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A B S T R A C T

Three new cyclic heptapeptides (1–3) together with three known compounds (4–6) were isolated from a solid
rice culture of the soil-derived fungus Clonostachys rosea. Fermentation of the fungus on white beans instead of
rice afforded a new γ-lactam (7) and a known γ-lactone (8) that were not detected in the former extracts. The
structures of the new compounds were elucidated on the basis of 1D and 2D NMR spectra as well as by HRESIMS
data. Compounds 1 and 4 exhibited significant cytotoxicity against the L5178Y mouse lymphoma cell line with
IC50 values of 4.1 and 0.1 µM, respectively. Compound 4 also displayed cytotoxicity against the A2780 human
ovarian cancer cell line with an IC50 value of 3.5 µM. The preliminary structure-activity relationships are dis-
cussed.

1. Introduction

Soil-derived fungi are attracting continuous attention as sources of
bioactive secondary metabolites.1–5 Clonostachys rosea (syn. Gliocladium
roseum) is an example of a soil-derived fungus that is of importance in
agriculture as a biological control agent against a number of plant pa-
thogenic fungi6 as exemplified by Botrytis cinerea sporulation on rose
debris7 and strawberries.8 C. rosea was also reported as an en-
tomopathogenic fungus of two leafhoppers pest, Oncometopia tucumana
and Sonesimia grossa in Argentina.9 Furthermore, C. rosea showed sig-
nificant inhibition against nematodes such as sheep nematodes.10 Pre-

vious investigation of bioactive secondary metabolites of this fungus
yielded verticillin-type epipolysulfanyldioxopiperazines,11 an epi-
dithiodioxopiperazine,12 and bisorbicillinoids.13 This provoked us to
study the secondary metabolites of C. rosea which was isolated from a
soil sample collected in Indonesia. In this study, three new cyclic hep-
tapeptides (1–3) and three known compounds (4–6) were isolated from
the fungal culture grown on rice medium while a new γ-lactam (7) and
a known γ-lactone (8) were obtained when the fungus was grown on
white beans instead (Fig. 1). The structure elucidation of the new
compounds (1–3, and 7) and cytotoxicity against a murine and a human
cancer cell line are reported.
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2. Results and discussion

Compound 1 was isolated as an amorphous solid. Its molecular
formula was deduced as C38H58N8O7 from the HRESIMS data. The
peptide nature of 1 was established from the amide protons at the re-
gion δH 7.5–8.5 in addition to the characteristic α-protons between δH

3.5–4.5 (Table 1). Based on COSY, TOCSY, HSQC and HMBC spectra,
seven amino acid residues were elucidated including a glycine (Gly), a
leucine (Leu), an isoleucine (Ile), two valine (Val) units, a tryptophan
(Trp) and a β-alanine (β-Ala) moiety.14,15 Key HMBC correlations from
the amide protons to the carbonyl carbons of the adjacent amino acid
(from Ile3-NH to Leu2-CO, from Leu2-NH to Gly1-CO, from Gly1-NH to
β-Ala7-CO, from β-Ala7-NH to Trp6-CO, and from Trp6-NH to Val5-CO)
led to the construction of the partial structure Ile3-Leu2-Gly1-β-Ala7-
Trp6-Val5 (Fig. 2). This was further confirmed by the ROESY correla-
tions between amide protons and α-protons of the adjacent amino acid
(Ile3-NH/Leu2-H-2, Leu2-NH/Gly1-Hab-2, Gly1-NH/β-Ala7-Hab-2, β-
Ala7-NH/Trp6-H-2, and Trp6-NH/Val5-H-2). The substructure Ile3-Val4-
Val5 was assembled by key ROESY correlations between Val4-NH/Ile3-
H-2 and between Val5-NH/Val4-H-2. Consequently, compound 1 was

proved to be a new cyclic heptapeptide whose structure was elucidated
as cyclo-(Gly-Leu-Ile-Val-Val-Trp-β-Ala) in accordance with the un-
saturation index (14 DBE) as implied by the molecular formula. After
acid hydrolysis of 1 and subsequent application of Marfey’s derivati-
zation method,16 the amino acid residues were identified as D-Leu, D-
allo-isoleucine, L-Val and D-Trp.

The HRESIMS data of compound 2 indicated the molecular formula
C37H56N8O7, which is 14 amu smaller than that of 1. Extensive analysis
of 1H NMR, COSY, HSQC and HMBC spectra of 2 revealed the re-
placement of the isoleucine (Ile) moiety by a valine (Val) unit in 2
compared to 1. This finding was further confirmed by Marfey’s reaction
results of 2, showing only D-Leu, L-Val and D-Trp. Key HMBC correla-
tions from Gly1-NH (δH 8.13) to β-Ala7-CO (δC 171.7), from Leu2-NH
(δH 8.17) to Gly1-CO (δC 168.9), from Val3-NH (δH 7.81) to Leu2-CO (δC

172.2), from Val4-NH (δH 7.93) to Val3-CO (δC 171.2), from Val5-NH
(δH 7.53) to Val4-CO (δC 171.0), from Trp6-NH (δH 8.21) to Val5-CO (δC

170.6), and from β-Ala7-NH (δH 8.24) to Trp6-CO (δC 171.9) as well as
ROESY correlations between Gly1-NH/β-Ala7-Hab-2, Leu2-NH/Gly1-Hab-
2, Val3-NH/Leu2-H-2, Val4-NH/Val3-H-2, Val5-NH/Val4-H-2, Trp6-NH/
Val5-H-2, and β-Ala7-NH/Trp6-H-2 determined the sequence of the

Fig. 1. Structures of compounds isolated from C. rosea.
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amino acids as cyclo-(Gly-Leu-Val-Val-Val-Trp-β-Ala) in 2.
The molecular formula of 3 was determined as C39H60N8O7 by

HRESIMS data, suggesting the presence of an additional methylene
group in 3 when compared to 1. This was explained by replacement of a
valine residue by an isoleucine residue in 3 based on 1D and 2D NMR
data of 3. The results of Marfey’ reaction of 3 indicated a peptide
consisting of D-Leu, L-Val, D-allo-isoleucine and D-Trp. The sequence of
the amino acids was confirmed as cyclo-(Gly-D-Leu-D-allo-Ile-D-allo-Ile-L-
Val-D-Trp-β-Ala) by the HMBC and ROESY data of 3 by applying the
same strategy as described for 1 and 2.

Compound 7 was obtained as a white powder. The HRESIMS data of
7 established the molecular formula C13H21NO4 with four degrees of

Table 1
1H and 13C NMR data of compound 1–3.a

Unit Position 1 2 3

δC, type δH (J in Hz) δC, type b δH (J in Hz) δC, type δH (J in Hz)

Gly1 NH 8.05, dd (5.8, 4.0) 8.13, dd (5.6, 4.9) 7.99, dd (5.9, 4.1)
1 169.0, C 168.9, C 168.9, C
2 42.7, CH2 3.83, dd (16.3, 5.8), 3.61, dd (16.3,

4.0)
42.6, CH2 3.81, dd (16.1, 5.6), 3.61, dd (16.1,

4.9)
42.6, CH2 3.85, dd (16.2, 5.9), 3.61, dd (16.2,

4.1)
Leu2 NH 8.18, d (6.7) 8.17, d (7.4) 8.15, d (7.1)

1 172.2, C 172.2, C 172.2, C
2 51.5, CH 4.30, m 51.1, CH 4.30, m 51.5, CH 4.31, m
3 39.5, CH2 1.49, m 39.2, CH2 1.50, m 39.6, CH2 1.48, m
4 24.1, CH 1.59, m 23.9, CH 1.60, m 24.1, CH 1.58, m
5 22.8, CH3 0.88, d (6.6) 22.7, CH3 0.87, d (6.6) 22.8, CH3 0.87, d (6.5)
6 21.7, CH3 0.83, d (6.6) 21.6, CH3 0.83, d (6.6) 21.8, CH3 0.83, d (6.5)

Val3 or Ile3 NH 7.83, d (8.8) 7.81, d (8.6) 7.83, d (8.7)
1 171.2, C 171.2, C 171.3, C
2 56.3, CH 4.33, m 58.0, CH 4.21, m 55.9, CH 4.35, m
3 36.8, CH 1.84, m 30.1, CH 2.02, m 37.0, CH 1,82, m
4 25.7, CH2 1.29, m, 1.10, m 18.4, CH3 0.84, d (6.8) 25.7, CH2 1.29, m, 1.10, m
5 11.5, CH3 0.84, t (7.4) 17.1, CH3 0.84, d (6.8) 11.6, CH3 0.84, t (7.3)
6 14.5, CH3 0.81, d (7.2) 14.4, CH3 0.80, d (6.9)

Val4 or Ile4 NH 7.84, d (8.8) 7.93, d (8.8) 7.93, d (7.9)
1 171.5, C 171.0, C 171.1, C
2 57.9, CH 4.19, m 57.8, CH 4.19, m 57.3, CH 4.19, m
3 30.5, CH 2.04, m 30.2, CH 2.08, m 36.4, CH 1.80, m
4 19.2, CH3 0.83, d (6.8) 18.9, CH3 0.85, d (6.8) 23.9, CH2 1.31, m, 1.08, m
5 17.7, CH3 0.76, d (6.8) 17.2, CH3 0.77, d (6.8) 10.8, CH3 0.76, t (7.4)
6 15.3, CH3 0.81, d (6.7)

Val5 NH 7.64, d (5.5) 7.53, d (5.3) 7.55, d (5.0)
1 170.7, C 170.6, C 170.6, C
2 58.9, CH 3.86, m 58.5, CH 3.89, m 58.5, CH 3.90, m
3 29.3, CH 1.73, m 29.1, CH 1.76, m 29.5, CH 1.76, m
4 18.9, CH3 0.51, d (6.8) 18.6, CH3 0.53, d (6.8) 19.0, CH3 0.53, d (6.7)
5 18.2, CH3 0.57, d (6.8) 17.5, CH3 0.57, d (6.8) 18.0, CH3 0.53, d (6.7)

Trp6 NH 8.27, d (8.5) 8.21, d (8.6) 8.23, d (8.8)
1 171.8, C 171.9, C 171.9, C
2 53.2, CH 4.53, m 53.1, CH 4.50, m 53.1, CH 4.55, m
3 27.5, CH2 3.24, dd (14.6, 3.3), 2.83, dd (14.6,

11.2)
27.3, CH2 3.23, dd (14.6, 3.4), 2.84, dd (14.6,

11.2)
27.7, CH2 3.21, dd (14.5, 3.5), 2.84, dd (14.5,

11.2)
1′-NH 10.73, d (1.6) 10.74, d (1.8) 10.73, d (1.8)
2′ 123.9, CH 7.11, d (1.6) 123.8, CH 7.12, d (1.8) 124.0, CH 7.12, d (1.8)
3′ 110.3, C 109.8, C 110.2, C
4′ 118.4, CH 7.61, d (7.9) 118.2, CH 7.63, d (7.9) 118.5, CH 7.63, d (7.9)
5′ 118.0, CH 6.95, t (7.9) 117.8, CH 6.95, t (7.9) 118.0, CH 6.95, t (7.9)
6′ 120.7, CH 7.02, t (7.9) 120.4, CH 7.02, t (7.9) 120.7, CH 7.02, t (7.9)
7′ 111.1, CH 7.28, d (7.9) 110.9, CH 7.28, d (7.9) 111.1, CH 7.28, d (7.9)
3′a 127.0, C 126.7, C 127.0, C
7′a 136.1, C 135.9, C 136.1, C

β-Ala7 NH 8.17, t (6.0) 8.24, t (5.9) 8.20, t (5.4)
1 171.7, C 171.7, C 171.6, C
2 35.5, CH2 2.51, m, 2.23, dt (14.9, 5.2) 35.4, CH2 2.50, m, 2.25, dt (14.6, 5.1) 35.6, CH2 2.50, m, 2.22, dt (14.9, 5.1)
3 35.3, CH2 3.33, m 35.2, CH2 3.33, m 35.3, CH2 3.33, m

a Recorded at 600 MHz for 1H and 150 MHz for 13C in DMSO‑d6.
b Data were extracted from HSQC and HMBC spectra.

Fig. 2. Key COSY, HMBC and ROESY correlations of 1.
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unsaturation. Interpretation of 1H, 13C NMR (Table 2) and HSQC
spectra revealed the presence of two methyl, four methylene, and four
methine groups (two olefinic methine and two oxygenated methine) in
addition to three quaternary carbons (two carbonyl carbons and one
oxygenated carbon). These data accounted for three degrees of un-
saturation, suggesting the presence of a single ring system in 7. The 1H
NMR spectrum showed three exchangeable protons including an amide
proton at δH 8.03 (1-NH) and two hydroxy protons at δH 6.26 (3-OH)
and 5.86 (4-OH). Analysis of 1H-1H COSY spectral data led to the
construction of two spin systems from C-4 to C-6 and from C-8 to C-14
(Fig. 3). On the basis of the HMBC correlations from 1-NH to C-2 (δC

171.9), C-3 (δC 86.8), C-4 (δC 83.5) and C-5 (δC 51.3) and from 3-OH to
C-2, C-3 and C-4, a γ-lactam moiety with a methyl and two hydroxy
groups at C-5, C-4 and C-3 was established. In addition, the HMBC
correlations from 3-OH, H-4 (δH 3.62), H2-8 and H2-9 to C-7 indicated
attachment of the side chain (C-4 to C-7) at the C-3 position. Thus, the
planar structure of 7 was elucidated as shown. The trivial name clo-
nostalactam is suggested for this compound. The coupling constant
(15.4 Hz) between H-10 and H-11 suggested the geometry of the double
bond at C-11/C-12 to be E. The relative configuration of the γ-lactam
moiety was evident from the ROESY spectrum of 7. The ROESY corre-
lations between 3-OH and H-4, and between H-4 and Me-6 (δH 1.11)
indicated that these groups are on the same side of the lactam ring
whereas the ROESY correlations between 4-OH and H-5 (δH 3.19)
suggested they are on the opposite side of the lactam ring.

By comparing NMR and MS data with those reported in the litera-
ture, the known compounds were identified as verticillin D (4),17

glioperazine (5),18 3,5-dihydroxyfuran-2(5H)-one (6),19 and sapino-
furanone B (8).20

The cytotoxicity of compounds 1–8 against the L5178Y mouse
lymphoma cell line and against the A2780 human ovarian cancer cell
line was investigated using the MTT assay. Cyclo-(Gly-D-Leu-D-allo-Ile-L-
Val-L-Val-D-Trp-β-Ala) (1) and verticillin D (4) showed significant cy-
totoxicity against the L5178Y mouse lymphoma cell line with IC50 va-
lues of 4.1 and 0.1 µM, respectively. Verticillin D (4) also exhibited
cytotoxicity against the A2780 human ovarian cancer cell line with an
IC50 value of 3.5 µM. The remaining compounds proved to be inactive

when tested at a dose of 10 µM. The presence of Ile3-Val4 units in 1 is
important for its cytotoxicity, when compared to 2 (no Ile unit) and 3
(two Ile units).

3. Experimental

3.1. General experimental procedures

Optical rotations were recorded utilizing a PerkinElmer-241 MC
polarimeter. 1D and 2D NMR spectra were measured on Bruker ARX
300 or AVANCE DMX 600 NMR spectrometers. A FTHRMS-Orbitrap
(Thermo Finnigan) mass spectrometer was used to record HRESIMS,
while low resolution mass spectra were obtained from a Finnigan LCQ
Deca XP Thermoquest spectrometer. Analytical HPLC analysis was
performed using a Dionex P580 system with a photodiode array de-
tector (UVD340S) and a Europhere 10 C18 column (125 × 4 mm,
L × ID, Knauer, Germany). HPLC separation of Marfey’s derivatives of
amino acids was done using a Knauer Azura system coupled with a
Knauer Smartline UV Detector 2600 and a EC 250/4.6 Nucleosil 120–5,
C4 column (Macherey & Nagel). Semi-preparative HPLC separation was
performed at a flow rate of 5 mL/min using a Lachrom-Merck Hitachi
system coupled with a Eurosphere 100 C18 column (300 × 8 mm), a
L7100 pump and a L7400 UV detector. Sephadex LH-20 and Merck MN
silica gel 60 M (0.04–0.063 mm) were used as stationary phases for
column chromatography. The resulting fractions from column chro-
matography were checked by TLC (thin layer chromatography) using
pre-coated silica gel 60 F254 plates (Merck). The spots were visualized
under 254 and 365 nm or by spaying with anisaldehyde reagent.

3.2. Fungal material

The fungal strain Clonostachys rosea was isolated from a soil sample
collected in Banyumas, Indonesia in June 2016 using agar plates with
isolation medium (7.5 g Bacto agar, 7.5 g malt extract, 0.125 g chlor-
amphenicol, 500 mL demineralized water, adjust pH to 7.4–7.8).
Purification of the initially obtained colony was done on the following
medium (6.5 g Bacto agar, 10 g malt extract, 0.05 g yeast extract, 20 mL
glycerin, 475 mL demineralized water, adjust pH to 7.4–7.8). DNA
amplification and sequencing of the ITS region were carried out ac-
cording to a previously described protocol to identify the fungal strain
(GenBank accession number MF946558).21 The strain was preserved at
−80 °C in the laboratory of one of the authors (P.P.).

3.3. Cultivation and extraction

The fungal strain was grown on solid rice medium under static
conditions at room temperature in ten 1 L Erlenmeyer flasks (each flask
containing 100 g rice and 100 mL water followed by autoclaving) for
21 days. Exhaustive overnight extraction of the fungal culture with
EtOAc (3 × 500 mL for each flask) followed by filtration and con-
centration of the obtained extract by evaporation of the solvent under
reduced pressure yielded the crude EtOAc extract (9.8 g). Cultivation of
the fungal strain on white beans was carried out in two 1 L Erlenmeyer
flasks (each flask containing 100 g white beans and 100 mL water fol-
lowed by autoclaving) at room temperature under static conditions for
21 days. Exhaustive overnight extraction with EtOAc (3 × 500 mL)
followed by filtration and solvent evaporation under vacuum afforded
the crude EtOAc extract (2.2 g).

3.4. Isolation of compounds

The crude EtOAc extract from rice cultures was subjected to liquid-
liquid fractionation by suspending it in 90% MeOH and partitioning it
against n-hexane to yield 7.3 g of n-hexane fraction, 1.4 g of MeOH
fraction and a residue which was insoluble in both phases. Part of this
residue was purified on a silica column using CH2Cl2-MeOH (95:5) as

Table 2
1H and 13C NMR data of compound 7.a

position δC, type δH (J in Hz)

1-NH 8.03, s
2 171.9, C
3 86.8, C
3-OH 6.26, s
4 83.5, CH 3.62, dd (7.0, 4.7)
4-OH 5.86, d (4.7)
5 51.3, CH 3.19, dq (7.0, 6.2)
6 18.3, CH3 1.11, d (6.2)
7 209.6, C
8 39.1, CH2 2.76, ddd (18.7, 8.8, 6.2)

2.59, ddd (18.7, 8.8, 6.1)
9 25.3, CH2 2.08, m
10 129.2, CH 5.39, dt (15.4, 5.2)
11 130.0, CH 5.37, dt (15.4, 5.2)
12 34.0, CH2 1.91, m
13 22.1, CH2 1.31, m
14 13.5, CH3 0.84, t (7.4)

a Recorded at 600 MHz for 1H and 150 MHz for 13C in DMSO‑d6.

Fig. 3. Key COSY and HMBC correlations of 7.
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solvent to afford 4 (6.4 mg). The MeOH fraction was fractionated by
vacuum liquid chromatography (VLC) on silica gel using CH2Cl2-MeOH
as solvent system with gradient elution to give nine fractions
(Fr.R1–Fr.R9). Fr.R5 (99 mg) was further chromatographed on a
Sephadex LH-20 column using MeOH as mobile phase followed by
purification using semi-preparative HPLC to yield 5 (0.9 mg). Fr.R6
(160 mg) was purified by semi-preparative HPLC with a gradient of
MeOH-H2O as solvent system to afford 1 (6.6 mg), 2 (1.2 mg) and 3
(2.1 mg). Fr.R9 was purified by washing with MeOH several times to
give 6 (0.7 mg) as a precipitate.

The crude EtOAc extract obtained from the beans culture was sub-
jected to vacuum liquid chromatography (VLC) on silica gel using
gradient elution of n-hexane-EtOAc followed by CH2Cl2-MeOH to afford
seven fractions (Fr.B1–Fr.B9). Fr.B4 (308.7 mg) was subjected to a
Sephadex LH-20 column using CH2Cl2-MeOH (1:1) as eluent and then
separated by semi-preparative HPLC with MeOH-H2O as mobile phase
to give 7 (2.7 mg) and 8 (2.5 mg).

Cyclo-(Gly-D-Leu-D-allo-Ile-L-Val-L-Val-D-Trp-β-Ala) (1): brown
amorphous solid; [α]23

D −16 (c 1.0, MeOH); UV (MeOH) λmax 281 and
220 nm; 1H and 13C NMR data, see Table 1; HRESIMS [M + H]+ m/z
739.4510 (calcd for C38H59N8O7, 739.4501).

Cyclo-(Gly-D-Leu-L-Val-L-Val-L-Val-D-Trp-β-Ala) (2): brown amor-
phous solid; [α]23

D −15 (c 0.1, MeOH); UV (MeOH) λmax 281 and
219 nm;1H and 13C NMR data, see Table 1; HRESIMS [M + Na]+ m/z
747.4165 (calcd for C37H56N8NaO7, 747.4164).

Cyclo-(Gly-D-Leu-D-allo-Ile-D-allo-Ile-L-Val-D-Trp-β-Ala) (3): brown
amorphous solid; [α]23

D −15 (c 0.5, MeOH); UV (MeOH) λmax 281 and
219 nm; 1H and 13C NMR data, see Table 1; HRESIMS [M + Na]+ m/z
775.4478 (calcd for C39H60N8NaO7, 775.4477).

Clonostalactam (7): white powder; [α]20
D −31 (c 0.1, MeOH); UV

(MeOH) λmax 232.0, 290.9(sh); 1H and 13C NMR data see Table 2;
HRESIMS [M + H]+ m/z 256.1548 (calcd for C13H22NO4, 256.1543)
and [M + Na]+ m/z 278.1367 (calcd for C13H21NNaO4, 278.1363).

3.5. Marfey’s analysis

Acid hydrolysis of each of the isolated peptides (0.5 mg) was per-
formed by adding 1 mL of 6 N HCl in addition to 0.4% β-mercap-
toethanol (for protection of tryptophan residue) followed by heating at
110 °C for 24 h.14,22 The resulting solutions were concentrated under
vacuum with consecutive addition of H2O (5 mL each) to ensure com-
plete elimination of HCl. Each acid hydrolysate (25 µL) was treated
with 50 μL of FDNPL (1% N-(5-fluoro-2,4-dinitrophenyl)-L-leucinamide
in acetone) and 10 μL of 1 M NaHCO3. The mixture was heated for 1 h at
40 °C on a hot plate with frequent mixing. The resulting solutions were
allowed to cool. 5 μL of 2 N HCl was added to each solution and then
concentrated to dryness. The derivatized amino acid product was then
dissolved in 1,000 μL MeOH and submitted for HPLC analysis. Deriva-
tization of the standard amino acids (L- and D-forms) was performed
following the same procedure. The retention times of the derivatized
peptide hydrolysates were compared with those of standard derivatized
amino acids using HPLC analysis.14,23 For C18 HPLC analysis, a gra-
dient of MeOH and 0.1% HCOOH in H2O [0 min (10% MeOH); 5 min
(10% MeOH); 35 min (100% MeOH); 45 min (100% MeOH); 50 min
(10%MeOH); 25 °C, 1 mL/min] was employed. To enhance the HPLC
resolution of some amino acids residues, a C4 HPLC RP-column
[(MeOH, 0.1% HCOOH in H2O): 0 min (15% MeOH); 2 min (15%
MeOH); 180 min (65%MeOH); 180.1 min (100% MeOH); 185 min
(100% MeOH), 185.1 min (15% MeOH), 190 min (15% MeOH), 30 °C,
1 mL/min] was also used instead of the commonly used C18 column, in
analogy to the C3 Marfey’s method.24

3.6. Cytotoxicity assay

MTT method was used to test cytotoxicity of all isolated compounds
against the L5178Y murine lymphoma cell line. Kahalalide F (IC50

4.3 μM) obtained from Elysia grandifolia was used as positive control.25

The compounds that displayed cytotoxic activity were then submitted
to test their activity against the A2780 human ovarian cancer cell line
according to the protocols described in the literature.26 Cisplatin was
used as positive control with an IC50 value of 2.0 μM.
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