WHEAT: GERMINATION AND SEEDLING DEVELOPMENT Rajesh Prakash Guragain, Hom Bahadur Baniya, Niroj Banset, Sagar Regmi, Santosh Dhungana, Ganesh Kuwar Chhetri, Gobinda Prasad Panta, Binita Sedhai, Bikash Shrestha, Shreya Shrestha, Deepesh Prakash Guragain, Ujjwal Man Joshi, Bishnu Prasad Pandey, Deepak Prasad Subedi #### Forthcoming Articles THE EFFECT OF COLD PLASMA OPERATING PARAMETERS ON THE PRODUCTION OF REACTIVE OXYGEN AND NITROGEN SPECIES AND THE RESULTING ANTIBACTERIAL AND ANTIBIOFILM EFFICIENCY. ${\it Muireann Fallon, James Conway, Sarah Kennedy, Sharath Kumar, Stephen Daniels, Hilary Humphreys}$ ON MECHANISM OF INACTIVATION OF BIO-PARTICLES BY THE PLASMA EXPOSURE AND EVALUATION OF THE TOXICITY USING SINGLE DNA MOLECULES Akira Mizuno, Hachiro Yasuda, Hirofumi Kurita, Kazunori Takashima **Library Subscription: Guest** #### Plasma Medicine #### Plasma Medicine Editor-in-Chief: Satoshi Hamaguchi Associate Editor: Gregory Fridman Executive Editors: Klaus-Dieter Weltmann, Alexander A. Fridman **ISSN Print:** 1947-5764 **ESCI** **ISSN Online:** 1947-5772 SJR: 0.271 SNIP: 0.351 CiteScore™: 2 **Gain Access** More ### Volume 10, 2020 Issue 2 DOI: 10.1615/PlasmaMed.v10.i2 ## OPTICAL AND ELECTRICAL CHARACTERISTICS OF AN ENDOSCOPIC DBD PLASMA JET Orianne Bastin, Max Thulliez, Jean Servais, Antoine Nonclercq, Alain Delchambre, Alia Hadefi, Jacques Devière, François Reniers pp. 71-90 **DOI:** 10.1615/PlasmaMed.2020034526 ## COLD ATMOSPHERIC PLASMA PREVENTS WRINKLE FORMATION VIA AN ANTIAGING PROCESS Sang Gyu Hwang, Jung Ho Kim, Soo Youn Jo, Young Jae Kim, Chong Hyun Won pp. 91-102 # SUPPRESSION OF COOKING OIL DETERIORATION BY ELECTROMAGNETIC FIELD WITH HARMONICS GENERATED BY ASYMMETRIC CIRCUIT Masato Kiuchi, Tatsuji Miyagawa pp. 103-111 DOI: 10.1615/PlasmaMed.2020034997 # MODIFYING THE BLOOD'S PHYSICAL AND CHEMICAL PARAMETERS USING COLD HELIUM PLASMA: IN VITRO STUDY Andrew K. Martusevich, Alexander G. Galka, Elena S. Golygina pp. 113-122 DOI: 10.1615/PlasmaMed.2020036212 ## PLASMA JET-TREATED *LIDAH BUAYA* (ALOE VERA) INFLUENCES PROLIFERATIVE-PHASE WOUND #### **HEALING** Sakti Wahyuningtyas, E. I. Safitri, E. Junita, Y. D. A. Ningrum, R. P. Rahmawati, R. A. Astuti, I. M. Sikumbang, A. Kartikadewi, Y. Sari, A. H. Mukaromah, D. C. Anita, Tatsuo Ishijima, Toshio Nakatani pp. 123-138 **DOI:** 10.1615/PlasmaMed.2020036388 ### Latest Issue ## CHARACTERIZATION AND ASSESSMENT OF COLD PLASMA FOR CANCER TREATMENT Aavash Shakya, Suman Prakash Pradhan, Niroj Banset, Rajendra Shrestha, Pusp Raj Joshi, Roshan Gautam, Aakash Paneru, Ashok GC, Arun Kumar Shah, Rameshwar Adhikari, Deepak Prasad Subedi, Sagar Regmi EVALUATION OF THE EFFECTS OF A NONTHERMAL ATMOSPHERIC PRESSURE PLASMA JET ON THE PREVENTION OF ENAMEL DEMINERALIZATION DURING FIXED BRACKET TREATMENT Seyedeh Fatemeh Peyro Mousavi, Alireza Ganjovi, Ali Eskandarizadeh, Hosniye zia edini, Shekoofeh Shaykhian, Mohammad Hossein Sobhani Poor, Ali Reza Saidi, Amir Falahat, Samira Derakhshan ### Forthcoming Articles # RADIOSENSITIZATION BY LOW FREQUENCY RADIOFREQUENCY FIELDS IS DEPENDENT ON THE MAGNITUDE OF THE MODULATING FREQUENCY Angela Chinhengo, Antonio Serafin, John Akudugu # ON MECHANISM OF INACTIVATION OF BIOPARTICLES BY THE PLASMA EXPOSURE AND EVALUATION OF THE TOXICITY USING SINGLE DNA MOLECULES Akira Mizuno, Hachiro Yasuda, Hirofumi Kurita, Kazunori Takashima Home Journal Rankings Country Rankings Viz Tools Help About Us #### Plasma Medicine | COUNTRY | SUBJECT AREA AND CATEGORY | PUBLISHER | H-INDEX | |------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------|--------------------------------| | United States Universities and research institutions in United States | Engineering Biomedical Engineering Physics and Astronomy Physics and Astronomy (miscellaneous) | Begell House Inc. | 22 | | PUBLICATION TYPE | ISSN | COVERAGE | INFORMATION | | Journals | 19475764, 19475772 | 2011-2021 | Homepage | | | | | How to publish in this journal | SCOPE Technology has always played an important role in medicine and there are many journals today devoted to medical applications of ionizing radiation, lasers, ultrasound, magnetic resonance and others. Plasma technology is a relative newcomer to the field of medicine. Experimental work conducted at several major universities, research centers and companies around the world over the recent decade demonstrates that plasma can be used in variety of medical applications. It is already widely used surgeries and endoscopic procedures. It has been shown to control properties of cellular and tissue matrices, including biocompatibility of various substrates. Non-thermal plasma has been demonstrated to deactivate dangerous pathogens and to stop bleeding without damaging healthy tissue. It can be used to promote wound healing and to treat cancer. Understanding of various mechanisms by which plasma can interact with living systems, including effects of reactive oxygen species, reactive nitrogen species and charges, has begun to emerge recently. The aim of the Plasma Medicine journal will be to provide a forum where the above topics as well as topics closely related to them can be presented and discussed. Existing journals on plasma science and technology are aimed for audiences with primarily engineering and science background. The field of Plasma Medicine, on the other hand, is highly interdisciplinary. Some of prospective readers and contributors of the Plasma Medicine journal are expected to have background in medicine and biology. Others might be more familiar with plasma science. The goal of the proposed Plasma Medicine journal is to bridge the gap between audiences with such different backgrounds, without sacrificing the quality of the papers be their emphasis on medicine, biology or plasma science and technology. 2012 otal Cites 2014 2018 2020 2013 External Cites per Doc 2015 2017 Cites per Doc 2021 #### Ad removed. Show details Metrics based on Scopus® data as of April 2022 ## S Somayeh 3 years ago Hi. What is your last study regarding to plasma medicine? reply Leave a comment Name Submit The users of Scimago Journal & Country Rank have the possibility to dialogue through comments linked to a specific journal. The purpose is to have a forum in which general doubts about the processes of publication in the journal, experiences and other issues derived from the publication of papers are resolved. For topics on particular articles, maintain the dialogue through the usual channels with your editor. Ad removed. Show details #### Rekomendasi Peneliti Ahli Distributor resmi bahan penelitian medis, kosmetik, pengolahan limb lainnya afirmus.com В ① × #### Rekomendasi Peneliti Ahli Distributor resmi bahan penelitian medis, kosmetik, pengolahan limbainnya afirmus.com В Developed by: Follow us on @ScimagoJR Scimago Lab, Copyright 2007-2022. Data Source: Scopus® EST MODUS IN REBUS Edit Cookie Consent **(i)** **(i)** ① #### Source details Plasma Medicine Scopus coverage years: from 2011 to Present Publisher: Begell House ISSN: 1947-5764 E-ISSN: 1947-5772 Subject area: (Physics and Astronomy: General Physics and Astronomy) (Engineering: Biomedical Engineering) Source type: Journal View all documents > Set document alert ■ Save to source list 0.264 SJR 2021 CiteScore 2021 2.0 SNIP 2021 0.351 CiteScore CiteScore rank & trend Scopus content coverage #### Improved CiteScore methodology CiteScore 2021 counts the citations received in 2018-2021 to articles, reviews, conference papers, book chapters and data papers published in 2018-2021, and divides this by the number of publications published in 2018-2021. Learn more > CiteScore 2021 159 Citations 2018 - 2021 78 Documents 2018 - 2021 Calculated on 05 May, 2022 CiteScoreTracker 2022 ① 71 Citations to date 60 Documents to date Last updated on 05 September, 2022 • Updated monthly #### CiteScore rank 2021 ① | Category | Rank | Percentile | | |-----------------------------------------------------|----------|------------|--| | Physics and Astronomy General Physics and Astronomy | #132/240 | 45th | | | Engineering Biomedical Engineering | #182/252 | 27th | | View CiteScore methodology > CiteScore FAQ > Add CiteScore to your site & #### **About Scopus** What is Scopus Content coverage Scopus blog Scopus API Privacy matters #### Language 日本語版を表示する 查看简体中文版本 查看繁體中文版本 Просмотр версии на русском языке #### **Customer Service** Help **Tutorials** Contact us #### **ELSEVIER** Terms and conditions *¬* Privacy policy *¬* **RELX**