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investigate in the numerical point of view. In this paper, we consider the
numerical methods for one dimensional telegraph equation by using cubic B-
spline collocation method. Collocation method is one method to solve the partial
differential equation model problem. Cubic spline interpolation is an interpolation

lc(sglvg (];l_'sd:{ine to a third order polynomial. This polynomial interpolate four point. B-Spline is
collocation method: one of spline function which related to smoothness of the partition. For every
Telegraph Equation; spline function with given order can be written as linear combination of those B-
Interpolating scaling spline. As we known that the result of the numerical technique has difference with
function; the exact result which we called as, so that we have an error. The numerical
Numerical methods; results are compared with the interpolating scaling function method which

investigated by Lakestani and Saray in 2010. This numerical methods compared
to exact solution by using RMSE (root mean square error), L2 norm error and L.,
norm error. The error of the solution showed that with the certain function, the
cubic collocation of numerical method can be used as an alternative methods to
find the solution of the linear hyperbolic of the PDE. The advantages of this study,
we can choose the best model of the numerical method for solving the hyperbolic
type of PDE. This cubic B-spline collocation method is more efficiently if the error
is relatively small and closes to zero. This accuration verified by test of example 1
and example 2 which applied to the model problem.

d ; Crossref M

https://doi.org/10.31764 /itam.v6i2.7496 This is an open access article under the CC-BY-SA license

A. INTRODUCTION

Wave propagation in cable transmission can be described in mathematical modelling.
This model can be written in partial differential equations. One example is wave equation not
only in one dimension but also two dimensional case (Dosti & Nazemi, 2012). We know that
telegraph is one of the wave equations. In this article we consider the solution formula of the
telegraph equation as a second order of the linear hyperbolic equation problem. A model for
second order of one dimensional linear hyperbolic equation is described in the following:

U + 20U + fPu =uy + f(x,t), a<x<b, t=0 (1)

with initial condition and boundary condition are
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{u(x, 0)=fo(x), a<x<b @)
u(x,0) =fi(x), a<x<b
and
{u(a, t) =g0(), t=0 3)
u.(b,t) = g,(t), t=0

Respectively. Here a,B are positive constant coefficients, fy(x),f;(x) and their
derivatives are continuous function with respect to x variable, and also g,(t), g, (t) and their
derivatives are continuous function with respect t variable. A derivative model can be solved
in mathematical analytic or numerical analytic point of view. However, nota 1l derivative
model can be solved in analytic poin of view. We known that the exact solution is the real
solution and has no errors. In general, the solution of the telegraph equation is investgate b by
using numerical point of view because of the non-homogenous part.

As we known that the partial differential equation of the hyperbolic model becomes basis
of atomic physics which is the fundamental equation and also the vibrations of the structures.
The examples of this PDE models are buildings, beams and machines. Equation (1) known as
second-order telegraph equation with constant coefficient. This formula can be seen in
(Sharifi & Rashidinia, 2016). Recently, there are many researcher investigated telegraph
equation not only using the numerical methods but also by using mathematical analysis
approach. Lakestani & Saray (2010) studied the numerical solution of the telegraph equation
using interpolating scaling function. Meanwhile, Dosti & Nazemi (2012) solved telegraph
equation using B-spline quasi interpolation methods.

In the derivation of cubic B-spline collocation method, the examples were used in
(Lakestani & Saray, 2010) are different with the article. In this article, the numerical results
are compared with another numerical methods which studied by Sharifi & Rashidinia (2016).
(Mittal & Jain, 2012) investigated similar numerical methods which is applied to convection-
diffusion equation. They studied for the Neumann's boundary conditions.

Many researcher studied the solution of the telegraph equation in mathematical analysis
point of view. Chen et al (2008) investigated the time-fractional telegraph equation by using
separating variable method. Meanwhile, Das et al (2011) investigated the time fractional of
telegraph equation in mathematical analytic point of view. On the other hand, Wang et al,,
(2020) studied the solution of the telegraph equations by using fractal derivative. Biazar &
Eslami (2010) considered the solution of the telegraph equation by using differential
transform method (DTM). This method can find the exact solution or a closed approximate
solution of an equation. Atangana (2015) investigated not only the stability but also the
convergence of the time -fractional variable order of the telegraph equation.

In contrast, the solution of the telegraph equation in the numerical point of view have
been studied by many authors. Jiwari et al (2012) investigated the numerical method based
on differential quadrature method (PDQM) for hyperbolic partial differential equation type of
the vibration structures such as buildings, beams and machines. Two years before,
Saadatmandi & Dehghan (2010) studied the numerical scheme to solve the one-dimensional
hyperbolic telegraph equation by expanding the approximation of the solution as the
elements of shifted Chebyshev polynomial. Hosseini et al (2014) focused on the coupled of the
radial basis functions and finite difference scheme achieve the semi-discrete solution. The
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Laguerre wavelet collocation method for the fractional-order dimensional telegraph equation
(Srinivasa & Rezazadeh, 2021). Furthermore, to see the numerical method which based on the
boundary integral equation (BIE) and also the application of the dual reciprocity method
(DRM) is explained in (Dehghan & Ghesmati, 2010), while Dehghan & Salehi (2012)
investigated the RBF solution of second-order two-space dimensional linear hyperbolic
telegraph equation. The extended cubic B-spline method for the solution of time fractional
telegraph is discussed in (Akram et al., 2019). Rashidinia & Jokar (2016) presented the
polynomial scaling functions to solve the second-order one space-dimensional hyperbolic
telegraph equation, and wave propagation of electric signals in a cable transmission line by
using homotopy perturbation method (HPM) (Javidi & Nyamoradi, 2013). The purpose of this
research, we can see that the cubic collocation numerical method are better used as an
alternative methods for the hyperbolic partial differential equations. Before we state our main
result in the next session, we introduce our notation used throughout the paper.

Notation N denotes the sets of natural numbers and we setNyg = NU{0}.Cand R
denote the sets of complex numbers and real numbers, respectively. For any multi-index

K = (K1""’ KN) € NS’, we write | K | =Kk +-t L and 9y =6f1---aﬁ” with x =
(X4, ..., Xy). For N X N matrices of function F = (F;;). We use capital boldface letters, e.g. A

to denote matrix-valued functions. But, we also use the Greek letters, e.g a, 8,y such as
positive constants.

B. METHODS

The research methodology which used in this paper is literature review of the related
articles. In this article, we define the solution of the telegraph equation in numerical methods
point of view. The procedures are in the following, first of all, we discretise equation of the
telegraph equations not only the model problem but also the initial condition and boundary
conditions by using finite difference approximation. The second step, we apply the cubic B-
spline collocation methods to the model problem and its initial and boundary conditions.
Furthermore, the simulation of the solution are applied for each criteria. Then, we measure
the error of the solution by L __ -error, L,-error and root mean square error (RMSE). The

technical of the B-spline collocation methods follow in (Sharifi & Rashidinia, 2016).
Meanwhile, the technique applying the numerical method of B-spline collocation methods are
followed Dosti & Nazemi (2012). For the simulation we use matlab 7.0.4 software. In the
following section, we explained more detailed.

C. RESULT AND DISCUSSION
1. Description of the Numerical Method

In this subsection, we consider a finite difference approximation to discretise equation (1).
A we known that the equation system of partial differential equations (PDE) can be solved
with numerical methods. There are many numerical methods to solve the PDE. In this paper,
we are focusing on the cubic B-spline collocation methods. However, before we apply that
numerical methods, first of all we consider the discretisation the model problem. Since the
numerical methods are a method to approximate the solution of the PDE, then we need a
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simulation algorithm to make sure that the solution which we get are more effective. In the

following are the discretisation of t and x variables in time and space, respectively.

j+1 ' -1
joou = 2w+ uf
(utt)i = K2
j+1 j—1
R Y P
(up)] = — :
Wi =Tk
j_ (uxx){+1+ (uxx){_l
(uxx)i - 2

Substitution equation (4) to equation (1) we have

j+1
U

j-1 j+1_j-1

j
=2u;+ Uu; 4 )
i i } 26{ i i } 82
k2 2k

j+1 j—1
j_ (uxx){ + (uxx){

u; > +f(xi, tj)

By simplicity, we can write the equation (5) to be

i+1 k2 i+1
(1 + ak)u!” —7(uxx){+ =r;(x),
where

kz . . .
ri(x) = 2 ()] "+ K2 (xi ;) = (B2k? = 2)u] — (1 — alyu! ™.
Furthermore, by using Taylor series expansion, we can calculate u} with the formula

k
uf = ud + k(u)? + z(utt)? + R3 (%),

(4)

(5)

(6)

(7)

(8)

where u? and (u,){ are the initial conditions (2). We also get formula of (u,)? in the

following:
(utt)? = (uxx)? + f(xi: tj) - Za(ut)? - .Bzu?'

(9)

Meanwhile, we defined (uxx){ using another finite difference approximation in thw

following:

VAR I |
it1 2ui+u

o ,
()] = e (10)

Moreover, substituting (10) to (7), then (9) to (8), we have new formula of u} i.e

k (ul - 2ul+u?
ub = folx) + kfy () + 5 (P

j+1
Therefore, we have formula for ul]

; 2h? — k?h?p? — 2k? ; akh? — h? ; k? ; ;
j+1 _ j arn-—n- !_1 j j
o ( h? + akh? )ui + <h2 + akh2>u‘ + h2 + akh? Uiy +u_q)

) + f(xl-, tj) —2a(u)? — p2ud + Ry(x). (11)
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k2 h?
+ h2+akh? f(xl’ t])' (12)

2. Cubic B-Spline Collocation Solution
a. Approximation solution of boundary value problem
We define cubic B-spline in the following (PM, 1975)

( (x —x;_,)3 X € [Xi_2%;_1)
1R 43R — Xl ) 43R0 — xL )2 — B —xi0)? X € [xii1x)
B,(x) = @4 h3 4+ 3h%(x;01 — x) + 3h(xj41 — x)% —3(x;41 — %) X € [X;X;41)
Ik (xj41 — x)3 X € [Xiy1,Xi42)
0 x other
(13)

B, ;(x) value and its derivatives at the nodal points can be seen in the following as
shown in Table 1.

Table 1. B, ;(x) value and its derivatives at the nodal points

x Xi-2 Xi—1 Xi Xi+1 Xi+2
1 4 1
B, (x 0 — - - 0
4,1 (%) A A A
1 1
B,;’ 0 — 0 -
v @) 2h 2h
1 2 1

Byi " (x) 0 2 Tz nz

Developing the numerical method to approximate the solution of the boundary value
problem of equation (1) - (3), we define $(x) as in (Phillips, 2003)

$(x) = B ¢iByi (%), (14)

With ¢;(t) is a parameter depend ont and it will be calculated by using boundary
conditions. Furthermore, we set

LS(x) =7(x;), 0<i<n (15)
g(xo) = gO(tn): SA(xn) = gl(tn)' (16)

. - 2 -
where Lu! ™' = (1 + ak)ul ™" - % ()i

Moreover, by equation (13) and (14), we have

—Cig T Ci T - Ciyq (17)
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1
op Ci-1 7 5 Civa (18)

1 2 1
S ()= 5Cic1 — 56t G, (19)

Substituting equation (17) and (19) to operator £ we have
2

1 k 4 1 k?
A+ akh?— e, + (—(1 + ak)h? + kZ) G+ (> +alh? =S )e,,
6 2 6 6 2
= h*r;(x)
(20)
where i = 0,1, ..., n with ¢, and c,, can be calculated from boundary conditions.
Furthermore, we can write equation (20) in the matrix form

Ax=B
with
[ 3k? 0 0O 0 - 0 c
2 2 0
y—= 4y +k? y—= 0 0 I[Cl]l
_ 2 4y + k2 K2 _|¢2|
A= 0 kz )/+2 y=% y—ﬁ 0 pXx=lc]|
0 0 Y =75 4y+k? 2 0 l[ : Jl
; ; - Cn
0 0 0 0 0 3k ]
[h219(x) + (3k2 — R2(1 + ak))go(tn)]
h?r;(x)
B— h2r,(x)
h?7p_q(x)
[n%7,(x) + (3k? — h2(1 + ak)) gn (tn)]

wherey = %(1 + ak)h?.

Numerical examples
Example 1. We consider equation (1) with the following conditions:

fo(x) = sinh(x), fi(x) = —2sinh(x)
go(6) =0, g,(t) = e~?tsinh(1)
and
f(x,t) = (3 —4a+ p?)e %" sinh(x)

and the exact solution is given by

u(x,t) = e %t sinh(x).
We consider the telegraph equation with @ = 4 and f = 2 in the interval 0 < x < 1.
[nitial boundary condition
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u(x,0) = sinh(x), u;(x,0) = —2sinh(x)

and the boundary conditions
u(0,t) =0, u(l,t) =e ?sinh(1).

The step sizes of k = 0.001 and h = 0.002 for various time t = 0.1,0.2, ..., 0.5.

The following is Telegraph solution for example 1, as shown in Figure 1.

furraEnact
b

(1] (1] o7 [T [T} 1
ITTTE

Figure 2. Telegraph solution for example 1

From Figure 1, the black line with circles are the graph of the exact solution.
Meanwhile, the blue, yellow and magenta lines are the numerical solution for t =
0.2,0.3,0.4 and 0.5, respectively. The following is Error values of example 1, as

shown in Table 2.
Table 2. Error values of example 1

Time RMSE

Lz-norm error

L _-norm error

t=01 0.07619 0.07694 0.0134
t=02 0.09582 0.09677 0.16634
t=03 0.09312 0.09405 0.15965
t=04 0.08262 0.08344 0.13832
t=05 0.07026 0.07096 0.11395

Example 2. We consider equation (1) with the following conditions:

fo(x) = sin(x),

go(t) =0,

filx) =0

91(t) = cos(t) sinh(1)

and

f(x,t) = —2asin(t) sin(x) + B2 cos(t) sin(x)

and the exact solution is given by
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u(x, t) = cos(t) sin(x).

We consider the telegraph equation with @ = 4 and f = 2 in the interval 0 < x < 1.
Initial boundary condition

u(x,0) =sin(x), u(x,0)=0
and the boundary conditions
u(0,t) =0, u(1,t) = cos(t) sin(x).

The step sizes of k = 0.001 and h = 0.02 for various time t = 0.1,0.2, ..., 0.5.
The following is Telegraph solution for example 2, as shown in Figure 2.

NerVE wact
%

i a2 (3 Y 08 a6 07 o8 Y} 1
0sxs?

Figure 4. Telegraph solution for example 2

From Figure 1, the black line with circles are the graph of the exact solution.
Meanwhile, the blue, yellow and magenta lines are the numerical solution fort =
0.2,0.3,0.4 and 0.5, respectively. The following is Error values of example 2, as shown in
Table 3.

Table 3. Error values of example 2

Time RMSE Lz-norm error L _-norm error
t=01 0.000074 0.000074 0.0134
t=02 0.000119 0.000121 0.16634
t=03 0.000166 0.000167 0.15965
t=04 0.000213 0.000215 0.13832
t=0.5 0.000256 0.000260 0.11395

From Tables 2 and 3, we can see that the error values of the example 1 and the
example 2 are significant for « = 4 and § = 2. Figure 1 and figure 2 are described the
comparing result between the exact solution and the numerical solution of the telegraph
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equation as a simulation. Moreover, the same example in (Lakestani & Saray, 2010) with
interpolating scaling method of the numerical approach can solve the problem as
effectively as cubic B-spline collocation methods for 0 < x < 1, and for variant of t =
0.2,0.3,0.4 and 0.5.

D. CONCLUSION AND SUGGESTIONS

In this article, we studied the cubic B-spline collocation methods which applied to
telegraph equations then we compare the result of Lakestani & Saray (2010). As mention
above that in this paper, we use cubic B-spline collocation method while Lakestani and Saray
used the interpolating scaling functions. The simulation and illustration for the algorithm are
used matlab 7.0.4 series. According to the error values of the solution which are measured by
RMSE, L __-norm error and L,-norm error, its showed that both of the methods are effectively

as well.
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