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Abstract

Detailed landslide susceptibility mapping (LSM) requires
a skillful landslide model. Considering that translational
landslide is the most type of landslides occurred in the
world, a well-behaved translational model is sought. This
study presents a simple physically-based distributed
translational landslide model. In this model, the incident
of landslide is detected from the value of factor of safety
(FoS) which is computed based on Mohr–Coulomb
failure criterion. In here, FoS is calculated as the ratio
of shear strength and shear stress. The lower the FoS, the
higher the possibility of a landslide to occur. The model
input data consists of soil cohesion c (kg/cm2), soil
specific weight c (g/cm3), depth of surface of rupture (m),
slope of surface of rupture b (degree) and friction angle u
(degree). Application of the model was performed in
Sirampog and Kandang Serang, two subdistricts in
Western Central Java that underwent the most frequent
landslides in the region. Model validation was conducted
by comparing the values of FoS of unsaturated and
saturated soils and identifying FoS in the sites where
landslide events recorded. Several goodness of fit indices
to measure the model performance are accuracy (ACC),
success index (SI), average index (AI) and distance to
perfect classification (D2PC). Under unsaturated condi-
tion, the result shows that the number of grids having FoS
less than 1 are 0% and 0.6% for Sirampog and Kandang
Serang respectively, indicating no landslide occurrence.
When the soil gets saturated, 17.6% and 36% of area have
FoS less than 1 for Sirampog and Kandang Serang
respectively. This shows that the landslide occurred in

this region is rainfall-induced landslide. Overall, the
model shows a good performance with ACC, SI, AI,
D2PC values are 0.82, 0.58, 0.54, 0 and 0.64, 0.49, 0.49,
0 for Sirampog and Kandang Serang respectively.

Keywords

Translational landslide � Physical model � Factor of
safety � Landslide susceptibility map

Introduction

Many parts of the world are susceptible to landslide (Allen
and Voiland 2017). An accurate landslide susceptibility
mapping (LSM) is therefore important for landslide hazard
assessment and landslide mitigation planning (Brabb 1985).
A number of approaches have been used for estimating LSM
around the world such as Frequency Ratio (Choi et al. 2012;
Silalahi et al. 2019), Landslide Numerical Risk Factor (Roy
and Saha 2019), Analytical Hierarchical Process (Abedini
and Tulabi 2018), Logistic Regression (Lombardo and Mai
2018) and many others. The most applied methods in
developing LSM are statistical techniques, artificial neural
network and machine learning algorithm (Chang et al. 2019;
Dou et al. 2020; Segoni et al. 2020; Tien Bui et al. 2019).
The physically-based model is useful in understanding the
landslide physical mechanism through linking hydrology,
geomorphology and geotechnical science with different
degree of simplification. Nonetheless, physically-based LSM
is very limited (Formetta et al. 2014, 2016; Segoni et al.
2020).

Physically, a landslide occurs if the slope stability dis-
turbed. This happens as the maximum capacity of soil to
bear load or stress (shear strength) is lower than the applied
load or stress (shear stress) (Das 1994). The ratio of shear
strength to shear stress is called factor of safety (FoS).
Hence, suitable estimation of FoS in space is critical as it is
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valuable for not only an appropriate LSM but also poten-
tially useful for the development of landslide early warning
system. Accordingly, a trustful physically-based distributed
landslide model is sought.

A few number of physically-based distributed model for
landslide are found in literature such as GEOtop model
(Formetta et al. 2014) and NewAge-JGrass hydrological
model (Formetta et al. 2016). In both model, FoS is calcu-
lated from the simplification of infinite slope equation
(Formetta et al. 2014). This is one of methods for modelling
translational landslide, one of the most common landslide
types occurred in the world (Postance et al. 2018). Trans-
lational landslide often occurs in the presence of a layer
separating strong and weak soil. This layer is called surface
of rupture. Therefore, trustworthy estimation of the depth of
surface of rupture is critical. GEOtop and NewAge-JGrass
model are dissimilar in determining this depth.

This study presents a physically-based distributed trans-
lational landslide model. The modelling framework is sim-
ilar to the aforementioned model. However, we offer
different approach to estimate the depth of surface of rupture.
In here, we estimate this depth based on soil bearing
capacity.

Model Description

The model presented here is in the first stage of develop-
ment. At current form, the model is very modest. However,
we show it useful in mapping landslide susceptibility zone.

The model lies on the Mohr–Coulomb failure criterion
(Hackston and Rutter 2016; Labuz and Zang 2012). Fol-
lowing the theory, FoS in this model is defined as the ratio of
shear stress and shear strength. Shear stress is resistive force
per unit area in soil due to applied shear force and shear
strength is ability of soil to resist external load against fail-
ure. The model is schematically presented in Fig. 1.

According to the Mohr–Coulomb theory as shown in
Fig. 1, shear strength per unit volume is calculated as follow:

sr ¼ cþ r tgu ð1Þ

r ¼ Na

L2=cosb
¼ cL2H cosb

L2=cosb
ð2Þ

sr ¼ cþ cH cos2b tgu ð3Þ
In here, sr is shear strength (kg/cm2), Na is normal force

(kg), L is grid size (m), c is soil cohesion (kg/cm2), c is soil
specific weight (kg/cm3), H is depth of surface of rupture
measured from ground elevation (m), b is slope of surface of
rupture (degree) and u is friction angle (degree).

As presented in Fig. 1, shear stress is natural force acting
on the surface of rupture mainly coming from soil block
above the surface. Accordingly, shear stress sa (kg/cm2) is
formulated as follow:

sa ¼ Ta

L2=cosb
¼ cL2H sinb

L2=cosb
¼ cH sinb cosb ð4Þ

In here, Ta is shear force (kg). Based on the
above-mentioned formulation, the FoS can be straightfor-
wardly expressed as follow:

FoS ¼ sr
sa

¼ cþ cH cos2b tgu
cH sinb cosb

ð5Þ

According to the FoS formulation, it can be inferred that
landslide will occur in the areas with FoS less than 1.

Model Configuration and Input

As shown in Fig. 1, the model is run in distributed mode.
Computation of FoS is performed in each grid separately.
The code is written using R programming language which
can be run either in R software or through Terminal or
Windows Command Prompt. The input data should be
written in comma separated value (csv) file format. The
output from the model is a landslide susceptibility map.

For each grid, input data required to run the model are
geographic location, soil cohesion, soil specific weight,
depth of surface of rupture and slope of surface of rupture.
The slope of surface of rupture is deemed to be the same as
the slope of land surface for simplicity. The slope along with

Fig. 1 Schematic representation of the model
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its corresponding geographic location is derived from the
Digital Elevation Method (DEM) by Shuttle Radar Topog-
raphy Mission (SRTM) at 30 m � 30 m resolution. In
addition, soil cohesion, soil specific weight, depth of surface
of rupture are obtained from soil test using in situ Cone
Penetration Test (CPT) and laboratory tests.

While slope, geographic location, cohesion and specific
weight can be easily and unquestionably defined from their
original sources, determination of the depth of surface of
rupture is quite challenging. This is because no referenced
number can be used for the specific purpose. As an alter-
native, we set the depth of surface of rupture for the model as
the depth of soil obtained from CPT where the cone tip
resistance reaches up to 250 kg/m2 which is usually used to
define the hard soil layer for designing building foundation.

Translational landslide usually takes place when the soil
above surface to rupture gets saturated, partially or fully.
Under saturated condition, cohesion and friction angle will
variedly drop with the rate depending on the soil types,
initial soil water content, etc. While soil cohesion could
decrease to averagely 22%, soil friction angle could decline
to about 50% (Lakmali et al. 2016; Minnesota Department of
Transportation 2019). As soil parameters in this study were
obtained under unsaturated condition, it is necessary to
estimate their values under saturated soil using the afore-
mentioned number.

To test the model, we run the model under unsaturated
and saturated soils. It is expected that no grid will have FoS
values less than 1 under unsaturated condition and some
grids will possess FoS values less than 1. Hence, we can
prove that the landslide occurred in this area is induced by
rainfall.

Model Testing

Study Area and Data

To examine the model performance in mapping landslide
susceptibility zone, we run the model on Sirampog subdis-
trict, Brebes, Central Java, and Kandang Serang subdistrict,
Pemalang, Central Java, Indonesia as shown in Fig. 2.
Sirampog and Kandang Serang have an area of 69 km2 and
74 km2 respectively. These places have the most frequent
landslide events in the Western Central Java counting 3
events during the period of 2011–2017, (BNPB 2020).

Soil properties data to run the model were obtained from
Soil Mechanic Laboratory, Civil Engineering Department,
Jenderal Soedirman University. It was collected during the
period of 2005–2016 with some absent data in the period of
2008–2009. The soil properties are then interpolated to the

30 m � 30 m SRTM DEM raster points. In here we used
Inverse Distance Weighting (IDW) interpolation technique.

Model Results

To assess the goodness of fit (GOF) of the model, we cal-
culated several GOF indices (Formetta et al. 2016) and
shown in Table 1. It can be inferred that the model perfor-
mance is quite good where Sirampog produces better per-
formance than Kandang Serang.

Table 2 also presents the FoS values from the model
along with the summary of model parameter values gener-
ated from IDW interpolation for the entire Sirampog and
Kandang Serang area and the values for each site where
landslide occurrences recorded, i.e. Site 1, Site 2 and Site 2
for both subdistrict as presented in Figs. 3 and 4. Moreover,
While the values of many model parameters are similar, soil
cohesion in Sirampog and Kandang Serang shows large
different. In Sirampog, the dominant soil type is organic silt,
while in Kandang Serang, the dominant soil is sandy clay.

The minimum values of FoS in Sirampog and Kandang
Serang are 1.27 and 0.91 respectively. The FoS values less
than 1 in Kandang Serang account for 0.6% of the total area,
indicating that under unsaturated condition, landslide unli-
kely occurs. Moreover, it can also be seen in Table 2 that the
minimum FoS values of saturated soil are 0.39 and 0.27 for
Sirampog and Kandang Serang respectively. The grids
having FoS less than 1 under saturated condition in Siram-
pog and Kandang Serang are 17.6% and 36% respectively
which correlated with the variability of soil cohesion in the

Fig. 2 Study area to test the performance of the model
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two places. Accordingly, it can be inferred that the landslide
events are rainfall-induced landslide.

Sirampog Subdistrict

The LSM of Sirampog overlaid with the sites of recorded
landslide is presented in Fig. 3. As shown in Fig. 3, the
landslide susceptible zones are more distributed to the
eastward, while in the westward there exists less susceptible
areas. The map is consistent with the spatial arrangement of

elevation and land surface slope (not shown due to page
limitation) where elevation and slope increase eastward.
Moreover, the spatial pattern of LSM is corresponding to the
spatial configuration of b.

The value of FoS in Site 1, Site 2 and Site 3 is 2.33, 0.76
and 1.32 respectively showing that only 1 out of 3 sites is
correctly modelled. It can be observed that these values are
strongly correlated with the values of b. The b values in Site
1 and Site 3 are 9.17 and 16.82° respectively, which can be
considered too low to generate a landslide. In addition, it can
also be noticed that value of c decreases from 0.57 to

Table 1 Summary of GOF
indices

GOF indices Sirampog Kendang Serang Optimum

Accuracy (ACC) 0.82 0.64 1

Average Index (AI) 0.54 0.49 1

Success Index (SI) 0.58 0.49 1

Distance to Perfect Classification (D2PC) 0 0 0

Table 2 Summary of model
parameter values

Model
Parameter/Result

Sirampog Kendang Serang

Range Site
1

Site
2

Site
3

Range Site
1

Site
2

Site
3

c (kg/cm2) 0.08–
6.15

0.49 0.51 0.57 0.06–
0.31

0.30 0.29 0.31

c (g/cm3) 1.55–
1.71

1.56 1.56 1.56 1.54–
1.57

1.55 1.55 1.56

H (m) 2.77–
11.53

7.17 7.15 7.08 2.57–
7.63

7.31 7.22 7.41

b (°) 0–56.17 9.17 28.30 16.82 0–87 4.19 9.71 26.62

u (°) 30.05–
40.46

30.82 30.90 30.86 28.95–
36.88

29.34 29.60 29.72

Unsaturated FoS 1.27–Inf 6.50 2.23 3.84 0.92–Inf 11.30 4.92 1.81

Saturated FoS 0.39–Inf 2.33 0.76 1.32 0.27–Inf 4.37 1.89 0.68

Fig. 3 Landslide susceptibility
map of Sirampog along with
landslide sites
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0.51 kg/cm2 as the b increases from 16.82 to 28.30°. This
conforms the inference presented previously.

Based on the above analysis, it can be roughly deduced
that the model is sensitive to the values of b, the slope of
surface of rupture. This is in accordance with other studies
showing the sensitivity of landslide model to digital terrain
model (Pawluszek et al. 2018; Segoni et al. 2020). More-
over, it brings a new challenge on the model parameteriza-
tion, particularly estimation of b.

Kandang Serang Subdistrict

The LSM of Kandang Serang along with the sites of land-
slide events is displayed in Fig. 4. As can be seen in Fig. 4,
the spread of landslide susceptible zones is quite uniform.

Moreover, about 36% of Kandang Serang’s area is suscep-
tible to landslide, higher than Sirampog which is about
17.6%. This resembles the fraction of slope more than 30°.
In Kandang Serang, about 11% areas have slope of more
than 30°, larger than in Sirampog, which is 8%. Again, this
corroborates the previous hypothesis.

In this area, there are 491 grids possessing FoS less than 1
under unsaturated condition. Theoretically, these places
should be full of landslide events record, but it is not. One
reason should be addressed is the model assumption to
equalize slope of surface of rupture with land surface slope,
which is unlikely factual for high slope values. For example,
it is dubious to have soil block can rest on the surface of
rupture with slope of more than 45° unless it has high soil
cohesion, which is not the case of hilly topography. Another
possibility is that a place with slope of more than 45° is a
massive rock formation which is not subject to Mohr–Cou-
lomb failure criterion.

To verify the above analysis, we extracted the values of b
in the places where FoS less than 1 under unsaturated con-
dition. We found that the values of b in these grids range
from 49.8 to 68.6°. This finding conforms our premise.

The values of FoS in Site 1, Site 2 and Site 3 are 4.37,
1.89 and 0.68 which correspond to the values of b. The
higher the b, the lower the FoS, signifying the sensitivity of
the model to the value of b.

Future Model Development

Model parameterization is prerequisite for developing a
skilled model (Guimaraes et al. 2003; Knowling et al. 2019;
Kuriakose et al. 2009). In line with the result of model
testing and to extend the use of the model, model parame-
terization will be directed to the estimation of b involving
geological setting, valuation of c under different soil mois-
ture to reflect the influence of rainfall on the variability of c
and the connection of the model with hydrological model,
such as VIC. The later enables the model to be run in a
simulation mode such that it can be employed for landslide
early warning.

Conclusion and Remark

A physically-based distributed translational landslide model
at its very basic form is presented in this paper. Its application
on two different regions shows that themodel produces a good
performance. However, some paucities are found and some
hypothesize proposed. Nevertheless, the model is thought to
be useful and it can be potentially extended for the develop-
ment of a landslide early warning system.

Fig. 4 Landslide susceptibility map of Kandang Serang along with
landslide sites
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