
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Preface
To cite this article: 2020 J. Phys.: Conf. Ser. 1494 011001

 

View the article online for updates and enhancements.

This content was downloaded from IP address 36.72.216.88 on 30/06/2020 at 02:38

https://doi.org/10.1088/1742-6596/1494/1/011001
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjss-27kGJoiHcZxV-nIRDkUpCy-Dkjmm_uyhYW5vSNkUd2JP0aK-tzxKByrqvYqLyQPPT-LJTlSUgx_rp7fTGr-XxJc9Q07uojphE9Lf7KuRBxIcVyAeiYLN7ZwFl1PRe2ZsK_y90vzK4EZkW5wx-OS6VE_5-CUBjcJnho81fCHe2cBAeEjMhkD5ILOkEmTzYOx3L-F8v_Z0xnOMfQsAPopZx-iXjzkRRx-_mJr8YB28po9jaNzH&sig=Cg0ArKJSzCEIEzoJXobf&adurl=http://iopscience.org/books


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

SICoMAS

Journal of Physics: Conference Series 1494 (2020) 011001

IOP Publishing

doi:10.1088/1742-6596/1494/1/011001

1

	
	

	
Soedirman’s	International	Conference	on	
Mathematics	and	Applied	Sciences	2019	

	
	
	

Java	Heritage	Hotel	Purwokerto	
October	23rd	-	24th,	2019

	 	



SICoMAS

Journal of Physics: Conference Series 1494 (2020) 011001

IOP Publishing

doi:10.1088/1742-6596/1494/1/011001

2

Soedirman’s	International	Conference	on	Mathematics	and	Applied	Sciences		
SICoMAS	2019	

23-24	October	2019,	Purwokerto,	Indonesia	
 

Committees	

Steering	Committee/	Editorial	Board	
1. Prof.	Abdellah	Salhi,	Ph.D.	(University	of	Essex,	UK)	
2. Prof.	Guiseppe	Di	Fazio,	Ph.D.	(University	of	Catania,	Italy)	
3. Prof.	Hendra	Gunawan,	Ph.D.	(Bandung	Institute	of	Technology,	Indonesia)	
4. Prof.	Dr.-Ing.	R.	Wahyu	Widanarto	(Jenderal	Soedirman	University,	Indonesia)	
5. Prof.	Dr.	Hadi	Nur	(University	Teknologi	Malaysia,	Malaysia)	
6. Dr.	Hirokazu	Saito	(Tokyo	University	of	Science,	Japan)	
7. Assoc.	Prof.	Dr.	Imran	Parvez	(Hajee	Mohammad	Danesh	Science	and	Technology	
University	(HSTU),	Bangladesh)	

8. Dr.	Jas	Raj	Subba	(Royal	University	of	Bhutan,	Bhutan)	
9. Dr.	Saluma	Samanman	(Faculty	of	Science	and	Technology,	Princess	of	
Naradhiwas	University,	Narathiwas,	Thailand)	

10. Amin	Fatoni,	Ph.	D.	(Jenderal	Soedirman	University,	Indonesia)	
11. Dr.	Eng.	Mukhtar	Effendi	(Jenderal	Soedirman	University,	Indonesia)	
12. Drs.	Wuryatmo	A.	Sidik,	Dipl.Sc.,	M.Sc.,	Ph.D.	(Jenderal	Soedirman	University,	
Indonesia)	

13. Sri	Maryani,	Ph.	D.	(Jenderal	Soedirman	University,	Indonesia)	
14. Dadan	Hermawan,	Ph.	D.	(Jenderal	Soedirman	University,	Indonesia)	
15. Wahyu	Tri	Cahyanto,	Ph.	D.	(Jenderal	Soedirman	University,	Indonesia)	
16. Dr.	Abdullah	Nur	Aziz	(Jenderal	Soedirman	University,	Indonesia)	
17. Dr.	Jajang	(Jenderal	Soedirman	University,	Indonesia)	
18. Dr.	Hartiwi	Diastuti	(Jenderal	Soedirman	University,	Indonesia)	
19. Dr.	Santi	Nur	Handayani	(Jenderal	Soedirman	University,	Indonesia)	
20. Uyi	Sulaeman,	Ph.	D.	(Jenderal	Soedirman	University,	Indonesia)	
21. Bambang	Hendriya	G,	Ph.	D.	(Jenderal	Soedirman	University,	Indonesia)	
22. R.	Farzand	Abdullatif,	Ph.	D.	(Jenderal	Soedirman	University,	Indonesia)	

	
Conference	Chair	 :		Dr.	Idha	Sihwaningrum	
	
Conference	Co-chair		 :	
	Scienctific	 :		Amin	Fatoni,	Ph.D.	
	Programs	 :		Dr.	Eng.	Mukhtar	Effendi	

	
	
	 	



SICoMAS

Journal of Physics: Conference Series 1494 (2020) 011001

IOP Publishing

doi:10.1088/1742-6596/1494/1/011001

3

Soedirman’s	International	Conference	on	Mathematics	and	Applied	Sciences		
SICoMAS	2019	

23-24	October	2019,	Purwokerto,	Indonesia	
 

Organizing	Committee:	
1. Dr.	Nunung	Nurhayati	
2. Ari	Asnani,	Ph.	D.	
3. Dr.	Zaroh	Irayani	
4. Rina	Reorita,	M.	Si.	
5. Dwi	Kartika,	M.	Sc.	
6. Wihantoro,	M.	Sc.	
7. Abdul	Naseh,	A.	Md.	
8. Dr.	Abdullah	Nur	Aziz,	M.	Si.	
9. Frenky	Oktavinanda	
10. Kharis,	S.	Si.	
11. Drs.	Budi	Pratikno,	Ph.	D.	
12. Siti	Muniroh,	S.	Si.	
13. Andi	Setiawan,	A.	Md.	
14. Dena	Martini,	SE	
15. Dr.	Puji	Lestari	
16. Latief	Nur	Muhammad,	ST	
17. Listiyani	Tri	Hastuti,	SE	
18. Dian	Riana	Ningsih,	M.	Si.	
19. Senny	Widyaningsih,	M.	Si.	
20. Siti	Rahmah	Nurshiami,	M.	Si.	
21. Renny,	M.	Si.	
22. Dr.	Hartiwi	Diastuti	
23. Sukirlan	ETR,	MM	
24. Rini	Susanti,	S.	Si.	
25. Sherly	Arya	Iskandar,	SE	
26. Eko	Jatmiko,	SH	

 

 	



SICoMAS

Journal of Physics: Conference Series 1494 (2020) 011001

IOP Publishing

doi:10.1088/1742-6596/1494/1/011001

4

Soedirman’s	International	Conference	on	Mathematics	and	Applied	Sciences		
SICoMAS	2019	

23-24	October	2019,	Purwokerto,	Indonesia	
 

Report	from	The	Organizing	Committee	
	
It	is	indeed	my	great	pleasure	and	honor	to	welcome	you	all	to	Soedirman’s	International	
Conference	 on	 Mathematics	 and	 Applied	 Sciences	 (SICoMAS)	 2019.	 The	 conference	
running	 this	 year	 is	 the	 first	 SICoMAS	 series	 hosted	 by	 Faculty	 of	 Mathematics	 and	
Natural	Sciences	Jenderal	Soedirman	University.	As	the	development	of	technology	and	
management	of	world	resources	for	our	future	based	on	the	innovation	in	Mathematics	
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Sciences	for	better	future”.	
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Half-space model problem for a compressible fluid

model of Korteweg type with slip boundary condition

Suma Inna1, Sri Maryani24, Hirokazu Saito3
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2Faculty of Mathematics and Natural Sciences, Jenderal Soedirman University, Indonesia
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E-mail: hsaito@rs.tus.ac.jp

Abstract. In this paper, we consider a half-space model problem for a compressible fluid
model of Korteweg type with slip boundary condition and prove the existence of R-bounded
solution operator families for the model problem.

1. Introduction
In this paper, we consider a half-space model problem for a compressible fluid model of Korteweg
type with slip boundary condition as follows:



λρ+ div u = d in RN
+ ,

λu− µ∆u− ν∇div u− κ∇∆ρ = f in RN
+ ,

n · ∇ρ = g on RN
0 ,

∂Nuj + ∂juN = hj on RN
0 , j = 1, . . . , N − 1,

uN = hN on RN
0 ,

(1.1)

where RN
+ and RN

0 , N ≥ 2, are respectively the upper half-space and its boundary, that is,

RN
+ = {x = (x′, xN ) | x′ = (x1, . . . , xN−1) ∈ RN−1, xN > 0},

RN
0 = {x = (x′, xN ) | x′ = (x1, . . . , xN−1) ∈ RN−1, xN = 0},

and also n = (0, . . . , 0,−1)T 5 is the outward unit normal vector on RN
0 .

Here λ is the resolvent parameter varying in C+ = {z ∈ C | <z > 0}, while ρ = ρ(x) and
u = u(x) = (u1(x), . . . , uN (x))T are respectively the fluid density and the fluid velocity that are
unknown functions. The right-hand sides d = d(x), f = f(x) = (f1(x), . . . , fN (x))T , g = g(x),
hj = hj(x), and hN = hN (x) are given functions. For a scalar-valued function u = u(x) and a

4 supported by BLU UNSOED research scheme International Research Collaboration (IRC) contract number
P/253/UN23/PN/2019.
5 MT denotes the transpose of M.
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vector-valued function v = v(x) = (v1(x), . . . , vN (x))T , we set for ∂k = ∂/∂xk (k = 1, . . . , N)

∇u = (∂1u, . . . , ∂Nu)T , ∆u =
∑N

k=1 ∂
2
ku, ∆v = (∆v1, . . . ,∆vN )T ,

div v =
∑N

k=1 ∂kvk, ∇v = {∂kvl | k, l = 1, . . . , N},
∇2v = {∂k∂lvm | k, l,m = 1, . . . , N}.

In addition, for N -vectors a = (a1, . . . , aN )T and b = (b1, . . . , bN )T ,

a · b =
N∑
k=1

akbk.

Especially, n · ∇ρ = −∂Nρ. Throughout this paper, the coefficients µ, ν, and κ are positive
constants and satisfy the following condition:(

µ+ ν

2κ

)2

− 1

κ
6= 0 and κ 6= µν. (1.2)

System (1.1) arises from the study of compressible viscous fluids of Korteweg type with slip
boundary condition, see e.g. [3]. Korteweg-type models are employed to describe a two-phase
mixture model of liquid-gas flow.

To introduce our main result, we introduce the notation.
The set of all natural numbers is denoted by N and N0 = N ∪ {0}. For q ∈ [1,∞], Lq(R

N
+ )

and Hm
q (RN

+ ), m ∈ N, denote respectively the Lebesgue spaces on RN
+ and the Sobolev spaces

on RN
+ . We set H0

q (RN
+ ) = Lq(R

N
+ ) and write the norm of Hn

q (RN
+ ), n ∈ N0, by ‖ · ‖Hn

q (R
N
+ ).

Let X and Y be Banach spaces. Then Xm, m ∈ N, denotes the m-product space of X, while
the norm of Xm is usually denoted by ‖ · ‖X instead of ‖ · ‖Xm for short. The set of all bounded
linear operators from X to Y is denoted by L(X,Y ), and L(X) is the abbreviation of L(X,X).
For a domain U in C, Hol(U,L(X,Y )) stands for the set of all L(X,Y )-valued holomorphic
functions defined on U .

For the right member (d, f , g, h1, . . . , hN−1, hN ), we set

Xq(RN
+ ) = H1

q (RN
+ )× Lq(RN

+ )N ×H2
q (RN

+ )×H1
q (RN

+ )N−1 ×H2
q (RN

+ ).

In addition, for solutions of (1.1), we set

Aq(R
N
+ ) = Lq(R

N
+ )N

3+N2+N+1, Sλρ = (∇3ρ, λ1/2∇2ρ, λ∇ρ, λ3/2ρ);

Bq(R
N
+ ) = Lq(R

N
+ )N

3+N2+N , Tλu = (∇2u, λ1/2∇u, λu).

Let F = (d, f , g, h1, . . . , hN−1, hN ) ∈ Xq(RN
+ ) and Rλf = (∇f, λ1/2f). Then we define Xq(R

N
+ )

and Fλ as follows:

Xq(R
N
+ ) = Lq(R

N
+ )N , FλF = (Rλd, f , Tλg,Rλh1, . . . ,RλhN−1, TλhN ) ∈ Xq(R

N
+ ),

N = (N + 1) +N + (N2 +N + 1) + (N − 1)(N + 1) + (N2 +N + 1).

At this point, we introduce the definition of the R-boundedness. Let sign(a) be the sign function
of a. Then the definition is given by

Definition 1.1. Let X and Y be Banach spaces, and let rj(u) be the Rademacher functions on
[0, 1]. i.e.

rj(u) = sign sin(2jπu) (j ∈ N, 0 ≤ u ≤ 1).
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A family of operators T ⊂ L(X,Y ) is called R-bounded on L(X,Y ), if there exist constants
p ∈ [1,∞) and C > 0 such that the following assertion holds: For each m ∈ N, {Tj}mj=1 ⊂ T ,
and {fj}mj=1 ⊂ X, there holds(∫ 1

0

∥∥∥ m∑
j=1

rj(u)Tjfj

∥∥∥p
Y
du

)1/p

≤ C

(∫ 1

0

∥∥∥ m∑
j=1

rj(u)fj

∥∥∥p
X
du

)1/p

.

The smallest such C is called R-bound of T on L(X,Y ) and denoted by RL(X,Y )(T ).

Remark 1.2. (1) The constant C in Definition 1.1 may depend on p.

(2) It is known that T is R-bounded for any p ∈ [1,∞), provided that T is R-bounded for
some p ∈ [1,∞). This fact follows from Kahane’s inequality, see [4, Theorem 2.4].

Now we state the main result of this paper.

Theorem 1.3. Let q ∈ (1,∞) and assume that µ, ν, and κ are positive constants satisfying 1.2.
Then, for any λ ∈ C+, there exist operators A(λ) and B(λ), with

A(λ) ∈ Hol(C+,L(Xq(R
N
+ ), H3

q (RN
+ ))),

B(λ) ∈ Hol(C+,L(Xq(R
N
+ ), H2

q (RN
+ )N )),

such that, for any F = (d, f , g, h1, . . . , hN−1, hN ) ∈ Xq(RN
+ ),

(ρ,u) = (A(λ)FλF,B(λ)FλF)

is a unique solution to (1.1). In addition, for n = 0, 1,

RL((Xq(RN
+ ),Aq(RN

+ )))

({(
λ
d

dλ

)n
(SλA(λ))

∣∣∣∣λ ∈ C+

})
≤ C,

RL((Xq(RN
+ ),Bq(RN

+ )))

({(
λ
d

dλ

)n
(TλB(λ))

∣∣∣∣λ ∈ C+

})
≤ C,

where C = C(N, q, µ, ν, κ) is a positive constant.

This paper is organized as follows: The next section introduces a reduced system for (1.1)
and shows that Theorem 1.3 follows from the main result for the reduced system. In Section
3, we calculate representation formulas for solutions of the reduced system by using the partial
Fourier transform with respect to x′ = (x1, . . . , xN−1) and its inverse transform. Section 4 proves
our main theorem for the reduced system by results obtained in Section 3.

2. Reduced system
Set uj = vj (j = 1, . . . , N − 1) and uN = vN + hN in (1.1). Then v = (v1, . . . , vN )T satisfies

λρ+ div v = d̃ in RN
+ ,

λv − µ∆v − ν∇div v − κ∇∆ρ = f̃ in RN
+ ,

n · ∇ρ = g on RN
0 ,

∂Nvj + ∂jvN = h̃j on RN
0 , j = 1, . . . , N − 1

vN = 0 on RN
0 ,

(2.1)

where

d̃ = d− ∂NhN ,
f̃ = f − (−ν∂1∂NhN , . . . ,−ν∂N−1∂NhN , λhN − µ∆hN − ν∂2NhN )T ,

h̃j = hj − ∂jhN .
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Furthermore, similarly to the last part of [2, Section 2], we can reduce (2.1) to the following
system: 

λρ+ div u = 0 in RN
+ ,

λu− µ∆u− ν∇div u− κ∇∆ρ = 0 in RN
+ ,

n · ∇ρ = g on RN
0 ,

∂Nuj + ∂juN = hj on RN
0 , j = 1, . . . , N − 1,

uN = 0 on RN
0

(2.2)

Let us define function spaces for (2.2). Set Yq(RN
+ ) = H2

q (RN
+ ) × H1

q (RN
+ )N−1 and let

G = (g, h1, . . . , hN−1) ∈ Yq(RN
+ ). Then Yq(R

N
+ ) and Gλ are defined as follows:

Yq(R
N
+ ) = Lq(R

N
+ )M , GλG = (Tλg,Rλh1, . . . ,RλhN−1) ∈ Yq(R

N
+ ),

M = (N2 +N + 1) + (N − 1)(N + 1).

As is discussed in [2, Section 2], it suffices to prove the following theorem in order to complete
the proof of Theorem 1.3.

Theorem 2.1. Let q ∈ (1,∞) and assume that µ, ν, and κ are positive constants satisfying 1.2.

Then, for any λ ∈ C+, there exist operators Ã(λ) and B̃(λ), with

Ã(λ) ∈ Hol(C+,L(Yq(R
N
+ ), H3

q (RN
+ ))),

B̃(λ) ∈ Hol(C+,L(Yq(R
N
+ ), H2

q (RN
+ )N )),

such that, for any G = (g, h1, . . . , hN−1) ∈ Yq(RN
+ ),

(ρ,u) = (Ã(λ)GλG, B̃(λ)GλG)

is a unique solution to 2.2. In addition, for n = 0, 1,

RL((Yq(RN
+ ),Aq(RN

+ )))

({(
λ
d

dλ

)n (
SλÃ(λ)

)∣∣∣∣λ ∈ C+

})
≤ C,

RL((Yq(RN
+ ),Bq(RN

+ )))

({(
λ
d

dλ

)n (
TλB̃(λ)

)∣∣∣∣λ ∈ C+

})
≤ C,

where C = C(N, q, µ, ν, κ) is a positive constant.

Remark 2.2. The following sections are devoted to the proof of the existence of R-bounded
solution operator families stated in Theorem 2.1. The uniqueness of solutions follows from the
existence of solutions for the dual problem.

3. Representation formulas for solutions
In this section, following [2, Subsection 3.1], we compute representation formulas for solutions
of (2.2). To this end, let us define the partial Fourier transform û of u = u(x′, xN ) with respect
to x′ = (x1, . . . , xN ) and its inverse transform as follows:

û = û(xN ) = û(ξ′, xN ) =
∫
RN−1 e

−ix′·ξ′u(x′, xN ) dx′,

F−1ξ′ [û(ξ′, xN )] (x′) = 1
(2π)N−1

∫
RN−1 e

ix′·ξ′ û(ξ′, xN ) dξ′,

where ξ′ = (ξ1, . . . , ξN−1) ∈ RN−1.
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Let ϕ = div u. Applying the partial Fourier transform to 2.2 yields the following ordinary
differential equations:

λρ̂+ ϕ̂ = 0, xN > 0, (3.1)

λûj − µ(∂2N − |ξ′|2)ûj − νiξjϕ̂− κiξj(∂2N − |ξ′|2)ρ̂ = 0, xN > 0, (3.2)

λûN − µ(∂2N − |ξ′|2)ûN − ν∂N ϕ̂− κ∂N (∂2N − |ξ′|2)ρ̂ = 0, xN > 0, (3.3)

with the boundary conditions:

∂N ρ̂(0) = −ĝ(0), (3.4)

∂N ûj(0) + iξj ûN (0) = ĥj(0), j = 1, . . . , N − 1, (3.5)

ûN (0) = 0. (3.6)

We then see from (3.1)-(3.3) that

Pλ(∂N )ϕ̂ = 0, (3.7)

(∂2N − ω2
λ)Pλ(∂N )ûJ = 0, J = 1, . . . , N, (3.8)

where we have set

Pλ(t) = λ2 − λ(µ+ ν)(t2 − |ξ′|2) + κ(t2 − |ξ′|2)2, ωλ =

√
|ξ′|2 +

λ

µ
.

Here we have chosen a brunch cut along the negative real axis and a branch of the square root
so that <

√
z > 0 for z ∈ C \ (−∞, 0].

Remark 3.1. Under Condition (1.2), the four roots of Pλ(t) are given by ±t1 and ±t2, where

tk =
√
|ξ′|2 + skλ (k = 1, 2)

for complex numbers sk (k = 1, 2), depending only on µ, ν, and κ, which satisfy <sk > 0
(k = 1, 2) and

s1 6= s2, s1 6= µ−1, s2 6= µ−1.

For more detail, we refer to [1, Section 3].

In what follows, j = 1, . . . , N − 1 and J = 1, . . . , N . In view of (3.7), (3.8), and Remark 3.1,
we look for solutions ûJ (J = 1, . . . , N) and ϕ̂ of the forms:

ûJ = αJe
−ωλxN + βJ(e−t1xN − e−ωλxN ) + γJ(e−t2xN − e−ωλxN ), (3.9)

ϕ̂ = σe−t1xN + τe−t2xN . (3.10)

One then obtains from ϕ = div u and 3.1-3.3

iξ′ · α′ − iξ′ · β′ − iξ′ · γ′ − ωλαN + ωλβN + ωλγN = 0, (3.11)

βj = − iξj
t1
βN , γj = − iξj

t2
γN , (3.12)

σ = −
(
t21 − |ξ′|2

t1

)
βN , τ = −

(
t22 − |ξ′|2

t2

)
γN , (3.13)
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where iξ′ · a′ =
∑N−1

j=1 iξjaj for a ∈ {α, β, γ}. In addition, we insert (3.9) and (3.10) into

(3.4)-(3.6) together with (3.1) in order to obtain

(t21 − |ξ′|2)βN + (t22 − |ξ′|2)γN = λĝ(0), (3.14)

−ωλαj + (−t1 + ωλ)βj + (−t2 + ωλ)γj = ĥj(0), (3.15)

αN = 0. (3.16)

Let us insert (3.12) into (3.15) to see

αj = − 1

ωλ

{
ĥj(0) +

iξj
t1

(−t1 + ωλ)βN +
iξj
t2

(−t2 + ωλ)γN

}
. (3.17)

This relation furnishes

iξ′ · α′ = − 1

ωλ

{
iξ′ · ĥ′(0)− |ξ

′|2

t1
(−t1 + ωλ)βN −

|ξ′|2

t2
(−t2 + ωλ)γN

}
, (3.18)

where iξ′ · ĥ′(0) =
∑N−1

k=1 iξj ĥk(0). On the other hand, (3.12) yields

iξ′ · β′ = |ξ
′|2

t1
βN , iξ′ · γ′ = |ξ

′|2

t2
γN .

Inserting these relations, (3.16), and (3.18) into (3.11), we have

βN + γN = µλ−1iξ′ · ĥ′(0),

where we have used the relation ω2
λ − |ξ′|2 = µ−1λ. In addition, it follows from (3.14) and

t2k − |ξ′|2 = skλ (k = 1, 2) that

s1βN + s2γN = ĝ(0).

One solves the last two equations in order to obtain

βN = 1
s2−s1

(
−ĝ(0) + s2µλ

−1iξ′ · ĥ′(0)
)
,

γN = 1
s2−s1

(
ĝ(0)− s1µλ−1iξ′ · ĥ′(0)

)
. (3.19)

Thus we have together with (3.16)

ûN = βN (e−t1xN − e−ωλxN ) + γN (e−t2xN − e−ωλxN ).

In addition, we have by (3.12) and (3.17)

ûj = − 1
ωλ

{
ĥj(0) +

iξj
t1

(−t1 + ωλ)βN +
iξj
t2

(−t2 + ωλ)γN

}
e−ωλxN

− iξj
t1
βN (e−t1xN − e−ωλxN )− iξj

t2
γN (e−t2xN − e−ωλxN ),

while we have by 3.1, 3.13, and t2k − |ξ′|2 = λsk (k = 1, 2)

ρ̂ = −λ−1ϕ̂ =
s1
t1
βNe

−t1xN +
s2
t2
γNe

−t2xN .

Finally, setting ρ = F−1ξ′ [ρ̂(ξ′, xN )](x′) and uJ = F−1ξ′ [ûJ(ξ′, xN )](x′), we see that (ρ,u) solves

(2.2).
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4. Proof of Theorem 2.1
Throughout this section, we use the notation introduced in the previous section.

4.1. Solution operators
Let us define

M0(xN ) =
e−t2xN − e−t1xN

t2 − t1
, Ml(xN ) =

e−tlxN − e−ωλxN
t2 − t1

(l = 1, 2).

Noting s2 − s1 = λ−1(t22 − t21), we can write (3.19) as

βN = −
(

λ
t22−t21

)
ĝ(0) +

∑N−1
k=1

(
s2µiξk
t22−t21

)
ĥk(0), (4.1)

γN =
(

λ
t22−t21

)
ĝ(0)−

∑N−1
k=1

(
s1µiξk
t22−t21

)
ĥk(0).

One constructs from now on solution operators associated with ρ, uj (j = 1, . . . , N − 1), and
uN that are solutions of (2.2) obtained in the previous section. Let us start with ρ. Note that

ρ = F−1ξ′
[
s2
t2
γN (e−t2xN − e−t1xN )

]
(x′) + F−1ξ′

[(
s1
t1
βN +

s2
t2
γN

)
e−t1xN

]
(x′).

We have by (4.1)

s2
t2
γN (e−t2xN − e−t1xN )

= s2λ
t2(t2+t1)

ĝ(0)M0(xN )−
∑N−1

k=1
s1s2µiξk
t2(t2+t1)

ĥk(0)M0(xN ),

while we have by (3.19)

s1
t1
βN +

s2
t2
γN = 1

s2−s1

(∑2
l=1(−1)l sltl

)
ĝ(0) + s1s2

s2−s1

(
1
t1
− 1

t2

)
µλ−1iξ′ · ĥ′(0).

Combining the last relation with

1

t1
− 1

t2
=
t2 − t1
t1t2

=
λ(s2 − s1)
t1t2(t2 + t1)

furnishes

s1
t1
βN +

s2
t2
γN =

1

s2 − s1

(
2∑
l=1

(−1)l
sl
tl

)
ĝ(0) +

s1s2µ

t1t2(t2 + t1)
iξ′ · ĥ′(0).

Summing up the above computations, we see that

ρ = s2F−1ξ′
[

λ
t2(t2+t1)

M0(xN )ĝ(ξ′, 0)
]

(x′)− s1s2µ
∑N−1

k=1 F
−1
ξ′[

iξk
t2(t2+t1)

M0(xN )ĥk(ξ
′, 0)

]
(x′) + 1

s2−s1
∑2

l=1(−1)lslF−1ξ′
[
1
tl
e−t1xN ĝ(ξ′, 0)

]
(x′)

+s1s2µ
∑N−1

k=1 F
−1
ξ′

[
iξk

t1t2(t2+t1)
e−t1xN ĥk(ξ

′, 0)
]

(x′)

=: A(λ)(g, h1, . . . , hN−1).
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Next we consider uj (j = 1, . . . , N − 1) and uN . They are respectively given by

uj = −F−1ξ′
[

1
ωλ
e−ωλxN ĥj(ξ

′, 0)
]

(x′)

+ 1
s2−s1

∑2
l=1(−1)lF−1ξ′

[
iξj(tl−ωλ)

tlωλ
e−ωλxN ĝ(ξ′, 0)

]
(x′)

+ s1s2µ
s2−s1

∑2
l=1

∑N−1
k=1 (−1)l

(
sl−µ−1

sl

)
F−1ξ′

[
ξjξk

tlωλ(tl+ωλ)
e−ωλxN ĥk(ξ

′, 0)
]

(x′)

−
∑2

l=1(−1)lF−1ξ′
[

iξjλ
tl(t2+t1)

Ml(xN )ĝ(ξ′, 0)
]

(x′)

−s1s2µ
∑2

l=1

∑N−1
k=1 (−1)l 1slF

−1
ξ′

[
ξjξk

tl(t2+t1)
Ml(xN )ĥk(ξ

′, 0)
]

(x′)

=: Bj(λ)(g, h1, . . . , hN−1)

and

uN =
∑2

l=1(−1)lF−1ξ′
[

λ
t2+t1

Ml(xN )ĝ(ξ′, 0)
]

(x′)

−s1s2µ
∑N−1

k=1

∑2
l=1(−1)l 1slF

−1
ξ′

[
iξk
t2+t1

Ml(xN )ĥk(ξ
′, 0)

]
(x′)

=: BN (λ)(g, h1, . . . , hN−1).

This completes the construction of solution operators.

4.2. Classes of symbols
To construct R-bounded solution operator families from A(λ), Bj(λ) (j = 1, . . . , N − 1), and
BN (λ) as above, we introduce two classes of symbols. Let m(ξ′, λ) be a function, defined on
(RN−1\{0})×C+, that is infinitely many times differentiable with respect to ξ′ = (ξ1, . . . , ξN−1)
and holomorphic with respect to λ. For any multi-index α′ = (α1, . . . , αN−1) ∈ NN−1

0 , let us
define

∂α
′

ξ′ =
∂|α
′|

∂ξα1
1 . . . ∂ξ

αN−1

N−1
, |α′| = α1 + · · ·+ αN−1.

If there exists a real number r such that for any multi-index α′ = (α1, . . . , αN−1) ∈ NN−1
0 and

(ξ′, λ) ∈ (RN−1 \ {0})×C+∣∣∣∣∂α′ξ′ ((λ d

dλ

)n
m(ξ′, λ)

)∣∣∣∣ ≤ C(|λ|1/2 + |ξ′|)r−|α′| (n = 0, 1)

with some positive constant C depending on at most N , r, α′, µ, ν, and κ, then m(ξ′, λ) is called
a multiplier of order r with type 1. If there exists a real number r such that for any multi-index
α′ = (α1, . . . , αN−1) ∈ NN−1

0 and (ξ′, λ) ∈ (RN−1 \ {0})×C+∣∣∣∣∂α′ξ′ ((λ d

dλ

)n
m(ξ′, λ)

)∣∣∣∣ ≤ C(|λ|1/2 + |ξ′|)r|ξ′|−|α′| (n = 0, 1)

with some positive constant C depending on at most at most N , r, α′, µ, ν, and κ, then m(ξ′, λ)
is called a multiplier of order r with type 2.

Here and subsequently, we denote the set of all symbols of order r with type j on
(RN−1 \ {0})×C+ by Mr,j(C+). For instance,

ξk/|ξ′| ∈M0,2(C+), ξk, λ
1/2 ∈M1,1(C+) (k = 1, . . . , N − 1),

and also |ξ′|2, λ ∈ M2,1(C+). One notes that Mr,j(C+) are vector spaces on C and that the
following fundamental properties hold (cf. [5, Lemma 5.1]).
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Lemma 4.1. Let r1, r2 ∈ R.

(1) Given lj ∈Mrj ,1(C+) (j = 1, 2), we have l1l2 ∈Mr1+r2,1(C+).

(2) Given mj ∈Mrj ,j(C+) (j = 1, 2), we have m1m2 ∈Mr1+r2,2(C+).

(3) Given nj ∈Mrj ,2(C+) (j = 1, 2), we have n1n2Mr1+r2,2(C+).

Finally, we have from [2, Lemma 2.5]

Lemma 4.2. Let r ∈ R. Then

tr1, t
r
2, ω

r
λ, (t2 + t1)

r ∈Mr,1(C+).

4.3. Proof of Theorem 2.1
Let us construct R-bounded solutions operator families associated with A(λ), Bj(λ) (j =
1, . . . , N − 1), and BN (λ) given in Subsection 4.1. To this end, we use [2, Lemmas 2.6 and 2.7]
for the terms with g, while we use the following two lemmas for the terms with h1, . . . , hN−1.

Lemma 4.3. Let q ∈ (1,∞). Suppose that

k(ξ′, λ) ∈M−2,1(C+), l(ξ′, λ) ∈M−1,1(C+),

and set for x = (x′, xN ) ∈ RN
+

[K0(λ)f ](x) = F−1ξ′
[
k(ξ′, λ)e−ωλxN f̂(ξ′, 0)

]
(x′),

with λ ∈ C+ and f ∈ H1
q (RN

+ ). Then the following assertions hold.

(1) For j = 0, 1, 2 and λ ∈ C+, there exist operators K̃j(λ), with

K̃j(λ) ∈ Hol(C+,L(Lq(R
N
+ )N+1, H3

q (RN
+ ))),

such that for any f ∈ H1
q (RN

+ )

Kj(λ)f = K̃j(λ)(∇f, λ1/2f).

In addition, for j = 0, 1, 2 and n = 0, 1,

RL(Lq(RN
+ )N+1,Aq(RN

+ ))

({(
λ
d

dλ

)n (
SλK̃j(λ)

)∣∣∣∣λ ∈ C+

})
≤ C,

with some positive constant C = C(N, q, µ, ν, κ).

(2) For j = 0, 1, 2 and λ ∈ C+, there exist operators L̃j(λ), with

L̃j(λ) ∈ Hol(C+,L(Lq(R
N
+ )N+1, H2

q (RN
+ ))),

such that for any f ∈ H1
q (RN

+ )

Lj(λ)f = L̃j(λ)(∇f, λ1/2f).

In addition, for j = 0, 1, 2 and n = 0, 1,

RL(Lq(RN
+ )N+1,Lq(RN

+ )N2+N+1)

({(
λ
d

dλ

)n (
TλL̃j(λ)

)∣∣∣∣λ ∈ C+

})
≤ C,

with some positive constant C = C(N, q, µ, ν, κ).
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Lemma 4.4. Let q ∈ (1,∞). Suppose that

m0(ξ
′, λ) ∈M−1,1(C+), m1(ξ

′, λ),m2(ξ
′, λ) ∈M0,1(C+),

and set for x = (x′, xN ) ∈ RN
+

[Mk(λ)f ](x) = F−1ξ′
[
mk(ξ

′, λ)Mk(xN )f̂(ξ′, 0)
]

(x′),

with λ ∈ C+ and f ∈ H1
q (RN

+ ). Then the following assertions hold.

(1) For λ ∈ C+, there exists an operator M̃0(λ), with

M̃0(λ) ∈ Hol(C+, Lq(R
N
+ )N+1, H3

q (RN
+ )),

such that for any f ∈ H1
q (RN

+ )

M0(λ)f = M̃0(λ)(∇f, λ1/2f).

In addition, for n = 0, 1,

RL(Lq(RN
+ )N+1,Aq(RN

+ ))

({(
λ
d

dλ

)n (
SλM̃0(λ)

)∣∣∣∣λ ∈ C+

})
≤ C,

with some positive constant C = C(N, q, µ, ν, κ).

(2) For j = 1, 2 and λ ∈ C+, there exists operators M̃j(λ), with

M̃j(λ) ∈ Hol(C+,L(Lq(R
N
+ )N+1, H2

q (RN
+ ))),

such that for any f ∈ H1
q (RN

+ )

Mj(λ)f = M̃j(λ)(∇f, λ1/2f).

In addition, for j = 1, 2 and n = 0, 1,

RL(Lq(RN
+ )N+1,Lq(RN

+ )N2+N+1)

({(
λ
d

dλ

)n (
TλM̃j(λ)

)∣∣∣∣λ ∈ C+

})
≤ C,

with some positive constant C = C(N, q, µ, ν, κ).

By Lemmas 4.1 and 4.2, we observe that the symbols appearing the solution operators satisfy
the following conditions: In the case of A(λ),

λ

t2(t2 + t1)
∈M0,1(C+),

iξk
t2(t2 + t1)

,
1

t1
,

1

t2
∈M−1,1(C+),

iξk
t1t2(t2 + t1)

∈M−2,1(C+);
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In the case of Bj(λ) (j = 1, . . . , N − 1),

1

ωλ
∈M−1,1(C+),

iξj(t1 − ωλ)

t1ωλ
,
iξj(t2 − ωλ)

t2ωλ
∈M0,1(C+),

ξjξk
t1ωλ(t1 + ωλ)

,
ξjξk

t2ωλ(t2 + ωλ)
∈M−1,1(C+),

iξjλ

t1(t2 + t1)
,

iξjλ

t2(t2 + t1)
∈M1,1(C+),

ξjξk
t1(t2 + t1)

,
ξjξk

t2(t2 + t1)
∈M0,1(C+);

In the case of BN (λ),
λ

t2 + t1
∈M1,1(C+),

iξk
t2 + t1

∈M0,1(C+).

Thus, applying [2, Lemmas 2.6 and 2.7] and Lemmas 4.3 and 4.4 to A(λ), Bj(λ) (j =
1, . . . , N−1), and BN (λ), we obtain the R-bounded solution operator families stated in Theorem
2.1. This completes the proof of Theorem 2.1
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