Reprinted from the

Far East Journal of Mathematical Sciences (FJMS)

Volume 110, Number 1, 2019, pp 15-22

POWER OF HYPOTHESIS TESTING PARAMETERS
SHAPE OF THE DISTRIBUTIONS

by

B. Pratikno,

G. M. Pratidina and Setianingsih

Pushpa Publishing House

Vijaya Niwas, 198 Mumfordganj Prayagraj 211002, INDIA http://pphmj.com/journals/fjms.htm fjms@pphmj.com & arun@pphmj.com

SEARCH

Home Publication Ethics Individual Subscriber Login Guidelines Journal Submit a Manuscript

Impact Factor
Far East Journal of

Journal Home

Editorial Board

Guidelines for Authors

Subscribe

Content

Publication Ethics and Publication Malpractice Statement

Journal Metrics / Impact Factor

Content

- **⊞** Volume 130 (2021)
- **⊞** Volume 129 (2021)

- Volume 126 (2020)

- **⊞ Volume 123 (2020)**
- **⊞** Volume 122 (2020)
- **⊞** Volume 120 (2019)
- **⊞** Volume 119 (2019)
- **Wolume 118 (2019)**
- Volume 117 (2019)
- **⊞** Volume 116 (2019)
- **■** Volume 115 (2019)
- Volume 114 (2019)
- Volume 113 (2019)

Volume 110, Issue 1, (FJMPages 1 - 232 (January 2019)

Articles 1 - 12 of 12 [1]

RESOLUTION OF THE PROBLEM OF CONTROLLABILITY OF A NONLINEAR PARABOLIC EQUATION

by: Dieudonné Ampini

Page: 1 - 14

Abstract | Add to my cart

POWER OF HYPOTHESIS TESTING PARAMETERS SHAPE OF THE DISTRIBUTIONS

by: B. Pratikno, G. M. Pratidina and Setianingsih

Page: 15 - 22

Abstract | Add to my cart

ANALYTICAL INVESTIGATION OF COUETTE FLOW IN A COMPOSITE POROUS CYLINDRICAL CHANNEL OF VARIABLE PERMEABILITY

by: Sanjeeva Kumar Singh

Page: 23 - 39

Abstract | Add to my cart

PARTITIONS OF COMPLETE BIPARTITE GEOMETRIC GRAPHS INTO PLANE PERFECT MATCHINGS

by: Hazim Michman Trao, Gek L. Chia, Niran Abbas Ali and Adem Kilicman

LATEST ISSUE

SUBMIT AN ARTICLE

SEARCH WITHIN JOURNALS

SEARCH

Home Publication Ethics Impact Factor

actor

Journal Home

Editorial Board

Guidelines for Authors

Subscribe

Content

Publication Ethics and Publication Malpractice Statement

Journal Metrics / Impact

Factor

Categories

Journals List

All Journals

Guideline

Journa

Submit a Manuscript

Individual Subscriber Login

Far East Journal of Mathematical Sciences

(FJMS)

Editorial Board

Ahmet Sinan Cevik

Department of
Mathematics
Selçuk University
Faculty of Science
Campus, 42075 Konya
Turkey
[Combinatorial Group and
Semigroup Theory,
Algebraic and Specktral
Graph Theory]

Alison Marr

Department of Mathematics Southwestern University 1001 E University Ave Georgetown, TX 78626 USA [Graph Theory, Graph Labeling]

ONLINE SUBMISSION

LATEST ISSUE

SUBMIT AN ARTICLE

SEARCH WITHIN TOURNALS

Ashish K. Srivastava

Department of
Mathematics & Computer
Science
Saint Louis University
221 N. Grand Blvd.
Saint Louis, MO-63103
USA
[Noncommutative Ring
Theory]

B. C. Tripathy

Department of Mathematics Tripura University Suryamaninagar, Agartala - 799022, Tripura India [Analysis]

ONLINE SUBMISSION

ONLINE SUBMISSION

Chaohui Zhang

Department of Mathematics Morehouse College Atlanta, GA 30314 USA [Riemann Surfaces and Quasi Conformal Mappings, Ahlfors-Bers Theory of Teichmuller Spaces and Moduli Spaces, Mapping Class Groups and Nielsen-Thurstons Classification of Mapping Classes, Hyperbolic Geometry, Low Dimensional Geometry and Topology

Chelliah Selvaraj

Department of
Mathematics
Periyar University
Salem-636011 Tamil
Nadu
India
[Particular Ring theory,
Homological algebra and
Representation Theory of
Algebras]

ONLINE SUBMISSION

Claudio Cuevas

D. S. Sankar

Departamento de
MatemÃitica
Universidade Federal de
Pernambuco
Recife-PE, CEP. 50540740
Brazil
[Difference Equations,
Periodicity and Ergodicity,
Dispersive Estimates,
Fractional Differential
Equations, Functional
Differential Equations,
Integral and IntegroDifferential Equation]

School of Applied
Sciences and
Mathematics
Universiti Teknologi
Brunei
Jalan Tungku Link Gadong
BE 1410
Brunei Darussalam
[Ordinary and Partial
Differential Equations,
Mathematical Economics]

ONLINE SUBMISSION

ONLINE SUBMISSION

E. Thandapani

Ramanujan Institute for Advanced Study in Mathematics University of Madras Chennai- 600 005 India [Differential Equation (ODE & PDE) and Difference Equations]

Haruhide Matsuda

Department of
Mathematics
Shibaura Inst of Tech
307 Fukasaku, Minumaku
Saitama, 337-8570
Japan
[Graph Theory]

ONLINE SUBMISSI

ONLINE SUBMISSION

Hong-Xu Li

Department of
Mathematics
Sichuan University
Chengdu, Sichuan
610064
China
[Functional Differential
Equations, Ordinary
Differential Equations,
Almost Periodicity,
Nonlinear Functional
Analysis]

ONLINE SUBMISSION

I. S. Rakhimov

Department of
Mathematics
Faculty of Computer and
Mathematical Sciences
Universiti Teknologi MARA
(UiTM)
Shah Alam
Malaysia
[Structural theory of
finite-dimensional
algebras; Lie and Leibniz
algebras; Dialgebras;
Commutative Algebras;
Algebraic geometry;
Invariant theory]

ONLINE SUBMISSION

Jay M. Jahangiri

Department of
Mathematics
Kent State University
Burton, Ohio 44021-9500
USA
[Complex Analysis]

ONLINE SUBMISSION

Jin-Lin Liu

Department of Mathematics Yangzhou University Yangzhou 225002 China [Geometric Function Theory]

ONLINE SUBMISSION

Lingyun Gao

Department of
Mathematics
Jinan University
Guangzhou 510632
China
[Complex
Analysis,Complex
Differential (difference)
Equations]

ONLINE SURMISSION

Magdalena Toda

Department of
Mathematics and
Statistics
Texas Tech University
Lubbock TX
USA
[Geometry, Integrable
Systems, Mathematical
Physics, and Non-Linear
Partial Differential
Equations]

ONLINE SUBMISSION

Moonja Jeong

Department of Mathematics University of Suwon Suwon Kyungkido, 440-600 South Korea [Complex Analysis]

ONLINE SUBMISSION

Nak Eun Cho

Department of
Mathematics
Pukyong National
University
Busan 608-737
South Korea
[Complex Analysis,
Geometric Function
Theory and Univalent
Functions]

ONLINE SUBMISSION

Pu Zhang

Department of

Mathematics
Shanghai Jiao Tong
University
Shanghai 200240
China
[Algebra Representation
Theory and Quantum
Groups]

ONLINE CURMICCION

Qing-Wen Wang

Department of

Mathematics
Shanghai University
99 Shangda Road
Shanghai, 200444
China
[Linear Algebra, Matrix
Theory, Operator Algebra]

ONLINE SUBMISSION

Şahsene Altinkaya

Department of
Mathematics
Faculty of Arts and
Science
Uludag University
Bursa
Turkey
[Geometric Function
Theory; Bi-univalent
Functions]

ONLINE SUBMISSION

Satoru Takagi

Global Education Center (Math Dept.) Waseda University 1-6-1 Nishi-waseda Shinjuku, 169-8050 Japan [Partial Differential Equations; Functional Analysis]

ONLINE SUBMISSION

Sourav Das

Department of
Mathematics
National Institute of
Technology Jamshedpur
Jamshedpur-831014,
Jharkhand
India
[Complex Analysis,
Special Functions,
Orthogonal Polynomials,
Inequalities, Continued
Fractions, Asymptotics]

ONLINE SUBMISSION

Sunil Dutt Purohit

Department of
Mathematics
Rajasthan Technical
University
University College of
Engineering
Kota - 324010 Rajasthan
India
[Special Functions,
Fractional Calculus, qCalculus, Geometric
Function Theory, Integral
Transforms, Mathematical
Physics]

ONLINE SUBMISSION

Takashi Koda

Department of Mathematics University of Toyama Toyama 930-8555 Japan [Differential Geometry]

ONLINE SUBMISSION

Tongzhu Li

Department of
Mathematics
Beijing Institute of
Technology
Beijing, 100081
China
[Moebius Geometry,
Geometry of
Submanifolds, and
Riemann Geometry]

ONLINE SUBMISSION

Vernold Vivin J.

Department of
Mathematics
University College of
Engineering Nagercoil
(Anna University
Constituent College)
Nagercoil-629 004
Tamil Nadu
India
[Graph Theory]

ONLINE SUBMISSION

Vladimir Tulovsky

Department of
Mathematics and
Computer Science
Saint John's University
300 Howard Avenue
Staten Island, NY 10301
USA
[Partial Differential
Equations]

ONLINE SUBMISSION

Wei Dong Gao

Center for Combinatorics Nankai University Tianjin 300071 China [Number Theory and Combinatorics]

ONLINE SUBMISSION

Wing-Sum Cheung

Faculty of Science
Department of
Mathematics
University of Hong Kong
Pokfulam Road
Hong Kong
[Inequalities]

ONLINE SUBMISSION

Xiao-Jun Yang

Department of

Xiaochun Fang

Department of

Pushpa Publishing House

Mathematics and
Mechanics
China University of Mining
and Technology
Xuzhou, Jiangsu, 221008
China
[Fractional Calculus and
Applications, Analytical
and Approximate
Solution, PDEs, Fourier
Analysis, Wavelets, Signal
Processing]

Mathematics
Tongji University
Shanghai 200092
China
[Functional analysis;
Operator Algebra and
Application]

ONLINE SUBMISSION

ONLINE SUBMISSION

Yilmaz Simsek

Department of
Mathematics
Faculty of Art and Science
University of Akdeniz
07058 Antalya
Turkey
[Special numbers and
Polynomials; Generating
Functions; Special
Functions; q-Series and
p-adic q-Analysis;
Analytic Number Theory;
Modular form and
Dedekind and Hardy
Sums]

Yong Gao Chen

School of Mathematical Sciences Nanjing Normal University Nanjing, Jiangsu 210023 China [Combinatorial Number Theory, Analytic Number Theory]

ONLINE SUBMISSION

ONLINE SUBMISSION

Young Bae Jun

Department of
Mathematics Education
Gyeongsang National
University
Chinju 660-701
South Korea
[BCK/BCL-Algebra and
Universal Algebra]

ONLINE SUBMISSION

Zhenlu Cui

Department of
Mathematics and
Computer Science
Fayetteville State
University
1200 Murchison Rd.,
Fayetteville
NC 28301
USA
[Multiscale Modeling of
Soft Matters, Perturbation
Analysis, Numerical
Analysis, Approximation
Theory]

ONLINE SUBMISSION

Home Journals Books & Monographs Institutional Price List Refund Policy Disclaimer Policy

This website is best viewed at 1024x768 or higher resolution with Microsoft Internet Explorer 6 or newer.

Privacy Policy Shipping & Delivery Terms and Conditions

Far East Journal of Mathematical Sciences (FJMS) © 2019 Pushpa Publishing House, Allahabad, India

http://www.pphmj.com

http://dx.doi.org/10.17654/MS110010015

Volume 110, Number 1, 2019, Pages 15-22 ISSN: 0972-0871

POWER OF HYPOTHESIS TESTING PARAMETERS SHAPE OF THE DISTRIBUTIONS

B. Pratikno, G. M. Pratidina and Setianingsih

Department of Mathematics Faculty of Mathematics and Natural Science Jenderal Soedirman University Purwokerto, Indonesia

Abstract

We study the power in testing parameter shape of the distributions, analyze it graphically and provide its application of the power of the tests on the multiple simple regression model (MSRM), namely unrestricted test (UT), restricted test (RT) and pre test-test (PTT). To compute the power and plot of their graphs, *R*-code is used. The results showed that the power of the distribution is influenced by the parameter shapes, and the power of the test of the PTT is a significant choice of the tests among UT and RT.

1. Introduction

Following Wackerly et al. [5], the power and size are defined as probability to reject H_0 under $H_a: \theta = \theta_a$ and under $H_0: \theta = \theta_0$, in testing hypothesis $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$, with parameter θ , respectively. They are then written as $\pi(\theta_a) = P(\text{reject } H_0 | \theta = \theta_a)$ and $\alpha^* = \alpha(\theta_0) = P(\text{reject } H_0 | \theta = \theta_0)$. Note that α (level of significant: 0.01, 0.05 and 0.10) is commonly a special case of the $\alpha^* = \alpha(\theta)$.

Received: August 3, 2018; Accepted: October 16, 2018

2010 Mathematics Subject Classification: 62H10, 62E17, 62Q05.

Keywords and phrases: distributions, power of the test, parameter shape.

Many authors have used the power and size to compute the probability integral cumulative distribution function (cdf) of the distributions, such as Pratikno [2], Khan and Pratikno [8] and Khan [9] in testing intercept using non-sample prior information (NSPI). Here, Pratikno [3] and Khan et al. [15] already used the power and size to compute the cdf of the bivariate noncentral F (BNCF) distribution of the pre-test test (PTT) in multivariate simple regression model (MSRM), multiple regression model (MRM) and parallel regression model (PRM). Then Khan [9, 10], Khan and Saleh [12-14], Khan and Hoque [11], Saleh [1], Yunus [7], and Yunus and Khan [6] contributed to the research of estimation and hypothesis area in computing the values of the power of the test (PTT). In the context of the hypothesis testing with NSPI, Pratikno [2] already described three tests for testing intercept in the regression models, namely unrestricted test (UT), restricted test (RT) and pre-test test (PTT). In this case, the bivariate noncentral F distribution is used to compute the power of the pre-test test (PTT) on the MSRM, MRM and PRM. The formula of the power and size of the tests of the UT, RT and PTT are found in Pratikno [3] in testing one-side hypothesis or two-side hypothesis. Due to the probability integral of the power and size of the PTT is not simple and very complex, so they are computed using R-code. The BNCF is found on Pratikno [2] and Khan et al. [15], and it is clear that the computation of the probability integral of the probability distribution function (pdf) and cdf of the BNCF distribution is very complicated and hard, so they should be numerically computed using R code. A simulation is given by generating randomly data from R-package on some regression models case.

To compute the power of the distribution and its application in the regression models, the steps of the research methodology are (1) to find the sufficient statistics, (2) to determine the rejection area of the distributions using *uniformly most powerful test* (UMPT), (3) to derive the formula of the power of the distributions in testing one-side (or two-side) hypothesis, and (4) to plot the graphs of the power of the three tests UT, RT and PTT conducted using a simulation by generating data from R-package.

The research presented the introduction in Section 1. Analysis of the power of the distributions and their application on the power and size of the

Power of Hypothesis Testing Parameters Shape of the Distributions 17

tests in MSRM are obtained in Section 2. Section 3 describes the conclusion of the research.

2. The Power of the Distributions

2.1. The power of the Weibull distribution

This subsection presents the formula and graphs of the power in testing parameters shape (δ, β) for one-side hypothesis on the Weibull distribution. To do that, we follow some steps, that are (1) find the sufficiently statistics, (2) determine the rejection area of the Weibull distribution using *uniformly* most powerful test (UMPT), (3) derive the formula of the power and compute the values of power and then plot them. This distribution (Weibull distribution) is often applied in life testing of the components, and it is like exponential and gamma distributions.

Let X be a random variable following the Weibull distribution. Then the cdf of this distribution is given as

$$F(x) = \begin{cases} 1 - e^{-\left(\frac{x}{\delta}\right)^{\beta}}, & x \ge 0, \\ 0, & \text{otherwise} \end{cases}$$
 (1)

with parameter shape $\delta > 0$ and scale parameter $\beta > 0$. Furthermore, the density function is then obtained as

$$f(x) = \frac{dF(x)}{dx} = \begin{cases} \frac{\beta}{\delta} \left(\frac{x}{\delta}\right)^{\beta - 1} e^{-\left(\frac{x}{\delta}\right)^{\beta}}, & x \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$
 (2)

To compute the power of the distribution, we firstly consider the sufficiently statistics. Here, we use it to find the rejection area. To do this, we first define the likelihood function of the Weibull distribution as

$$f(x_1, ..., x_n | \delta) = g(s, \delta) \cdot h(x_1, ..., x_n)$$
 (3)

with

$$f(x) = \frac{\beta}{\delta} \left(\frac{x}{\delta}\right)^{\beta - 1} e^{-\left(\frac{x}{\delta}\right)^{\beta}},$$

$$f(x_1, ..., x_n | \delta) = \prod f(x_i | \delta) = \frac{\beta}{\delta} \left(\frac{1}{\delta}\right)^{\beta - 1} \left(\prod_{i=1}^n x_i\right)^{\beta - 1} e^{-\left(\frac{1}{\delta}\right)^{\beta} \left(\sum_{i=1}^n x_i^{\beta}\right)},$$

$$g(s, \delta) = \frac{\beta}{\delta} \left(\frac{1}{\delta}\right)^{\beta-1} e^{-\left(\frac{1}{\delta}\right)^{\beta} s},$$

$$h(x_i) = \prod_{i=1}^n (x_i)^{\beta-1}$$
, $i = 1, 2, ..., n$, and $s = \sum_{i=1}^n x_i^{\beta}$.

Using mathematical technique, we get $s = \sum_{i=1}^{n} x_i^{\beta}$ to be sufficiently

statistics of the parameter δ of the Weibull distribution. To find the rejection region (*RR*), we use UMPT, the *RR* of the Weibull distribution is then given as $P(s > \chi^2_{(2n,\alpha)})$, with s is sufficient statistics and δ is parameter shape of the Weibull distribution. Furthermore, we derive the formula of power of the Weibull distribution for one-side testing hypothesis, $H_0: \delta = \delta_0$ versus $H_1: \delta > \delta_1$, given as

$$\pi(\delta) = P(\text{reject } H_0 | \text{under } H_1) = P\left(\sum_{i=1}^n x_i^{\beta} > k\right) = P\left(\frac{2}{\delta^{\beta}} \sum_{i=1}^n x_i^{\beta} > c\right)$$

$$= P\left(\sum_{i=1}^n x_i^{\beta} > \chi_{(2n,\alpha)}^2 \frac{\delta_0^{\beta}}{2}\right)$$

$$= P\left(\chi^2 > \left(\frac{\delta_0}{\delta}\right)^{\beta} \chi_{(2n,\alpha)}^2\right) \text{ with } c = \chi_{(2n,\alpha)}^2. \tag{4}$$

Following Pratikno [3, 4] (here, $\alpha = 0.1$, n = 10, 30 and 40) and using equation (4), we get the graphs of the power for $\alpha = 0.05$ and n = 20, $\beta = 2, 3, 4, 5$, on hypothesis testing $H_0: \delta = \delta_0 = 1$ versus $H_1: \delta_0 > 1$, presented in Figure 1.

Figure 1. The graphs of power in testing parameter δ at $\alpha = 0.05$.

From Figure 1, it is clear that the graphs of the power tend to increase as the sample size (n) and β increase. Similarly, following Pratikno [3, 4] on $\alpha = 0.01$ and Figure 1 on $\alpha = 0.05$, we see that α has a little significant influence on the curve of the power of the parameter shape, especially when n = 30.

2.2. The power of the *t* distribution

Similarly (see Subsection 2.1), we provide graphs for the power in testing parameter shape (v) for two-side hypothesis, $H_0: v = v_0$ versus $H_1: v \neq v_0$, on the t distribution. Let T be a random variable following the t distribution. Then the probability density function (pdf) is given as

$$f(t) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\sqrt{\pi\nu}} \left(1 + \frac{t^2}{2}\right)^{-\left(\frac{\nu+1}{2}\right)}, \quad -\infty < t < \infty.$$
 (5)

Furthermore, the formula of power of the t distribution for two-side testing hypothesis $H_0: v = v_0$ versus $H_1: v \neq v_0$, (could be one-side as well), is given as

$$\pi(v) = P(\text{reject } H_0 | \text{under } H_1)$$

$$=1-\int_{t_1}^{t_2}f(t)dt=\int_{t_1}^{t_2}\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\sqrt{\pi\nu}}\left(1+\frac{t^2}{2}\right)^{-\left(\frac{\nu+1}{2}\right)}dt,\tag{6}$$

where t_1 and t_2 are under H_1 . Then the size is given as $\alpha^* = \alpha(v) = P(\text{reject } H_0 | \text{under } H_0)$. Here, we note and write that $\alpha(v) = \alpha$. From equation (6) and the definition of the size above, the graphs of the power and size of this distribution are given as

Figure 2. The graphs of power and size for different t_1 and t_2 .

We see from Figure 2 that the graphs of the power $\pi(v)$ tend to decrease as the parameter v increases, while the size (α) is constant. Note that the difference between t_1 and t_2 ($\Delta = t_1 - t_2$), also influenced the curve of the graphs.

2.3. The power of the UT, RT and PTT on MSRM

Following Pratikno [2], the power of the UT, RT and PTT is used to choose the eligible tests (maximum power and minimum size) in testing intercept on the regression models. Here, the definition and formula of the UT, RT and PTT on MSRM are found in detail in Pratikno [2]. A simulation is given following the previous research of Pratikno [2], and here, we simulate and generate data using *R*-package as follows: $y_1 = 3 + 2x$, $y_2 = 2 - 3x$, $y_3 = 3 - 2x$ and $y_4 = 6 + 4x$ with $\alpha = 0.05$ for two-side hypothesis in testing parameters regression, we then obtain the graphs of the power of the UT, RT, PTT in Figure 3.

From Figure 3, we see that the PTT tends to lie between UT and RT. It means that the PTT is an alternative choice between them. So, we conclude that the PTT follows the previous research of Pratikno [2].

Figure 3. The power of the UT, RT, PTT when $\rho = 0.1, 0.3, 0.5, 0.7$ and $\theta_2 = 0.5$.

3. Conclusion

The research studied the power in testing parameter shape of the distributions, analyzed it graphically and provided its application of the power of the tests on the multivariate simple regression model. To compute the power and plot of their graphs, R-code is used. The results showed that the power of the distribution is influenced by the parameter shapes, and the power of the test of the PTT is a significant choice of the tests among UT and RT.

Acknowledgement

We acknowledge the excellent financial support from the LPPM UNSOED for carrying out this work.

References

[1] A. K. Md. E. Saleh, Theory of Preliminary Test and Stein-type Estimation with Applications, John Wiley and Sons, Inc., New Jersey, 2006.

- [2] B. Pratikno, Test of Hypothesis for Linear Models with Non-sample Prior Information, University of Southern Queensland, 2012.
- [3] B. Pratikno, The noncentral *t* distribution and its application on the power of the tests, Far East J. Math. Sci. (FJMS) 106(2) (2018), 463-474.
- [4] B. Pratikno, Jajang, S. Y. Layyinah, G. M. Pratidina and Y. D. Suryaningtiyas, The power of Weibull and exponential distributions on testing parameters shape, ICMA Conference, LPPM-UNSOED, 2018.
- [5] D. D. Wackerly, W. Mendenhall III and R. L. Scheaffer, Mathematical Statistics with Application, 7th ed., Thomson Learning, Inc., Belmont, CA, USA, 2008.
- [6] R. M. Yunus and S. Khan, The bivariate noncentral chi-square distribution a compound distribution approach, Appl. Math. Comput. 217 (2011), 6237-6247.
- [7] R. M. Yunus, Increasing power of *M*-test through pre-testing, Unpublished Ph.D. Thesis, University of Southern Queensland, Australia, 2010.
- [8] S. Khan and B. Pratikno, Testing base load with non-sample prior information on process load, Statist. Papers 54(3) (2013), 605-617.
- [9] S. Khan, Estimation of parameters of the multivariate regression model with uncertain prior information and Student-t errors, J. Statist. Res. 39(2) (2005), 79-94.
- [10] S. Khan, Shrinkage estimators of intercept parameters of two simple regression models with suspected equal slopes, Comm. Statist. Theory Methods 37 (2008), 247-260.
- [11] S. Khan and Z. Hoque, Preliminary test estimators for the multivariate normal mean based on the modified W, LR and LM tests, J. Statist. Res. 37 (2003), 43-55.
- [12] S. Khan and A. K. Md. E. Saleh, Shrinkage pre-test estimator of the intercept parameter for a regression model with multivariate Student-*t* errors, Biom. J. 39 (1997), 1-17.
- [13] S. Khan and A. K. Md. E. Saleh, Estimation of intercept parameter for linear regression with uncertain non-sample prior information, Statist. Papers 46 (2005), 379-394.
- [14] S. Khan and A. K. Md. E. Saleh, Estimation of slope for linear regression model with uncertain prior information and Student-*t* error, Comm. Statist. Theory Methods 37(16) (2008), 2564-2581.
- [15] S. Khan, B. Pratikno, A. I. N. Ibrahim and R. M. Yunus, The correlated bivariate noncentral *F* distribution and its application, Comm. Statist. Simulation Comput. 45 (2016), 3491-3507.