SEARCH

a

Home Publication Ethics

Guideline

Submit a Manuscript

Individual Subscriber Login

Impact Factor

Journal Home

Editorial Board

Guidelines for Authors

Subscribe

Content

Publication Ethics and Publication Malpractice Statement

Journal Metrics / Impact Factor

Categories

Chemical Sciences

Computer Sci. and Engineering

Life Sciences

Mathematical Education

Mathematical Sciences

Oceanography

Statistics and Probability Theory

U- ESCI (Thomson Reuters)

U- Open Access

UGC Approved Journals

All Journals

Far East Journal of Mathematical Sciences

Journal

(FJMS)

Editorial Board

Androulakis, George S.

Department of Business Administration University of Patras GR-265.00 Patras Greece [Optimization, Time Series Forecasting, Computer Adaptive Tests]

ONLINE SUBMISSION

Atakishiyev, Natig M.

Institute of Mathematics
University Nacional
Autonoma de Mexico
Av. Universidad s/n
Cuernavaca 62250,
Morelos
Mexico
[Special Functions and
Difference Equations,
Integral and Finite Fourier
Transforms]

ONLINE SUBMISSION

Bardaro, Carlo

Department of
Mathematics and
Informatics
University of Perugia
Via Vanvitelli 1, 06123
Perugia
Italy
[Approximation Theory,
Signal Analysis, Operator
Theory]

ONLINE SUBMISSION

Carbone, Antonio

Dipartimento di Matematica Universita Della Calabria 87030 Arcavacata di Rende (Cosenza) Italy [Nonlinear Analysis, Fixed Point Theory, Variational Inequalities, Mathematical Economics]

ONLINE SUBMISSION

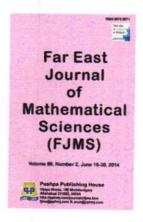
Cevik, Ahmet Sinan

Department of
Mathematics
Selçuk University
Faculty of Science
Campus, 42075 Konya
Turkey
[Combinatorial Group and
Semigroup Theory,
Algebraic and Specktral
Graph Theory]

ONLINE SUBMISSION

Chanagt, Manoi

Department of Futures Studies University of Kerala Trivandum- 695 034 India [General and Graph Theory, Convexity Theory in particular]


ONLINE SUBMISSION

Chen, Yong Gao

School of Mathematical Sciences Nanjing Normal

Cheung, W. S.

Faculty of Science Department of Mathematics

LATEST ISSUE

SUBMIT AN ARTICLE

SEARCH WITHIN JOURNALS

University Nanjing, Jiangsu 210023 China [Combinatorial Number Theory, Analytic Number Theory] The University of Hong Kong Pokfulam Road Hong Kong [Inequalities]

ONLINE SUBMISSION

ONLINE SUBMISSION

Cho, Nak Eun

Department of
Mathematics
Pukyong National
University
Busan 608-737
Korea (south)
[Complex Analysis,
Geometric Function
Theory and Univalent
Functions]

ONLINE SUBMISSION

Cuevas, Claudio

Departamento de
Matemática
Universidade Federal de
Pernambuco
Recife-PE, CEP. 50540740
Brazil
[Difference Equations,
Periodicity and Ergodicity,
Dispersive Estimates,
Fractional Differential
Equations, Functional
Differential Equations,
Integral and IntegroDifferential Equation]

ONLINE SUBMISSION

Cui, Zhenlu

Department of
Mathematics and
Computer Science
Fayetteville State
University
1200 Murchison Rd.,
Fayetteville
NC 28301
USA
[Multiscale Modeling of
Soft Matters, Perturbation
Analysis, Numerical
Analysis, Approximation
Theory]

Darus, Maslina

School of Mathematical Sciences Faculty of Science & Technology University Kebangsaan Malaysia 43600 Selangor Malaysia [The Theory of Univalent Functions, Complex Analysis, The Theory of Geometric Moments]

ONLINE SUBMISSION

ONLINE SUBMISSION

Das, Manav

Department of
Mathematics
University of Louisville
328 Natural Sciences
Building
Louisville, Kentucky
40292
USA
[Real Analysis, Measure
Theory, Fractal Geometry,
Algorithms]

ONLINE SUBMISSION

Ferrara, Massimiliano

Department of Law and Economics
University Mediterranea of Reggio Calabria
Via dei Bianchi, 2 Palazzo Zani - 89127
Reggio Calabria
Italy
[Mathematical Economics, Dynamical Systems and Applications, Growth Models]

ONLINE SUBMISSION

Fu, Shusheng

Department of
Mathematics
Fuzhou University
Fuzhou
China
[Real Analysis and
Fractal]

ONLINE SURMISSION

Ganci, Salvatore

Studio di Catalogazione e Conservazione Strumenti Scientifici 16030 Casarza Ligure (GE) Italy [Mathematical problems in the Scalar Theory of diffraction]

ONLINE SUBMISSION

Gao, Lingyun

Department of
Mathematics
Jinan University
Guangzhou 510632
China
[Complex
Analysis,Complex
Differential (difference)
Equations]

ONLINE SUBMISSION

Gao, Wei Dong

Center for Combinatorics Nankai University Tianjin 300071 China [Number Theory and Combinatorics]

ONLINE CHRMISSION

Georgiou, Dimitris

Department of

Mathematics
University of Patras
265 04 Patras
Greece
[Dimension Theory,
Universal Spaces,
Function Spaces]

ONLINE SUBMISSION

Ghikas, Demetris P. K.

Department of Physics University of Patras 26500 Patras Greece [Dynamical Systems, Quantum Mechanics, Quantum Information Theory, Information Geometry]

ONLINE SUBMISSION

Jahangiri, Jay M.

Department of Mathematics Kent State University Burton, Ohio 44021-9500 USA [Complex Analysis]

ONLINE SUBMISSION

James, Lisa M.

Mathematics & Computer Science Department Oakwood University 7000 Adventist Boulevard Huntsville, AL 35896 USA

ONLINE SUBMISSION

Jeong, Moonja

Department of Mathematics University of Suwon Suwon Kyungkido, 440-600

Jun, Young Bae

Department of Mathematics Education Gyeongsang National University Chinju 660-701 Korea (south) Korea (south)
[Complex Analysis]

[BCK/BCL-Algebra and Universal Algebra]

ONLINE SUBMISSION

ONLINE SUBMISSION

Kikuchi, Koji

Department of Applied
Mathematics
Faculty of Engineering
Shizuoka University
3-5-1 Johoku Hamamatsu
Shizuoka
432-8561
Japan
[PDEs, Calculus of
Variations]

Kojima, Hideo

Department of
Mathematic
Faculty of Science
Niigata University
8050 Ikarashininocho
Nishi-Ku Niigata-shi 9502181
Japan
[Algebraic Geometry]

ONLINE SUBMISSION

ONLINE SUBMISSION

Krivtsov, Victor N.

Department of
Mathematical Logic and
Algorithms Theory
Faculty of Mechanics and
Mathematics
Moscow State University
Vorob'evy Gory
119899 Moscow
Russian Federation
[Mathematical Logic and
Foundations, Model
Theory]

Li, Hong-Xu

Department of
Mathematics
Sichuan University
Chengdu, Sichuan
610064
China
[Functional Differential
Equations, Ordinary
Differential Equations,
Almost Periodicity,
Nonlinear Functional
Analysis]

ONLINE SUBMISSION

ONLINE SUBMISSION

Li, Tongzhu

Department of Mathematics Beijing Institute of Technology Beijing, 100081 China

Liu, Jin-Lin

Department of Mathematics Yangzhou University Yangzhou 225002 China [Geometric Function Theory]

ONLINE SUBMISSION

ONLINE SUBMISSION

Marr, Alison

Department of
Mathematics
Southwestern University
1001 E University Ave
Georgetown, TX 78626
USA
[Graph Theory, Graph

Masood, Dania

Jeddah Saudi Arabia [General Topology and Wavelets]

ONLINE SUBMISSION

ONLINE SUBMISSION

Matsuda, Haruhide

Labeling]

Misaghian,

Department of
Mathematics
Shibaura Inst of Tech
307 Fukasaku, Minumaku
Saitama, 337-8570
Japan
[Graph Theory]

ONLINE SUBMISSION

Manouchehr

Department of
Mathematics
Prairie View A & M
University
Prairie View, TX 774460519
USA
[Abstract Algebra]

ONLINE SUBMISSION

Park, Jong Seo

Department of Mathematics Education Chinju National University of Education Jinju 660-756 Korea (south) [Fuzzy Theory, Fixed Point Theory]

ONLINE SUBMISSION

Ryoo, Cheon Seoung

Department of
Mathematics
Hannam University
Daejeon 306-791
Korea (south)
[Scientific Computing,
Special Polynomials]

ONLINE SUBMISSION

Sankar, D. S.

School of Applied
Sciences and
Mathematics
Universiti Teknologi
Brunei
Jalan Tungku Link
Gadong BE 1410
Brunei Darussalam
[Ordinary and Partial
Differential Equations,
Mathematical Economics]

ONLINE SUBMISSION

Santana, Alexandre J.

Department of **Mathematics** Universidad Estadual de Maringa DMA, Av Colombo Maringa, CEP 87020-900 Brazil [Control Systems on Lie Groups and Homogeneous Spaces, Controllability of Control Systems and Lie Groups, Topological Classification and Entropy for Control Systems and Semigroup Actions]

ONLINE SURMISSION

Shen, Chun-Yen

Department of
Mathematics
National Central
University
Zhongli, 32001
Taiwan
[Harmonic Analysis and
Combinatorial Number
Theory]

ONLINE SUBMISSION

Shum, K. P.

Institute of Mathematics Yunnan University Kunming, 650091 China [Semigroups, Rings and Modules]

ONLINE SUBMISSION

Simson, Daniel

Nicolaus Copernicus

Singh, Pooja

Department of Applied

Pushpa Publishing House

University
Faculty of Mathematics
and Computer Science
ul. Chopina 12/18, 87100 Torun
Poland
[Algebra, Discrete
Mathematics, Algebraic
Combinatorics,
Representation Theory,
Symbolic Computation]

Science & Humanities Rajkiya Engineering College Banda, U.P. India [General Topology and Wavelets]

ONLINE SUBMISSION

ONLINE SUBMISSION

Sitaramaiah, Varanasi

Department of
Mathematics
Institute of Technology
GITAM University
Visakhapatnam, SP
530045
India
[Number Theory]

Smirnov, Andrei Leonidovich

Faculty of Mathematics and Mechanics
St Petersburg State
University
University Avenue, 28
St Petersburg, 198504
Russian Federation
[Asymptotic Methods in Mechanics, Computational Mechanics, Bucking and Vibrations of Solids, Theory of Shells]

ONLINE SUBMISSION

ONLINE SUBMISSION

Srivastava, Ashish K.

Department of
Mathematics & Computer
Science
Saint Louis University
221 N. Grand Blvd.
Saint Louis, MO-63103
USA
[Noncommutative Ring
Theory]

Tang, Chun-Lei

School of Mathematics and Statistics Southwest University Chongqing, 400715 China [Elliptic Equations, Nonlinear Spectral Theory, Nonlinear Eigenvalue Problems]

ONLINE SUBMISSION

ONLINE SUBMISSION

Thandapani, E.

Ramanujan Institute for Advanced Study in Mathematics University of Madras Chennai- 600 005 India [Differential Equation (ODE & PDE) and Difference Equations]

ONLINE SUBMISSION

Toda, Magdalena

Department of
Mathematics and
Statistics
Texas Tech University
Lubbock TX
USA
[Geometry, Integrable
Systems, Mathematical
Physics, and Non-Linear
Partial Differential
Equations]

ONLINE SUBMISSIO

Toews, Carl A.

Tripathy, B. C.

Department of
Mathematics
University of Puget Sound
1500 N Warner St
Tacoma, WA 98416
USA
[Mathematical Biology,
Operations Research,
Imaging, and Optimal
Control]

Department of Mathematics Tripura University Suryamaninagar, Agartala - 799022, Tripura India [Analysis]

ONLINE SURMISSION

ONLINE SUBMISSION

Tulovsky, Vladimir

Department of
Mathematics and
Computer Science
Saint John's University
300 Howard Avenue
Staten Island, NY 10301
USA
[Partial Differential
Equations]

Wang, Qing-Wen

Department of Mathematics Shanghai University 99 Shangda Road Shanghai, 200444 China [Linear Algebra, Matrix Theory, Operator Algebra]

ONLINE SUBMISSION

ONLINE SUBMISSION

Williams, G. Brock

Department of Mathematics & Statistics Texas Tech University Broadway and Boston Lubbock, TX 79409-1042 USA [Complex Analysis, Riemann Surfaces, Circle Packing]

Yang, Xiao-Jun

Department of
Mathematics and
Mechanics
China University of Mining
and Technology
Xuzhou, Jiangsu, 221008
China
[Fractional Calculus and
Applications, Analytical
and Approximate
Solution, PDEs, Fourier
Analysis, Wavelets, Signal
Processing]

ONLINE SUBMISSION

ONLINE SUBMISSION

Zhang, Chaohui

Department of
Mathematics
Morehouse College
Atlanta, GA 30314
USA
[Riemann Surfaces and
Quasi Conformal
Mappings, Ahlfors-Bers
Theory of Teichmuller
Spaces and Moduli
Spaces, Mapping Class
Groups and NielsenThurstons Classification
of Mapping Classes,
Hyperbolic Geometry,

Zhang, Pu

Department of
Mathematics
Shanghai Jiao Tong
University
Shanghai 200240
China
[Algebra Representation
Theory and Quantum
Groups]

ONLINE SUBMISSION

Low Dimensional Geometry and Topology]

ONLINE SUBMISSION

Zhao, Kewen

Department of
Mathematics
Qiongzhou University
Hainan, 57200
China
[Combinatorial Matrix
Theory, Combinatorial
Optimization, Extremal
Graph Theory]

ONLINE SUBMISSION

Home Journals Books & Monographs Institutional Price List Refund Policy Disclaimer Policy

This website is best viewed at 1024x768 or higher resolution with Microsoft Internet Explorer 6 or newer.

Privacy Policy Shipping & Delivery Terms and Conditions

Copyright 2012

also developed by scimago:

Scimago Journal & Country Rank Enter Journal Title, ISSN or Publisher Name

Journal Rankings

Country Rankings

Viz Tools

Help

About Us

Far East Journal of Mathematical Sciences

Country

India - IIII SIR Ranking of India

Subject Area and Category

Mathematics

Mathematics (miscellaneous)

H Index

Publisher

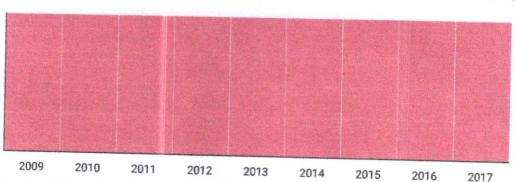
Publication type

Pushpa Publishing House

ISSN

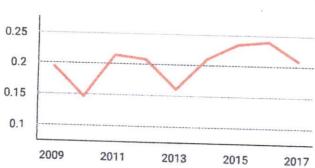
09720871

Journals

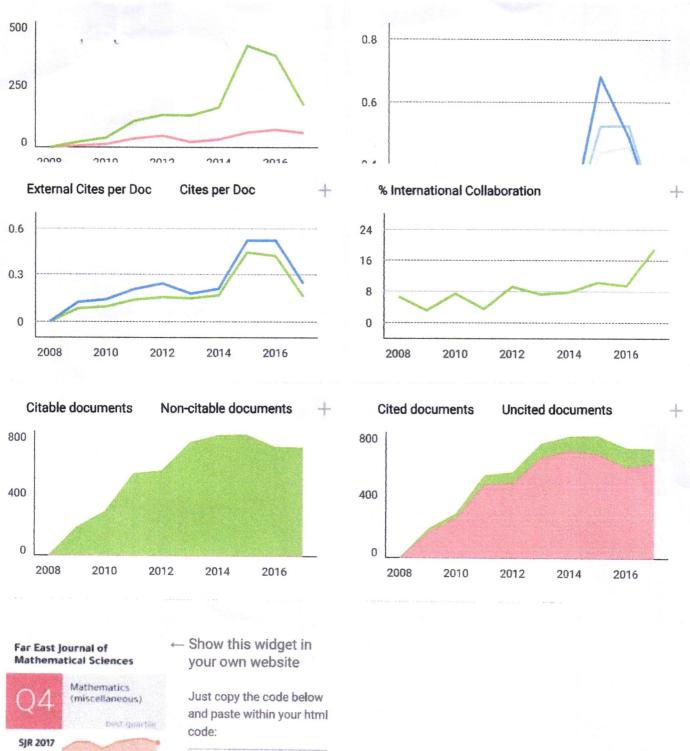

Coverage

2008-2017 (cancelled)

Join the conversation about this journal



Mathematics (miscellaneous)


SJR

Citations per document

Total Cites

Self-Cites

powered by scanagour com-

0.21

<a href="https://www.scimaç

kassim Abdulhameed 1 month ago

My question, is this journal ((far east journal of mathematical sciences)) indexed or not in scopus till now?

I hope from you to reply me as soon as possible because i need it necessary. thanks

reply

SEARCH

Home

Impact Factor

Submit a Manuscript

Far East Journal of

Journal Home

Editorial Board

Guidelines for Authors

Subscribe

Content

Publication Ethics and **Publication Malpractice** Statement

Journal Metrics / Impact

Factor

Categories

Chemical Sciences

Computer Sci. and Engineering

Life Sciences

Mathematical Education

Mathematical Sciences

Oceanography

Statistics and Probability

Theory

U- ESCI (Thomson Reuters)

U- Open Access

UGC Approved Journals

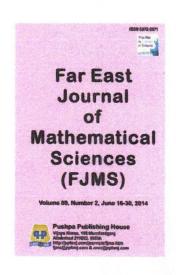
All Journals

Alms and Scope:

The Far East Journal of Mathematical Sciences (FJMS) is aimed at to provide an outlet to original research papers and review articles of current interest in all areas of Pure and **Applied** Mathematics, Statistics, Theoretical Mechanics, **Mathematical** Physics, Theoretical Computer Science, Mathematical Biology and Financial Mathematics. Application oriented work for users of Mathematics is also encouraged. Being aware with ever-expansion of the

Frequency:

topics as well.


The FJMS is being published in twelve volumes annually and each volume comprises of two issues. It is a fortnightly journal.

subject, the journal remains

open for upcoming newer

Abstracting, Indexing and Reviews:

- Google-based **Journal** Impact Factor (2016): 1.04
- Google-based 5-Year CiteScore (Average Citations per Article): 2.75
- Academic Keys (A Higher Education Journals in

LATEST ISSUE

SUBMIT AN ARTICLE

SEARCH WITHIN JOURNALS

Sciences)

- AMS Digital Mathematics Registry
- CrossRef DOIs databases
- EBSCOhost
- Excellence in Research for Australia (ERA Journal 2018 ID: 519)
- Global Impact Factor: 0.987
- Google Scholar
- IndexCopernicus
- · Indian Science Abstracts
- · Indian Citation Index
- UGC Approved Journals:
 Journal SL No. 29237
- J-Gate
- OCLC
- ProQuest
- RG Journal Impact: 0.56 (ResearchGate)
- Scilit (Switzerland)
- Ulrichsweb
- Zentralblatt MATH
- i-Journals
 (www.ijournals.my)
- i-Focus (www.ifocus.my)
- /-Future (www.ifuture.my)

Editor-in-Chief:

Professor K. K. Azad
Retired Professor & Head
Department of Mathematics
Ex-Dean, Faculty of Science
University of Allahabad
Vijaya Niwas, 198,
Mumfordganj
Allahabad 211 002, INDIA
kkazad@pphmj.com

Home Journals Books & Monographs Institutional Price List Refund Policy

This website is best viewed at 1024x768 or higher resolution with Microsoft Internet Explorer 6 or newer. Disclaimer Policy Privacy Policy Shipping & Delivery Terms and Conditions

Copyright 2012

http://www.pphmj.com

http://dx.doi.org/10.17654/MS106020463 Volume 106, Number 2, 2018, Pages 463-474

ISSN: 0972-0871

THE NONCENTRAL t DISTRIBUTION AND ITS APPLICATION ON THE POWER OF THE TESTS

B. Pratikno, Jajang, Z. Amalia, G. M. Pratidina and R. Zulfia

Department of Mathematics Faculty of Mathematics and Natural Science Jenderal Soedirman University Purwokerto, Indonesia

Abstract

We study the noncentral t (NCT) distribution, analyze it graphically and provide its application on the power of the tests in multivariate simple regression model (MSRM). The power of the tests, namely unrestricted test (UT), restricted test (RT) and pre test-test (PTT), are used to test the coefficients of parameters of the MSRM. In computing the power of the tests, plot of their graphs, and the values of the cdf of the NCT distribution and their graphs, R-code is used. The results showed that the curve of the NCT distribution is influenced by the noncentral parameter (δ), $\delta \geq 1$, and the power of the test of the PTT still remains an alternative choice of the tests among UT and RT.

1. Introduction

Following Amos [4], the noncentral t (NCT) distribution is written as $T'_{\nu}(\delta)$ with noncentral parameter (δ) , $\delta > 0$, and ν degrees of freedom. For $\delta = 0$, it will be a central t (univariate central t) distribution. The central t distribution is used in many areas of statistical analysis [11] such as testing

Received: March 20, 2018; Revised: April 26, 2018; Accepted: May 2, 2018

2010 Mathematics Subject Classification: 62H10, 62E17, 62Q05.

Keywords and phrases: power of the tests, noncentral t distribution, noncentral parameter.

mean (Bain and Engelhardt [11], Hogg and Tanis [18], Larson [8]). We note that the critical values of t central distribution is available in many textbooks. Furthermore, the probability density function (pdf) of central t distribution of a T random variable with v degrees of freedom, zero mean and variance $\frac{v}{v-2}$, $v \ge 2$, is then given by

$$f(t; v) = \frac{\Gamma\left(\frac{v+1}{2}\right)}{\sqrt{\pi v}} \left[1 + \frac{t^2}{v}\right]^{-\frac{v+1}{2}},\tag{1}$$

with
$$Z \sim N(0, 1)$$
, $U \sim \chi^2(v)$ and $T = \frac{Z}{\sqrt{U/v}}$.

Moreover, Levy and Narula [10], Johnson et al. [13] and Shao [9] presented the pdf of the NCT distribution in their papers. Some applications of the NCT distribution are found in Johnson and Welch [12], and Cousineau and Laurencelle [6]. Following Levy and Narula [10], the pdf formula of the NCT distribution is given as

$$f(t) = c \sum_{k=0}^{\infty} \frac{\Gamma(\frac{v+k+1}{2}) \delta^k 2^{\frac{k}{2}} t^k}{\Gamma(k+1)(v+t^2)^{\frac{k}{2}}},$$
 (2)

where $T_{\nu}'(\delta) = \frac{Z + \delta}{\sqrt{U/\nu}}$, $Z \sim N(0, 1)$, δ is noncentral parameter, $U \sim \chi_{\nu}^2$, and

$$c = \frac{v^{\frac{\nu}{2}}}{\sqrt{\pi}\Gamma\left(\frac{\nu}{2}\right)} \times \frac{e^{\frac{-\delta^2}{2}}}{(\nu + t^2)^{\frac{(\nu+1)}{2}}}, \quad E[T'_{\nu}(\delta)] = \delta\left(\frac{\nu}{2}\right)^{\frac{1}{2}} \frac{\Gamma\left(\frac{\nu-1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}$$

and

v is degrees of freedom. Here,

$$Var(T'_{v}(\delta)) = \frac{v}{v-2}(1-\delta^{2}) - (E[T'_{v}(\delta)])^{2},$$

respectively. The pdf values of equation (2) have not been seen in textbooks yet. Currently, the table of the statistics critical values of this distribution is only for the central t distribution ($\delta = 0$). Note that equation (2) is the pdf default of the NCT distribution that is available in R package. From equation (2), it is clear that the computation of the probability integral of the pdf and cumulative distribution function (cdf) of the NCT distribution are very complicated and hard, so they should be numerically computed, and R-code is then used. As the values of the cdf are used to accept or reject null hypothesis (H_0), we need to create the statistics critical values table for both (the pdf and cdf) of the NCT distribution.

Due to the equivalency of the F central distribution with square central t distribution, we consider the equivalency of the square noncentral t with the noncentral F (or bivariate noncentral F) distribution (Pratikno [3]). Here, many authors have already studied noncentral F distribution, such as Krishnaiah and Armitage [14], Amos and Bulgren [5], Schuurmann et al. [7], El-Bassiouny and Jones [1] and Pratikno [3].

Many authors have used the noncentral (univariate and or bivariate) F distribution such as Pratikno [3], Khan and Pratikno [19] and Khan [20] in testing intercept using non-sample prior information (NSPI). Pratikno [3] used the bivariate noncentral F (BNCF) distribution to compute the power of the tests of the unrestricted test (UT), restricted test (RT) and pre-test test (PTT) in testing intercept using NSPI on simple regression model (SRM), while Khan [20, 21], Khan and Saleh [23-25], Khan and Hoque [22], Saleh [2] and Yunus [16] contributed to develop the research in estimation area. All the authors have used R-code for calculating the values of the power of the test (PTT).

Because of the importance of this distribution in SRM, we studied this distribution in more detail particularly in computation of the pdf, cdf, graphical analysis and applied in testing intercept on the multivariate simple regression model (MSRM). The steps of the research methodology are (1) reexpressed and figured the pdf formula, (2) computed the values of the cdf of the NCT distribution, and (3) graphical analysis of the power of the tests.

Here, *R-code* is used to figure pdf and compute the values of the cdf of the NCT distribution and power of the tests (UT, RT and PTT).

Analysis of the noncentral *t* distribution is given in Section 2. The power and size of the tests are obtained in Section 3. Section 4 describes the conclusion of the research.

2. Analysis of the Noncentral t Distribution

In this section, we re-expressed the pdf formula of equation (2) as follows. Let $Z \sim N(0, 1)$ and $U \sim \chi_{\nu}^2$, and $T_{\nu}'(\delta)$ be a noncentral random variable given by $T = \frac{Z + \delta}{\sqrt{U/\nu}}$, with Z = z, U = u, $T_{\nu}'(\delta) = t$ and Z = t

 $T\sqrt{U/v} - \delta$. Then the join pdf of the Z and U is given as

$$f(z, u) = f(z) \cdot f(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \cdot \frac{1}{2^{v/2} \Gamma(\frac{v}{2})} u^{\frac{v}{2} - 1} e^{-\frac{u}{2}}.$$

Furthermore, the join pdf of the noncentral random variable T and U is given as

$$f(t, u) = f(t\sqrt{u/v} - \delta, u) \cdot |J|$$

$$= \frac{1}{\sqrt{\pi} 2^{v+1/2} \Gamma\left(\frac{v}{2}\right)} u^{\frac{v}{2} - 1} e^{-\frac{(t\sqrt{u/v} - \delta)^2}{2} - \frac{u}{2}} \cdot \sqrt{\frac{u}{v}}.$$

The marginal function of f(t) is then obtained as

$$f(t) = \int_{0}^{\infty} f(t, u) du = \int_{0}^{\infty} \frac{2^{-(\nu+1/2)} v^{-\frac{1}{2}}}{\sqrt{\pi} \Gamma\left(\frac{\nu}{2}\right)} u^{\frac{\nu}{2} - \frac{1}{2}} e^{-\frac{1}{2}\left[\left(t\sqrt{u/\nu} - \delta\right)^{2} + u\right]} du$$

$$= \frac{2^{-(\nu+1/2)} v^{-\frac{1}{2}}}{\sqrt{\pi} \Gamma\left(\frac{\nu}{2}\right)} e^{-\frac{\delta^{2}}{2}} \sum_{k=0}^{\infty} \frac{\delta^{k} t^{k}}{v^{k/2} \Gamma(k+1)} \int_{0}^{\infty} u^{\frac{\nu+k-1}{2}} e^{-\frac{1}{2}\left[u\left(\frac{t^{2}}{\nu} + 1\right)\right]} du, \quad (3)$$

with $e^{\delta t \sqrt{u/v}} = \sum_{k=0}^{\infty} \frac{\delta^k t^k u^{k/2}}{v^{k/2} \Gamma(k+1)}$ and $\Gamma(k) = (k-1)!$. Equation (3) is written

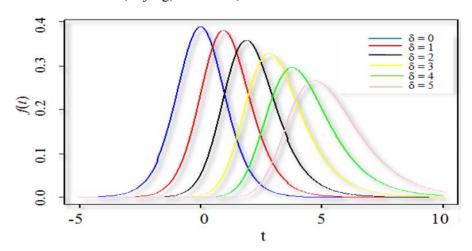
as

$$f(t) = \frac{2^{-(v+1/2)}v^{-\frac{1}{2}}}{\sqrt{\pi}\Gamma(\frac{v}{2})}e^{-\frac{\delta^2}{2}}$$

$$\times \sum_{k=0}^{\infty} \frac{\delta^k t^k v^{\frac{v+1}{2}}}{\Gamma(k+1)(t^2+v)^{\frac{v+k+1}{2}}} \int_0^{\infty} w^{\frac{v+k-1}{2}} e^{-\frac{1}{2}w} dw,$$

with $du = \frac{v}{t^2 + v} dw$ and $u = \frac{vw}{(t^2 + v)}$. Applying $\beta^{\alpha} \Gamma(\alpha) = \int_0^{\infty} x^{\alpha - 1} e^{-\frac{x}{\beta}} dx$

to the above equation, we obtain


$$f(t) = \frac{2^{-(v+1/2)}v^{-\frac{1}{2}}}{\sqrt{\pi}\Gamma(\frac{v}{2})}e^{-\frac{\delta^2}{2}}$$

$$\times \sum_{k=0}^{\infty} \frac{\delta^k t^k v^{\frac{v+1}{2}}}{\Gamma(k+1)(t^2+v)^{\frac{v+k+1}{2}}} 2^{\frac{v+k+1}{2}}\Gamma(\frac{v+k+1}{2})$$

$$= c \times \sum_{k=0}^{\infty} \frac{\Gamma(\frac{v+k+1}{2})}{\Gamma(k+1)} \frac{\delta^k t^k 2^{\frac{k}{2}}}{(t^2+v)^{\frac{k}{2}}}$$
(4)

with
$$c = \frac{v^{\frac{v}{2}}}{\sqrt{\pi}\Gamma(\frac{v}{2})} \times \frac{e^{-\frac{\delta^2}{2}}}{(t^2 + v)^{\frac{v+1}{2}}}.$$

The graphs of the pdf of the NCT distribution of equation (4) for some selected δ , $\delta = 0, 1, 2, ..., 5$, at $\nu = 10$ and k = 110, are given in Figure 1.

Figure 1. pdf plot of the NCT distribution for v = 10, $\delta = [0, 1, 2, 3, 4, 5]$, k = 110.

From Figure 1, we see that the curves change to the right as δ increases. However, the form of the curves does not significantly change, but tends to be skew positive later. It is also clear that the centers (extreme) of the curves decline with increase in δ ($\delta \geq 1$).

A simulation study is given to produce the values of the cdf of the noncentral t distribution for v = 10, $\delta = 3$ and k = 110. These are presented in Table 1.

Table 1. The values of the cdf of the NCT distribution at k = 110

t	-3	-2	-1	0	1	2	3
The values of the cdf, $k = 110$	0.002	0.022	0.139	0.460	0.812	0.966	0.996

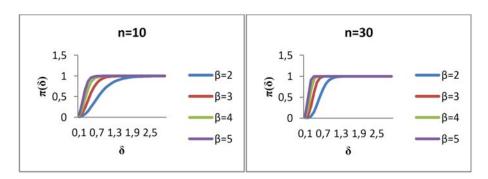

Note that k has no significant effect to the values of the pdf of the NCT distribution. The values of the cdf are computed using R. Here, the lower limit of the integral is not infinity. This is due to the fact that R does not work at infinity, it works at -100 as minimum lower limit. Due to this obstacle, we simulate **to produce** the critical values of the *NCT* distribution for some selected α , δ and ν in Table 2.

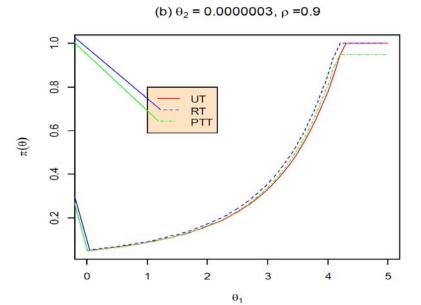
Table 2. The critical values of the NCT distribution for $\delta = 0.01$ and 0.05; v = 5, 10, 15 at $\alpha = 0.01$ and 0.05

				$\alpha = 0.01$
δ	$1-\alpha$	v = 5	v = 10	v = 15
0.01	0.99	3.38	2.78	2.61
0.05	0.99	3.46	2.83	2.66
				$\alpha = 0.05$
δ	$1-\alpha$	v = 5	v = 10	v = 15
0.01	0.95	2.03	1.82	1.76
0.05	0.95	2.09	1.87	1.81

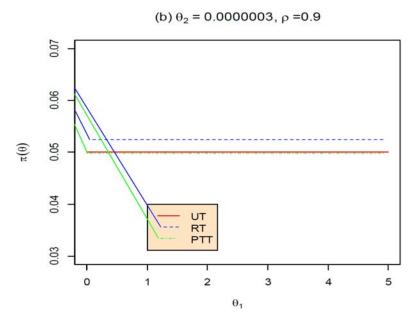
3. The Power and Size of the Tests

The power is defined as the probability to reject H_0 under $H_a: \theta = \theta_a$. It is written as $\pi(\theta_a) = P(reject H_0 | \theta = \theta_a)$. Similarly, the size is written as probability to reject H_0 under $H_0: \theta = \theta_0$. To illustrate the graph of the power, we present the graphs of the power in testing parameters shape (δ, β) for one-side hypothesis on Weibull distribution, in Figure 2.

Figure 2. The graphs of power in testing parameter δ at $\alpha = 0, 1$.


It is clear (see Figure 2) that the power of the test increases as the sample size (n) and parameter shape β increase.

Many authors, such as Pratikno [3], Khan [20], Khan and Hoque [22], Yunus [16], Yunus and Khan [15], Khan and Pratikno [19], Khan et al. [26]


470

and Khan and Saleh [23-25] have used the power and size of the tests in testing intercept using non-sample prior information (NSPI). Following Pratikno [3], there are three tests for those, namely unrestricted test (UT), restricted test (RT) and pre-test test (PTT). In this case, the bivariate noncentral F distribution is used to compute the power of the pre-test test (PTT) on the multivariate simple regression model (MSRM). The formula of the power and size of the tests of the UT, RT and PTT are found in Pratikno [3] in testing hypothesis one-side or two-side hypothesis in MSRM. Here, the probability integral of the power and size of the PTT is very complex and not simple, so they are computed by R using bivariate noncentral F (BNCF) distribution. In this R-code, we modified the integral probability of the BNCF distribution using the square of the NCT distribution. A simulation is given using generated data from R in MSRM case. In this simulated example, we generated random data using R package. The explanatory variable (x) is generated from the uniform distribution between 0 and 1. The error vector (e) is generated from the multivariate normal distribution with $\mu = 0$ and $\Sigma =$ $\sigma^2 I_2$. Then, the dependent variable (y_i) is determined for fixed parameters β random. For the computation of the power functions of the tests we set $\alpha_1 = \alpha_2 = 0.05$, and generate n = 30 variates. The graphs of the power and size of the tests are produced using the formulas found in Pratikno [3]. The simulation graphs of the power and size of the tests for correlation coefficient 0.9 are then presented in Figure 2 and Figure 3 below.

From Figures 3 and 4, we have to choose the maximum power and minimum size to obtain the significant test. It is clear that the power of the PTT lies between UT and RT, and it increases as the UT and RT increase. Here, we see that the size of the PTT is the smallest (Figure 3), so the PTT would be an eligible choice of the test to be recommended.

Figure 3. The power of the tests UT, RT and PTT.

Figure 4. The size of the tests UT, RT and PTT.

4. Conclusion

We studied NCT distribution and its graphical analysis along with applications in the MSRM. To compute the power of the tests and plots of their graphs, R-code and square of the NCT distribution (as modified for BNCF) are used. The results showed that the curves of the NCT distribution tend to be skew positive for a large noncentral parameter. The sensitivity noncentral parameter occurred for $\delta \geq 1$. In terms of the power and size of the tests, the PTT could be a best choice of the test between UT and RT. This is due to the fact that the power of the PTT lies between UT and RT and the size of the PTT is minimum.

Acknowledgement

The authors thank the anonymous referees for their valuable suggestions and comments which improved the presentation of the paper.

References

- [1] A. H. El-Bassiouny and M. C. Jones, A bivariate *F* distribution with marginals on arbitrary numerator and denominator degrees of freedom, and related bivariate beta and *t* distributions, Statist. Meth. Appl. 18(4) (2009), 465-481.
- [2] A. K. Md. E. Saleh, Theory of Preliminary Test and Stein-type Estimation with Applications, John Wiley and Sons, Inc., New Jersey, 2006.
- [3] B. Pratikno, Test of Hypothesis for Linear Models with Non-sample Prior Information, University of Southern Queensland, 2012.
- [4] D. E. Amos, Representation of the central and noncentral *t* of distribution, Biometrika 41 (1965), 451-458.
- [5] D. E. Amos and W. G. Bulgren, Computation of a multivariate *F* distribution, J. Math. Comput. 26 (1972), 255-264.
- [6] D. Cousineau and L. Laurencelle, Non-central t distribution and the power of the t test: a rejoinder, Tutorials in Quantitative Methods for Psychology 7(1) (2011), 1-4.
- [7] F. J. Schuurmann, P. R. Krishnaiah and A. K. Chattopadhyay, Tables for a multivariate *F* distribution, Sankhyā: The Indian Journal of Statistics, Series B 37(3) (1975), 308-331.

- [8] H. J. Larson, Introduction to Probability Theory and Statistical Inference, 3rd ed., John Wiley and Sons, Singapore, 1982.
- [9] J. Shao, Mathematical Statistics: Exercise and Solution, Springer Science+ Business Media, Inc., New York, 2005.
- [10] K. J. Levy and S. C. Narula, Probability density plots of the noncentral *t* distribution, Inter. Stat. Rev. 42 (1974), 305-306.
- [11] L. J. Bain and M. Engelhardt, Introduction to Probability and Mathematical Statistics, 2nd ed., Duxbury, United States of America, 1992.
- [12] N. L Johnson and B. L Welch, Applications of the non-central *t*-distribution, Biometrika 31 (1940), 362-389.
- [13] N. L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2, Wiley, New York, 1995.
- [14] P. R. Krishnaiah and J. V. Armitage, Probability Integrals of the Multivariate *F* Distribution, with Tables and Applications, Wright-Patterson Air Force Base, U.S., 1965.
- [15] R. M. Yunus and S. Khan, The bivariate noncentral chi-square distribution a compound distribution approach, Appl. Math. Comput. 217 (2011), 6237-6247.
- [16] R. M. Yunus, Increasing power of *M*-test through pre-testing, Unpublished Ph.D. Thesis, University of Southern Queensland, Australia, 2010.
- [17] R. V. Lenth, Algorithm AS 243: cumulative distribution function of the noncentral *t* distribution, J. Royal Statistical Society 38 (1989), 185-189.
- [18] R. V. Hogg and E. A. Tanis, Probability and Statistical Inference, 6th ed., Prentice Hall, United States of America, 2001.
- [19] S. Khan and B. Pratikno, Testing base load with non-sample prior information on process load, Statistical Papers 54(3) (2013), 605-617.
- [20] S. Khan, Estimation of parameters of the multivariate regression model with uncertain prior information and Student-t errors, J. Statistical Research 39(2) (2005), 79-94.
- [21] S. Khan, Shrinkage estimators of intercept parameters of two simple regression models with suspected equal slopes, Commun. Statist. Theory Methods 37 (2008), 247-260.
- [22] S. Khan and Z. Hoque, Preliminary test estimators for the multivariate normal mean based on the modified W, LR and LM tests, J. Statistical Research 37 (2003), 43-55.

- 474 B. Pratikno, Jajang, Z. Amalia, G. M. Pratidina and R. Zulfia
- [23] S. Khan and A. K. Md. E. Saleh, Shrinkage pre-test estimator of the intercept parameter for a regression model with multivariate Student-*t* errors, Biometrical J. 39 (1997), 1-17.
- [24] S. Khan and A. K. Md. E. Saleh, Estimation of intercept parameter for linear regression with uncertain non-sample prior information, Statistical Papers 46 (2005), 379-394.
- [25] S. Khan and A. K. Md. E. Saleh, Estimation of slope for linear regression model with uncertain prior information and Student-*t* error, Commun. Statist. Theory Methods 37(16) (2008), 2564-2581.
- [26] S. Khan, B. Pratikno, A. I. N. Ibrahim and R. M. Yunus, The correlated bivariate noncentral F distribution and Its application, Commun. Statist. Simulation Comput. 45 (2016), 3491-3507.