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Abstract. We establish in this paper the Hardy–Littlewood–Sobolev in-
equalities for the Riesz potentials on Morrey spaces over commutative
hypergroups. As a consequence, we are also able to get Olsen-type in-
equality on the same spaces. Here, the condition of upper Ahlfors n-
regular by identity is assumed to obtain the inequalities.
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1. Introduction

Poisson equations play an important role in the field of differential equations
and their applications in physics. Closely related to a Poisson equation, we
have the fractional integral operator or Riesz potential Iα (0 < α < d), which
is defined by:

Iαf(x) :=
∫
Rd

f(y)
|x − y|d−α

dy, x ∈ R
d,

for suitable functions f on R
d. In Lebesgue spaces over Euclidean spaces, the

Riesz potential Iα satisfies the strong inequality:

‖Iαf‖Lq ≤ Cp‖f‖Lp ,

whenever f ∈ Lp(Rd) with 1 < p < d
α and 1

q = 1
p − α

d ; and also the weak
inequality:

∣∣{x ∈ R
d : |Iαf(x)| > γ

} | ≤ C

(‖f‖L1

γ

)
,

whenever f ∈ L1(Rd) with 1
q = 1 − α

n . These inequalities were proved by
Hardy and Littlewood [11] and extended later by Sobolev [26].
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Some extensions of Hardy–Littlewood–Sobolev inequalities have been
established in Morrey spaces (over Euclidean spaces); see, for examples, [1,3].
For 1 ≤ p < ∞ and 0 ≤ λ ≤ n, the Morrey space Lp,λ = Lp,λ(Rd) consists of
all functions f on R

d for which:

‖f‖Lp,λ := sup
B(x,r)

(
1
rλ

∫
B(x,r)

|f(x)|pdx

)1/p

< ∞.

These spaces may be identical to Lebesgue spaces for special cases, namely
Lp,0 = Lp and Lp,d = L∞. Morrey spaces were first introduced by Morrey [14]
to study the behavior of solutions to a partial differential equation.

As the Riesz potential Iα is a fractional power of the Laplacian operator,
Olsen [18] applied an extension of Hardy–Littlewood–Sobolev inequality in
Morrey spaces to study the perturbed Schrödinger operator:

−Δ + V (x) + W (x),

where Δ is the Laplacian operator, V (x) is the potential function, and W is
a small perturbed potential. Olsen obtained an estimate:

‖WIαf‖Lp,λ ≤ C‖W‖L(d−λ)/α,λ‖f‖Lp,λ , (1)

for W ∈ L(d−λ)/α,λ with 0 ≤ λ < d − αp and 1 < p < d
α . We will refer to the

inequality (1) as the Olsen inequality. Further works on Olsen inequality can
be found for examples in [6,9,13,22,24].

Nowadays, various extensions of Hardy–Littlewood–Sobolev inequality
can be found in many spaces with different settings—see [4,5,7,8,15–17,19–
21,23,25], among others. Particularly, Hajibayov [10] defined the Riesz po-
tential in hypergroups:

Rf(x) =
(
ρ(e, r)α−n ∗ f

)
(x)

=
∫

K

T xρ(e, r)α−nf(y∼) dμ(y)

=
∫

K

ρ(e, r)α−nT xf(y∼) dμ(y),

and proved the extension of Hardy–Littlewood–Sobolev inequalities (strong
and weak inequalities) in Lebesgue spaces over commutative hypergroups. A
hypergroup (K, ∗) is a locally compact Hausdorff space K equipped with a
bilinear, associative, and weakly continuous convolution ∗ on M b(K) (i.e.,
the set of bounded Radon measure on K) satisfying the following properties:

1. For all x, y ∈ K, the convolution δx ∗ δy of the point measures is a
probability measure with compact support.

2. The mapping (x, y) �→ supp(δx∗δy) of K×K into the space of nonempty
compact support subsets of K is continuous with respect to the Michael
topology.

3. There is an identity e ∈ K, such that δe ∗δx = δx ∗δe = δx for all x ∈ K.
4. There is a continuous involution ∗ (i.e., a homeomorphism x �→ x∼ of

K onto itself with the property (x∼)∼ = x for all x ∈ K), such that
δx∼ ∗ δy∼ = (δx ∗ δy)∼.
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5. For x, y ∈ K, we have e ∈ supp(δx ∗ δy) if only if x = y∼.

(One may see [2,12] for more explanation on hypergroups.) A locally compact
Hausdorff group with the group convolution is an example of hypergroup. If

δx ∗ δy = δy ∗ δx

for every x, y ∈ K, then the hypergroup (K, ∗) (which is often written just
as K) is a commutative hypergroup.

The proof of the extension of Hardy–Littlewood–Sobolev inequalities
(strong and weak inequalities) in Lebesgue spaces over commutative hyper-
groups involves the condition of upper Ahlfors n-reguler by identity, namely:

μ(B(e, r)) ≤ Crn (2)

for some positive constant which is independent of r > 0. Here, e denotes
the identity of the hypergroup. The results in this type of Lebesgue spaces
assume that the maximal operator satisfies strong and weak inequalities in
the Lebesgue spaces under consideration. Here, the maximal operator M is
defined by:

Mf(x) = sup
r>0

1
μ(B(e, r))

∫
B(e,r)

T x|f(y∼)| dμ(y).

As the Hardy–Littlewood–Sobolev inequality in Lebesgue spaces over Eu-
clidean spaces can be extended into Morrey spaces over Euclidean spaces, our
aim in this paper is then to extend the results of Hajibayov [10] to Morrey
spaces over commutative hypergroups. The proof will not invoke any results
on maximal operator in Morrey spaces. Furthermore, we will also prove an
Olsen inequality in Morrey spaces over commutative hypergroups.

2. Main Results

For 1 ≤ p < ∞, the Morrey space over commutative hypergroups Lp,λ(K) =
Lp,λ(K, ∗, μ) consists of all measurable functions f on K with norm:

‖f‖Lp,λ(K) := sup
B=B(e,r)

(
1

μ(B(e, 2r))λ/n

∫
B(e,r)

|f(y)|p dμ(y)

)1/p

< ∞.

An extension of Hardy–Littlewood–Sobolev inequality in these spaces is pro-
vided in the following theorem.

Theorem 2.1. Assume that 0 < λ < n, 0 < θ < n, 1 < p < n
α , and the

measure μ is upper Ahlfors n-reguler by identity. Assume also that the max-
imal operator is an operator of strong type-(p, p) on Lebesgue spaces Lp(K).
If θ

q = λ
p and α = n

p − n
q , then there is a positive constant C, such that the

operator Rα satisfies the inequality:

‖Rαf‖Lq,θ(K) ≤ C‖f‖Lp,λ(K)

for any function f ∈ Lp,λ(K).
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Proof. Given f ∈ Lp,λ(K), we split it into f = fI + fO := fχB(e,2r) +
fχK\B(e,2r). For the function fI , we have the following estimate:

‖fI‖Lp(K) =
(∫

K

|fI(x)|p dμ(x)
)1/p

=

(∫
B(e,2r)

|f(x)|p dμ(x)

)1/p

=
(μ(B(e, 2r)))λ/n

(μ(B(e, r)))λ/n

(∫
B(e,2r)

|f(x)|p dμ(x)

)1/p

≤ (μ(B(e, 2r)))λ/n‖f‖Lp,λ(K).

Since the maximal operator is an operator of strong type-(p, p) on Lp(K),
Hajibayov [10] established that Rα is bounded from Lp(K) to Lq(K). By this
boundedness of Rα and the assumption θ

q = λ
p , we get:

(
1

(μ(B(e, 2r)))θ/n

∫
B(e,r)

|RαfI(x)|q dμ(x)

)1/q

≤ 1
(μ(B(e, 2r)))θ/nq

‖Rαf1‖Lq(K)

≤ 1
(μ(B(e, 2r)))θ/nq

‖fI‖Lp(K)

≤ C(μ(B(e, 2r)))λ/np

(μ(B(e, 2r)))θ/nq
‖f‖Lp,λ(K)

= C‖f‖Lp,λ(K).

As a consequence:

‖RαfI‖Lq,θ(K) ≤ C‖f‖Lp,λ(K).

Now, to find the estimate for ‖RαfO‖Lq,λ(K), we first need to find an
estimate for RαfO, that is:

|RαfO(x)|

≤
∫

K

|T xf2(y∼)
ρ(e, y)n−α

dμ(y)

≤
∫

K\B(e,2r)

|T xf2(y∼)
ρ(e, y)n−α

dμ(y)

≤
j=∞∑
j=1

∫
B(e,2j+1r)\B(e,2jr)

|T xf(y∼|)
ρ(e, y)n−α

dμ(y)

≤
j=∞∑
j=1

1
(2jr)n−α

∫
B(e,2j+1r)

|T xf(y∼)| dμ(y)
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≤ C

j=∞∑
j=1

(∫
B(e,2j+1r) |T xf(y∼)|p dμ(y)

(μ(B(e,2j+2r)))
λ
n

) 1
p

( ∫
B(e,2j+1r) dμ(y)

(μ(B(e,2j+2r)))
λ
n

)1− 1
p

(2jr)n−α

≤ C

j=∞∑
j=1

1
(2jr)n−α

‖f‖Lp,λ(K)(μ(B(e, 2j+2r)))(1−λ/n)(1−1/p).

As μ satisfies upper Ahlfors n-regular by an identity, we get:

|RαfO(x)| ≤ C

j=∞∑
j=1

1
(2jr)n−α

‖f‖Lp,λ(K)(2
j+2r)n(1−λ/n)(1−1/p)

= C

j=∞∑
j=1

1
(2jr)n−α

‖f‖Lp,λ(K)(2
j+2r)(n−λ)(1−1/p)

= C‖f‖Lp,λ(K)

j=∞∑
j=1

(2j+2r)α−λ−n/p+λ/p.

Since α = n
p − n

q , we have:

α − λ − n

p
+

λ

p
=

n

p
− n

q
− λ − n

p
+

λ

q
=

λq − np

pq
− λ <

λq − np

pq
.

Note also that the assumption θ
q = λ

p and 0 < θ < n enable us to get:

λq − np = θp − np = (θ − n)p < 0.

Therefore:

|RαfO(x)| ≤ C‖f‖Lp,λ(K)r
λq−np

pq

j=∞∑
j=1

2
j(λq−np)

pq

≤ Cr
λq−np

pq ‖f‖Lp,λ(K).

We then use this last inequality and apply once more the condition of upper
Ahlfors n-regular by an identity to obtain:

(
1

(μ(B(e, 2r)))
θ
n

∫
B(e,r)

|RαfO|q dμ(x)

) 1
q

≤
(

1

(μ(B(e, 2r)))
θ
n

∫
B(e,r)

(
Cr

λq−np
pq ‖f‖Lp,λ(K)

)q

dμ(x)

) 1
q

=
Cr

λq−np
pq

(μ(B(e, 2r)))
θ

nq

‖f‖Lp,λ(K)(μ(B(e, 2r)))
1
q

≤ Cr
λq−np

pq +n
q − θ

q ‖f‖Lp,λ(K)

= Cr
λ
p − θ

q ‖f‖Lp,λ(K)

= C‖f‖Lp,λ(K).
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This inequality gives us:

‖RαfO‖Lq,θ(K) ≤ C‖f‖Lp,λ(K),

and hence, the desired result follows. �

When, in Theorem 2.1, we have θ = λ, then:

‖Rαf‖Lq,λ(K) ≤ C‖f‖Lp,λ(K). (3)

This inequality leads us to the following theorem.

Theorem 2.2. If 0 < λ < n, 1 < p < n/α, and α = n
p −n

q , then the inequality:

μ ({x ∈ B(e, r) : |Rαf(x)| > γ}) ≤ C

(
rλ/q‖f‖Lp,λ(K)

γ

)q

holds.

Proof. Let Eγ = ({x ∈ B(e, r) : |Rαf(x)| > γ}). Note that |Rαf(x)| > γ

gives us |Rαf(x)|q > γq for q > 0. Hence,
(

|Rαf(x)|
γ

)q

> 1. Using the in-
equality (3), we get:

μ(Eγ) =
∫

Eγ

dμ(x) ≤
∫

Eγ

( |Rαf(x)|
γ

)q

dμ(x)

≤ rλq

γq

⎡
⎢⎢⎣ 1

rλ

⎛
⎜⎝

∫

Eγ

|Rαf(x)|qdμ(x)

⎞
⎟⎠

1
q

⎤
⎥⎥⎦

q

≤ Crλq

γq
||Rαf ||q

Lq,λ(K)

≤ Crλq

γq
||f ||q

Lp,λ(K)

= C

(
rλ||f ||Lp,λ(K)

γ

)q

,

which completes our proof. �

Theorem 2.2 provides us with the weak-(p, q) inequality for 1 < p < n/α.
Furthermore, the weak-(1, q) will be presented in the following theorem.

Theorem 2.3. For 0 < α + λ < n, we have:

μ ({x ∈ B(e, r) : |Rαf(x)| > γ}) ≤ C

(
rλ‖f‖L1,λ(K)

γ

)q

,

provided that α = n − n
q .

Proof. When f ∈ L1,λ(K) is decomposed into

f = fI + fO = fχB(e,2r) + fχK\B(e,2r),
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we find that:

‖fI‖L1(K) ≤ (μ(B(e, 2r)))λ/n‖f‖L1,λ(K)

≤ Crλ‖f‖L1,λ(K).

Hence, by the weak-(1, q) estimate on Lebesgue spaces:

μ ({x ∈ B(e, r) : |Rαf1(x)| > γ}) ≤ C

(
rλ‖f‖L1(K)

γ

)q

≤ C

(
rλ‖f‖L1,λ(K)

γ

)q

.

Now, for fO, we use the upper Ahlfors n-regular by an identity to obtain:

|RαfO(x)| ≤
∫

K

T xfO(y∼)
ρ(e, y)n−α

dμ(y)

≤
∫

K\B(e,2r)

T xf(y∼)
ρ(e, y)n−α

dμ(y)

≤ C

∞∑
j=1

∫
2jr≤ρ(e,y)<2j+1r

Txf(y∼)
ρ(e, y)n−α

dμ(y)

≤ C

∞∑
j=1

1
(2jr)n−α

∫
B(e,2j+1r)

|T xf(y∼)| dμ(y)

≤ C
∞∑

j=1

(2jr)α−n
(
μ(B(e, 2j+2r))

)λ/n ‖T xf‖L1,λ(K)

≤ C‖f‖L1,λ(K)

∞∑
j=1

(2jr)α+λ−n

≤ Crα+λ−n‖f‖L1,λ(K).

If we choose γ0 = rα+λ−n‖f‖L1,λ(K), then we find that:
(

rλ‖f‖L1,λ(K)

γ0

)q

=

(
rλ‖f‖L1,λ(K)

rα+λ−n‖f‖L1,λ(K)

)q

=
(
Crn−α

)q

=
(
Crn−n− n

q

)q

= Crn.

Therefore, for γ0 ≤ γ, we have |RαfO| < γ0 ≤ γ. Consequently:

μ ({x ∈ B(e, r) : |RαfO(x)| > γ}) = μ(∅) = 0.

Meanwhile, for γ > γ0, we have:

μ ({x ∈ B(e, r) : |Rαf2(x)| > γ}) ≤ μ(B(e, r))

≤ Crn
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=

(
rλ‖f‖L1,λ(K)

γ0

)q

≤ C

(
rλ‖f‖L1,λ(K)

γ

)q

.

Hence, we are done. �

Having the extension of Hardy–Littlewood–Sobolev inequality in
Lebesgue spaces over commutative hypergroups, we could get an Olsen type
inequality in these spaces. This inequality is similar to the result in [24] for
non-homogeneous type spaces.

Theorem 2.4. If 1 < p < n
α and α

n = 1
p − 1

q , then the inequality

||WRαf ||Lp(K) ≤ C||W ||Ln/α,λ(K)||f ||Lp(K)

holds whenever W ∈ Ln/λ(K).

Proof. We apply Hölder inequality to get:
(∫

K

|WRαf(x)p dμ(x)|
) 1

p

≤
(∫

K

|W (x)| pq
q−p dμ(x)

) q−p
pq

(∫
K

|Rαf(x)|q dμ(x)
) 1

q

=
(∫

K

|W (x)| n
α dμ(x)

)α
n

(∫
K

|Rαf(x)|q dμ(x)
) 1

q

.

Since Rα is bounded from Lp(K) to Lq(K), we obtain:

||WRαf ||Lp(K) ≤ C||W ||Ln/α,λ(K)||f ||Lp(K),

which we wish to prove. �

Now, we are extending the result of Olsen [18] to Morrey spaces over
hypergroups.

Theorem 2.5. If 0 < λ < n, 1 < p < n
α , and W ∈ Ln/α,λ(K), then the

inequality

||WRαf ||Lp,λ(K) ≤ C||W ||Ln/α,λ(K)||f ||Lp,λ(K)

holds.

Proof. First, it follows from Hölder inequality that:(∫
B(e,2r)

|WRαf(x)|pdμ(x)

)

≤
(∫

B(e,2r)

|W (x)| pq
q−p dμ(x)

) q−p
q

(∫
B(e,2r)

|Rαf(x)|qdμ(x)

) p
q

.
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As a consequence, we have:
(

1
μ(B(e, 2r)λ/n

∫
B(e,2r)

|WRαf(x)|pdμ(x)

)1/p

≤
(

1
μ(B(e, 2r)λ/n

∫
B(e,2r)

W (x)
pq

q−p dμ(x)

) q−p
pq

×
(

1
μ(B(e, 2r)λ/n

∫
B(e,2r)

|Rαf(x)|qdμ(x)

)1/q

≤
(

1
μ(B(e, 2r)λ/n

∫
B(e,2r)

|W (x)| n
α dμ(x)

)α
n

×
(

1
μ(B(e, 2r)λ/n

∫
B(e,2r)

|Rαf(x)|qdμ(x)

)1/q

.

Now, by applying the inequality (3), we obtain:

||WRαf ||Lp,λ(K) ≤ ||W ||Ln/α,λ(K)||Rαf ||Lq,λ(K)

≤ C||W ||Ln/α,λ(K)||f ||Lp,λ(K),

which is the desired inequality. �

3. Concluding Remarks

In [25], the Adams-type inequalities have been established on Morrey spaces
over metric measure spaces of non-homogeneous type. Typically, the proof
of Adams-type inequalities needs some results on the maximal operator in
the same spaces. Besides, the results in [25] do not employ any growth con-
dition on measure, which is almost similar to the upper Ahlfors n-regular
by an identity condition for measure (Eq. (2)). In this paper, by employing
this upper Ahlfors measure, we provide Spanne-type inequalities on Morrey
spaces over commutative hypergroups. To prove these inequalities, we do not
use any result associated with the maximal operator on Morrey spaces; we
only take into account the results of Riesz potential in Lebesgue spaces over
commutative hypergroups.
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[5] Garćıa-Cuerva, J., Martell, J.M.: Two weight norm inequalities for maximal
operators and fractional integrals on non-homogeneous spaces. Indiana Univ.
Math. J. 50, 1241–1280 (2001)

[6] Gunawan, H., Eridani: Fractional integrals and generalized Olsen inequalities.
Kyungpook Math. J. 49(1), 31–39 (2009)

[7] Gunawan, H.: A note on the generalized fractional integral operators. J. In-
dones. Math. Soc. (MIHMI) 9(1), 39–43 (2003)

[8] Guliyev, V., Sawano, Y.: Linear and sublinear operators on generalized Morrey
spaces with non-doubling measures. Publ. Math. Debr. 83(3), 303–327 (2013)

[9] Guo, Y.: Generalized Olsen inequality and Schrödinger type elliptic equations.
Georgian Math. J. (2019). https://doi.org/10.1515/gmj-2019-2059

[10] Hajibayov, M.G.: Boundedness in Lebesgue spaces of Riesz potentials on com-
mutative hypergroups. Glob. J. Math. Anal. 3(1), 18–25 (2015)

[11] Hardy, G.H., Littlewood, J.E.: Some properties of fractional integrals. Math.
Z. 27, 565–606 (1927)

[12] Jewett, R.I.: Spaces with an abstract convolution of measure. Adv. Math. 18,
1–101 (1975)

[13] Kurata, K., Nishigaki, S., Sugano, S.: Boundedness of integral operators on
generalized Morrey spaces and its application to Schrödinger operators. Proc.
Am. Math. Soc. 128, 1125–1134 (2002)

[14] Morrey, C.B.: Functions of several variables and absolute continuity. Duke
Math. J. 6, 187–215 (1940)

[15] Nakai, E.: Hardy–Littlewood maximal operator, singular integral operators,
and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166, 95–
103 (1994)

[16] Nakai, E.: Generalized fractional integrals on generalized Morrey spaces. Math.
Nachr. 287(2–3), 339–351 (2014)

[17] Nakai, E., Sadasue, G.: Martingale Morrey–Campanato spaces and fractional
integrals. J. Funct. Spaces Appl. 2012, 29 (2012). (Article ID 673929)

[18] Olsen, P.A.: Fractional integration, Morrey spaces and a Schrödinger equation.
Commun. Partial Differ. Equ. 20, 2005–2055 (1995)

[19] Ruzhansky, M., Suragan, D., Yessirkegenov, N.: Hardy–Littlewood, Bessel–
Riesz, and fractional integral operators in anisotropic Morrey and Companato
spaces. Fract. Calc. Appl. Anal. 21(3), 577–612 (2018)

[20] Sawano, Y., Tanaka, H.: Morrey spaces for non-doubling measures. Acta Math.
Sin. (Engl. Ser.) 21(6), 1535–1544 (2005)

https://doi.org/10.1515/gmj-2019-2059


MJOM Extension of Hardy–Littlewood–Sobolev Page 11 of 11   203 

[21] Sawano, Y., Shimomura, T.: Sobolev’s inequality for Riesz potentials of func-
tions in generalized Morrey spaces with variable exponent attaining the value
1 over non-doubling measure spaces. J. Inequal. Appl. 2013, 1–19 (2013)

[22] Sawano, Y., Sugano, S., Tanaka, H.: Generalized fractional integral operators
and fractional maximal operators in the framework of Morrey spaces. Trans.
Am. Math. Soc. 263(12), 6481–6503 (2011)

[23] Sihwaningrum, I., Gunawan, H., Nakai, E.: Maximal and fractional integral
operators on generalized Morrey spaces over metric measure spaces. Math.
Nachr. 291, 1400–1417 (2018)

[24] Sihwaningrum, I., Suryawan, H.P., Gunawan, H.: Fractional integral operators
and Olsen inequalities on non-homogeneous spaces. Aust. J. Math. Anal. Appl.
7(1), 14 (2010)

[25] Sihwaningrum, I., Sawano, Y.: Weak and strong type estimates for fractional
integral operator on Morrey spaces over metric measure spaces. Eurasian Math.
J. 4, 76–81 (2013)

[26] Sobolev, S.L.: On a theorem in functional analysis (Russian). Mat. Sob. 46,
471–497 (1938). (English translation in Amer. Math. Soc. Transl. ser. 2, 34,
39–68 (1963))

Idha Sihwaningrum and Sri Maryani
Jenderal Soedirman University
Purwokerto
Indonesia
e-mail: idha.sihwaningrum@unsoed.ac.id

Sri Maryani
e-mail: sri.maryani@unsoed.ac.id

Hendra Gunawan
Bandung Institute of Technology
Bandung
Indonesia
e-mail: hgunawan@math.itb.ac.id

Received: December 9, 2019.

Revised: April 6, 2020.

Accepted: October 14, 2020.


	Extension of Hardy–Littlewood–Sobolev Inequalities for Riesz Potentials on Hypergroups
	Abstract
	1. Introduction
	2. Main Results
	3. Concluding Remarks
	Acknowledgements
	References


