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Report from The Organizing Committee

Itis indeed my great pleasure and honor to welcome you all to Soedirman’s International
Conference on Mathematics and Applied Sciences (SICOMAS) 2019. The conference
running this year is the first SICOMAS series hosted by Faculty of Mathematics and
Natural Sciences Jenderal Soedirman University. As the development of technology and
management of world resources for our future based on the innovation in Mathematics
and Sciences, this conference takes issue “Innovation in Mathematics and Applied
Sciences for better future”.

SICoMAS 2019 aims to provide a platform for researchers, lecturers, teachers, students,
practitioners, and industrial professionals to share knowledge, exchange ideas,
collaborate, and present research results in the fields of Mathematics, Chemistry, Physics,
and their applications. Hence, my sincere gratitude goes to our four keynote speakers
(Prof. Dr. Hadi Nur from University Teknologi Malaysia, Prof. Dr. Hirokazu Saito from
Tokyo University of Science, Dr. Devi Putra , ST, M.Sc. from Pertamina Research and
Tecnology, and Uyi Sulaeman, Ph.D. from Jenderal Soedirman University), and our six
invited speakers (Prof. Dr. Youtoh Imai from Nishogakusha University, Prof. Riyanto,
Ph.D. from Universitas Islam Indonesia, Dr. Moh. Adhib Ulil Absor from Gadjah Mada
University, Bambang Hendriya Guswanto, Ph.D, Dadan Hermawan, Ph.D. and Dr. Eng.
Mukhtar Effendi, M. Eng. from Jenderal Soedirman University) for sharing their expertise
in this conference. My deepest appreciation also goes to our 80 presenters and 7 non
presenters for their commitment to participate in this conference.

As the output of this conference, some selected papers in the field of chemistry will be
published in Jurnal Molekul which is accredited Sinta 1; and other selected papers in the
fields of Mathematics, Physics, Physical Chemistry, and Innovative Chemistry Education
will be published in IOP Conference Series Journal. So, I greatly thank Jenderal Soedirman
University, all our contributors, and all the members of the committee for the invaluable
support that makes this conference a reality.

Finally, I would like to apologize for any short comings found in this conference; and
hopefully this two-day conference will be engraved in your memory.

The chair of SICOMAS 2019
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Abstract. This research discusses the validity of the properties of real numbers set to hyperreal
numbers set, i.e. algebraic, ordered, and completeness properties, by using a finitely additive
measure. This finitely additive measure is a map from the power set of natural numbers set onto
set {0,1}. The subset of natural numbers set has measure zero if it’s finite and one if it’s infinite.
The set of hyperreal numbers is constructed from equivalence classes of the set of all sequences
of real numbers by using a relation involving the finitely additive measure, that is, two sequences
of real numbers are said to be related if and only if those two sequences are the same almost
everywhere. In the hyperreal numbers set, there exist infinitesimal numbers besides O.
Infinitesimal number is a number which is less than any positive real number and greater than
any negative real number. So, in hyperreal number set, there are some smallest positive numbers.
The results show that the hyperreal numbers set is an ordered and complete field.

1. Introduction

The set R of real numbers can be constructed by using the concept of equivalence classes of the set of
all rational Cauchy-sequence (see [3]). Abraham Robinson [2] had expanded the real numbers set. This
expansion is called hyperreal numbers set “R. This numbers set is constructed by using the concept of

equivalence classes of real numbers sequence. For example, both {1/ n} and {1/ nz} are the sequences

that converge to zero, but have different convergence rates. In "R, convergence rate is also considered.
Then, in "R, both sequences are in different classes.

Another interesting property of hyperreal numbers set ‘R is there exist more than one “small” or
infinitesimal number. Infinitesimal number is a number which is less than any positive real numbers and
greater than any negative real numbers. Differently from hyperreal numbers set ‘R, real numbers set R
has one infinitesimal number, that is zero. Moreover, in ‘R, there is a “quantification” concept for
“large” or infinite numbers. In “R, infinite property can be manifested as a number. Therefore, this paper
investigates whether or not algebraic, ordered, and completeness properties, which are valid in real
numbers set R (see [1]), are also valid in hyperreal numbers set “R.

2. Methods
The study of the validity of the properties of real numbers set R to hyperreal numbers set "R is
performanced by the following steps.
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1. Constructing hyperreal numbers set using the concept of equivalence classes and measure
m: P(N) - {0,1} with P(N) is the power set of natural numbers set N.

2. Studying the properties of real numbers set which are valid in hyperreal numbers set, such as
algebraic, ordered, and completeness properties by using the measure m.

3. Results and Discussion
Hyperreal numbers set "R is constructed by using the concept of equivalence classes in the set of real
numbers sequences (see [2]).

3.1 Construction of hyperreal numbers set "R
Hyperreal numbers set is constructed of using a measure m: P(N) — {0,1} with P(N) is the power set
of natural numbers set N which is defined by the following definition.

Definition 3.1
The measure m is finitely additive measure on P(N), if

i. foreach4 €N, m(A)e{0,1};
ii. measure m(N) = 1 and m(4) = 0 for all finite set A € N.

The measure m is finitely additive measure which means m(AuwB)=m(A)+m(B), for all disjoint sets

A and B. The measure m divides the subset of N into two parts, those are, a “large” or infinite set with a
measure one and a “small” or finite set with a measure zero.

Any subset A c N satisfies one of the conditions m(A)=1 or m(A°)=1. For any 4,B € N with
m(A)=1and m(B)=1, then

m((AnB)")=m(A°UB*)<m(A°)+m(B°)=0+0=0
which implies m(Am B)=1. Next discussion is the construction of "R by using the concept of

equivalence classes on the set of all real numbers sequences.

Definition 3.2

Let R is the set of all real numbers sequences and ~ is an equivalence relation on R which is defined

by the following. For all {a,}, {b,} e®R
{an} ~ {by}ifand only if m({n:a, =b,})=1. (1)

In other words, {a,} is the same as {b,} almost everywhere. This following is the definition of
hyperreal numbers set by using equivalence relation ~.

Definition 3.3
Let {an} € R. The equivalence classes a with respect to the relation ~ is defined by
a = (an> = {{xn} € R: {xn}"’{an}}- 2
Next, hyperreal numbers set ‘R is a set of all equivalence classes in set ® and is denoted by
R = {{(an):{a,} € R} ®)
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To study the properties of hyperreal numbers set which is analogous to real numbers set, the addition,
multiplication, and order operation on "R are defined.

Definition 3.4
For each <an>,<bn> e’R, the addition operation “+ ”, multiplication operation “-”, and order
operation “< " on "R are defined by
(a,)+(b,) =(a, +b,)
(a,)-(b)=(a,b,)

(a,)<(b,) ifand only if m({n:a, <b,})=1. (4)
Next, each a € R can be written as “a=(a, ) € "R which means m({n:a, =a})=1. The set "R is divided
into three parts, those are infinitesimal numbers, finite numbers, and infinite numbers.

Definition 3.5

a) Anelement “x e *R is said to be infinitesimal if —a< "x <a for each a € R*.
b) Anelement “x e "R is said to be finite if —a< "x<a for some a € R*.

c) Anelement “x e R is said to be infinite if "x <—a or "x>a for each a € R*.

Example 3.1
The numbers "0, 8, =(1/n), and "5, = (1/n*) in "R are infinitesimal. Since m({n:-a<0, <a})=1
then
m({n:—a<1l/n<a})=1
and
m({n:—a<1/n2 <a})=1

*

for each a € R, respectively. In addition, "5, =(1/n) and "5, =(1/n’) are clearly two different

numbers. The number (n) is infinite positive and number (—n”) is infinite negative.

Theorem 3.1
Every “x e "R which is finite can be written uniquely as “x =a+¢ with a € R and ¢ is infinitesimal.
Next, “x and "y are said to be infinitely close if “x— "y infinitesimal. This relationship between “x

and "y is denoted by "x=~ "y.

Definition 3.6
For each finite number “x e R, an unique real number a that satisfies “x~a is called the part of
standard “x and denoted by st(*x). Conversely, for each a € R, the set of all "x € "R with a =st(*x)

is called monad a and denoted by mon(a).
3.2 Internal set

A subset of "R can be constructed by using measure m [2]. It is used to discusses the completeness
properties of "R.

Definition 3.7
Let A, € Rwhere n=1, 2, 3,---. The sequence {A } defines (A )< 'R where
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(x,)e(A,) ifand only if m({n:x, e A })=1 (5)

and the subset of "R which is obtained in this way is called an internal set.
3.3 The properties of hyperreal numbers set

3.3.1 Algebraic properties. In hyperreal numbers set "R, there are two binary operations, those are
hyperreal addition and hyperreal multiplication operation. Hyperreal numbers set "R is a field with an
identity element

"0={{0,} e®:m({n:0, =0})=1]
under the addition operation and the identity element

1={{1,} eR:m({n:1, =1}) =1},
under the multiplication operation. Both identities under appropriate operations are unique. In addition,
the multiplication of each element in R and "0 is 0.

Theorem 3.2

a) If "z, "ac*Rand "z+ "a= "a,then "z= "0

b) If ‘u, ‘be"R, 'b= "0,and "u- ‘b= "b,then 'u= "1
c) If "ae"R, then "a- "0= "0

Prove 3.2.a)

Let "z, 'aeR where"z=(z,) and "a=(a,). Observe that "z+ "a= "a which means
(z,)+(a,)=(a,) and based on addition definition in "R, (z,+a,)=(a,) or in other words
m({n:z,+a,=a,})=1. For each nef{n:z +a =a}, if z,+a =a, then z,=0. Since
m({n:z, +a, =a,})=1then m({n:z, =0})=1. So, it can be proven that "z = "0. n

Furthermore, under multiplication operation, every element in "R \ { "0} has a unique inverse element
and the multiplication of two numbers in “R that produces "0 is fulfilled when one or both of these
numbers is 0.

Theorem 3.3
a) If "a= "0 and "a, be“Rsuchthat "a- "b= "1,then 'b=1/ "a.
b) If "a, ‘be*Rand "a- ‘b= "0 then "a= "0 or 'b= "0

Prove 3.3.b)
Let "a, 'be "R where "a=(a,) and "b=(b, ). Observe that

<an>'<bn>=<an 'bn>'

m({n:a,-b, =0})=

which means

Also, observe that
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If m({n:a,=0})=0 and m({n:b,=0})=0, then {n:a =0} and {n:b, =0} are finite sets.
Consequently, {n:a,-b, =0} is finite or m({n:an ‘b, :0})=0. In this case, there is a contradiction.

So, it must be m({n:a, =0})=1 or m({n:b, =0})=1. In other words, “a= "0 or ‘b= "0 o

3.3.2 Ordered Properties. Ordered properties in hyperreal numbers set is analogous to the ordered
properties in real numbers set.

Theorem 3.4

a) If "a, b, "ceRsuchthat "a> "b and "b> “c then "a> “c;

b) If “a, b, ‘ceRand "a> b then "a+ ¢ > b+ c;

c) If "a, b, "ce"R such that “a> "0 and "b< “c, then "a "b< "a “c, also if "a, "b, "c "R such
that “a< "0 and "b< “c then "a "b> "a “c;

d) If "a, 'be"Rand "0=(0,) e R such that "a "b> "0, then "a> "0 and "b> "0, 0or "a< "0 and
b< 70;

e) If "a, 'be'Rand "0=(0,)e R such that "a "b< "0, then "a> "0 and "b< "0, or "a< "0 and
b> 0.

Prove

a) We must prove that "a> "c with "a=(a,), "b=(b,), and "c=(c,). Observe that "a> "b and
‘b> "c which mean (a )>(b,) and (b )>(c,). This means that m({n:a, >b })=1 and
m({n:b,>c,})=1.  We must show that m({n:a, >c})=1. For  every
ne{n:a, >b}n{n:b, >c},if a >b, and b >c, then a, >c,. Next, since m({n:a, >b,})=1
and m({n:b, >c, })=1, then

m({n:a, >b,} ~{n:b >c,})=1.
Consequently, m({n:a, >¢,})=1. So, it can be proven that “a> "c.

b) We must prove that “a+ ¢ > "b+ "¢ with "a=(a,), ‘b=(b,), and "c=(c,). Observe that
‘a>"b or (a)>(b). This means m({n:a >b})=1. We must show that
m({n:a, +c, >b, +c,})=1. For every ne{n:a >b}, if a,>b, then a +c,>b, +c,. Next,
since m({n:a, >b,})=1. then

m({n:a, +c, >b, +c,})=1.
So, we can prove that "a+ ¢ > b+ “c.

c) We must prove that "a "b< "a "¢ with "a=(a,), 'b=(b,), and "c=(c,). Observe that "a> "0
and “b< ‘c which mean (a)>(0,) and (b )<(c,). This means m({n:a, >0})=1 and
m({n:b, <c,})=1.  We must show that m({n:ah,<ac})=1. For every
ne{n:a,>0}n{n:b <c,},if a,>0 and b, <c, then a b, <a,c,. Next, since

m({n:a, >0})=1
and
m({n:h, <c,})=1
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then m({n:a, >0}~ {n:b, <c,})=1. Therefore, m({n:ab, <ac,})=1. So, we proved that
"a 'b< "a “c. Using the same way, it can be proven that if "a, "b, "c R such that “a< "0 and
“b< “c,then "a "b>"a ‘c.

d) We must prove that if "a “b> "0 then "a> "0 and "b> "0, or "a< "0 and "b< "0 with
"a=(a,), b=(b,), and "0=(0,)<"R. In order to do that, We must show that (a,)>(0,) and
(b,)>(0,), or (a,)<(0,) and (b,)<(0,). In other words, we must show that m({n:a, >0})=1
and m({n:h, >0})=1,or m({n:a, <0})=1and m({n:b, <0})=1.Observe that “a "b> "0 which
means m({n:a,b, >0})=1 and

{n:ab, >0}={n:a,>0andb, >0} u{n:a, <0andb, <0}.
Since m({n:a b, >0})=1, then
m({n:a, >0andb, >0} u{n:a <0andb, <0})=1.

Suppose

m({n:a, >0andb, >0})=0
and

m({n:a, <Oand b, <0})=0.
Consequently,

m({n:a, >0andb, >0} U{n:a <0andb, <0})=m({n:a, >0andh, >0})+m({n:a, <O andh, <0})

=0+0
=0.
This contradicts to
m({n:ab, >0})=m({n:a, >0and b, >0} u{n:a <0andb, <0})=
So, must
m({n:a, >0andb, >0})=1
or
m({n:a, <Oand b, <0})=1

e) Using the same way as in proof of d), we can prove that if “a "b< "0, then "a> "0 and "b< "0,
or ‘a< "0and 'b> "0. n

In real numbers set, natural numbers are positive real numbers[1]. Also, natural numbers in hyperreal
numbers set are positive hyperreal numbers. Moreover, in real numbers set, there is no smallest positive

real numbers[1]. In hyperreal numbers set, there exist infinitesimal numbers, for example <1/ n), since
m({n:—a<1/n<a})=1 for each a € R*. Therefore, in hyperreal numbers set, there are smallest

positive hyperreal numbers.

3.3.3 Completeness Properties.  This following is a discussion of completeness properties of "R, that
is the completeness properties which is related to the supremum and infimum concepts in “R.

Definition 3.8

Let “A is a non-empty subset of "R.
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a) The set " A is called bounded above if there exists “u € "R such that “a< “u for each “ac "A. The
hyperreal number such “u is called as upper bound of “A.

b) The set " A is called bounded below if there exists “v € “R such that “v< "a for each “ac "A. The
hyperreal number such “v is called lower bound of “A.

c) The set "A is called bounded if “A is both bounded above and bounded below. Conversely, a set
"A is called unbounded, if “A is not bounded above or not bounded below.

Definition 3.9
Let “A is a non-empty subset of “R.

a) If “A bounded above, then a number “u is called a supremum (least upper bound) of ~ A if it satisfies
these conditions:

i. “u isanupper bound of “A;
ii. if "s isany upper bound of “A, then 'u< s.

b) If “A bounded below, then “v is called an infimum (greatest lower bound) of “A if it satisfies these
conditions:

i. v isalowerboundof "A;
ii. if "t is any lower bound of “A, then "t< "v.
Theorem 3.5
Let “u, ‘'ve'R, and “A is a non-empty subset of “R.
a) Anelement “u is asupremum ~A if and only if "z < “u implies “a’ > "z for some "a’ e "A.
b) Anelement “v is aninfimum “A if and only if "z > “v implies "a’< "z for some "a’ e "A.

Prove 3.5.a)

Since "A=(A) is anon-empty internal set of "R, then there exist “a< "A such that m({i:a e A})=1
.Let "u=sup "A is supremum " A, which means for every “ae "A, m({i:a <u, =supA})=1. Based
on supremum theorem in real numbers set, u; is a supremum A if and only if, for each ie{i:a <u,},

if 7, <u, then there exists a’ e A such that z, <a; [1]. Since m({i:a <u;})=1, then

m({i:zi <af})=1.

Consequently, if “z=(z) < “u then there exists "a* =(a’) such that "z < "a’. n

Theorem 3.6

Let “u, 've'R, "A is a non-empty internal set of "R.

a) An element “u is a supremum of “A, if and only if for every "> "0 there exists "a‘ € ~A such
that "a® > u- "¢.

b) An element “v is an infimum of “A, if and only if for each "¢ > "0 there exist "a® € "A such that
"at< v+ e

Prove 3.6.a)

Since "A=(A) is anon-empty internal set of "R, then there exist “ae "A such that m({i:a, e A})=1

. Let "u=sup "A is a supremum of "A, which means for each “ae "A, m({i:a <u, =supA})=1.
Based on supremum theorem of real numbers set, u; is a supremum A if and only if, for each

ie{iza <u}, every g >0, thereexist a’ € A suchthat a’ >u, —[1]. Since m({i:a <u;})=1, then
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m({i ‘al > U, —gi})zl. Consequently, for each "z =(z)> "0 there exists "a* =(a’) < A such that
at> u- e, =
Completeness Properties

a) Every non-empty internal set of "R that has an upper bound also has a least upper bound.
b) Every non-empty internal set of "R that has a lower bound also has a greatest lower bound.

Prove a)
Let “A=(A) is an internal set in "R which is bounded above “a=(a;). For each "xe "A, "x< a

which means if (x)e(A) then (x)<(a,). This means m({i:x e A})=1 and m({i:x <a})=1.

consequently, almost every A bounded above by a,. Next, we must prove that "b=(supA) isasup”A
by showing:

i. foreach (x)e(A), m({i:supA =x})=1.

ii. for each upper bound “a of "A, m({i:supA <a})=1.

Since sup A is a least upper bound of A, then for every “xe "A, m({i:supA >x})=1 and for every
upper bound “a of “A, m({i “sup A sai})zl. So, it can be proven that "b=(sup A ) is least upper
bound of “A. "

Hyperreal numbers set can be described as follows.

negative infinite finite positive infinite R
- + b ——— - >
numbers numbers numbers
standard part
| =
_____ .‘ i = PR —
a=st| x|

Figure 3.1 Hyperreal Numbers Set

Based on Figure 3.1, hyperreal numbers set is divided into three parts, those are negative infinite, finite,
and positive infinite numbers. Based on Theorem 3.1, standard part of hyperreal numbers which are
finite, are real numbers. In other words, the set of all standard part of hyperreal numbers which is finite
is real numbers set.

4. Conclusions
Based on result and discussion above, it can be concluded that hyperreal numbers set "R is the set of all
equivalence classes in set R and denoted by
R = {{an):{a,} € R}
Hyperreal numbers set is a field with the identity element under the addition operation, that is
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"0={{0,} e®:m({n:0, =0})=1]
and the identity element under the multiplication operation, that is

1={{1,} eR:m({n:1, =1}) =1},
The ordered properties of real numbers set also valid to hyperreal numbers set, except the ordered
properties of R which says there is no a smallest positive real number. In the hyperreal numbers set there
are infinitesimal numbers other than zero, for example <1/n>. All completeness properties in real

numbers set is also valid in hyperreal numbers set “R. Thus, it can be concluded that the hyperreal
numbers set is an ordered and complete field.
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