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Abstract  We determined the power and its graph 

simulations on the discrete Poisson and Chi-square 

distributions. There are four important steps of the research 

methodology summarized as follow: (1) determine the 

sufficient statistics (if possible), (2) create the rejection 

area (UMPT test is sometime used), (3) derive the formula 

of the power, and (4) determine the graphs using the data 

(in simulation). The formula of the power and their curves 

are then created using R code. The result showed that the 

power of the illustration of the discrete (Binomial 

distribution) depended on the number of trials n and bound 

of the rejection area. The curve of the power is sigmoid 

(S-curve) and tends to be zero when parameter shape ( ) 

is greater than 0.4. It decreases (started from  = 0.2) as 

the parameter theta increases. In the Poisson context, the 

curve of the power of the Poisson distribution is not 

S-curve, and it only depends on the parameter shape  . 

We note that the curve of the power of the Poisson is 

quickly to be one for n greater than 2 and   less than 10. 

In this case, the size of the Poisson distribution is greater 

than 0.05, so it is not a reasonable thing even the power is 

close to be one. In this context, we have to choose the 

maximum power and minimum size. In the context of 

Chi-square distribution, the graph of the power and size 

functions depend on rejection region boundary (k). Here, 

we note that skewness of the S-curve is positive as the k 

increases. Similarly, the size also depends on the k (and 

constant), and it decrease as the k increases. We here also 

noted that the power is quickly to be one for large degree of 

freedom (r). 

Keywords  Poisson Discrete Distribution, Chi-Square 

Continuous Distribution, Parameter Shape, R-code 

1. Introduction

In the theory of statistics, there are three important 

concepts of the hypothesis testing in rejecting or accepting 

null hypothesis  0H , namely (1) a probability error type

I ( ) , (2) a probability error type II ( )  and (3) power 

of the test  ( )   (Wackerly, et al. [5]). Here, the power

is a significant method to test the hypothesis on parameter 

shape. We then study more details about the power of the 

hypothesis testing on some distributions. Furthermore, the 

power is defined as a probability to reject 0H under 
1H

on 0 0:H    versus 1 0:H   , for parameter shape

 (Wackerly, et al. [5]).

Following to the previous research, many authors, such 

as Pratikno [2], Khan and Pratikno [22] and Khan [12], 

used the power in testing intercept with non-sample prior 

information (NSPI). They used the probability integral of 

the cumulative distribution function (cdf) of the continuous 

distributions. Moreover, Pratikno [2] and Khan et al. [11] 

used the power and size to compute the cdf of the bivariate 

noncentral F (BNCF) distribution in multivariate and 

multiple regression models. Here, many authors, such as 

Khan [12, 13, 14], Khan and Saleh [15, 16, 17, 20, 21], 

Khan and Hoque [19], Saleh [1], Yunus [6], and Yunus and 
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Khan [7, 8, 9, 10], have contributed to the research of the 

power in the context of the hypothesis area. In the context 

of the hypothesis testing with NSPI on multivariate and 

multiple regression models, Pratikno [2] and Khan et al. 

[11] used the BNCF distribution to compute the power 

using R-code. This is due to the computation of the 

probability integral of the probability distribution function 

(pdf) and cdf of the BNCF distribution are very 

complicated and hard (see Pratikno [2] and Khan et al.[18]), 

so the R code is used.  

Unlike previous research analyze focusing on 

continuous distribution, we only consider two distributions 

(Poisson and Chi-square). To illustrate the simple power, 

we present the power of the Binomial distribution. 

Furthermore, the steps to compute the power of the 

Binomial, Poisson and Chi-square distributions are similar 

to the previous theory are: (1) we have to determine the 

sufficient statistics (if possible), (2) we create the rejection 

area using uniformly the most powerful test (UMPT, if 

needed), (3) we derive the formula of the power of the 

discrete and continuous distributions, and (4) finally, we 

graphically analysed the power. A simulation is then 

conducted using the generate data.  

The concept of power and size (as initiate, Binomial 

distribution) of the testing hypothesis is presented in 

Section 2. The derived formula and the analysis of the 

power of the power and size of the Binomial, Poisson and 

Chi-square distributions are then given in Section 3. The 

conclusion is in Section 4. 

2. The Power and Size of One-Side 
Hypothesis Testing 

Following Pratikno [2], Khan [12,13,14], Khan and 

Saleh [15,16,17,20,21], Khan and Hoque [19], Saleh [1], 

Yunus [6], and Yunus and Khan [7, 8, 9, 10], we noted that 

the power and size of the tests provide a significant method 

to find the conclusion of the hypothesis testing parameter 

shape. Here, we must choose the maximum power and 

minimum size as an indicator. Here, the power and size are 

defined as a probability to reject 0H
 
under 

1H  in 

testing hypothesis, and probability to reject 0H
 
under 

0H , respectively (Wackerly, et al. [5]). Following 

Pratikno [2], we then write the power and size in testing 

hypothesis, 0 0:H    versus 1 0:H  

 1 1or :H    as, respectively,  

   

 

1 0 1

0 1

reject |  

        reject |  

P H under H

P H

 

 



 
      (1) 

 

 

   

 

0 0 0

0 0

reject |  

         reject |

P H under H

P H

 

 



 
      (2) 

where   is probability of type error I and   is 

probability of type error II. The details of the power and 

size in testing coefficient parameters on the regression 

models are found on Pratikno [2], and the power and size 

on several continuous distributions are also found Pratikno 

et al.[3,4]. 

3. The Power and Size of Discrete and 
Continuous Distributions 

3.1. The Power and Size of the Binomial Distribution 

To illustrate the simple power, we firstly derived the 

formula of the power and size of the discrete Binomial 

distribution. The power and size of this distribution are 

computed in one-side hypothesis testing on several n and 

bound of the rejection areas. Let, Xi follows Bernoulli 

distribution with parameter  . Take a trial 12n  , then 
12

1

n

j

j

Y X




  follows Binomial distribution with 12n 

and p   and is written as ( , )Y B n : . Here, we 

decide (an example 0.7  ) to test 0 : 0.7H    

versus 1 1: 0.7(  )H as  , with rejection area 

1 12{( ,..., ) : 5},x x Y   therefore the power function on 

the binomial distribution is then given as  

   

 

   

 

0 1

12
5

0

12 110 1

75

12 110 1

75

( ) ( under : )

12
       (1 )

12 12
       1 1

0 1

12
          1

5

12 12
      1 1

0 1

12
          1

5

    

y

y

y

P reject H H

y

  

 

   

 

   

 







 
  

 

   
        
   

 
 

 

   
        
   

 
 

 



L

L

   
7 2 3 4 5 1 1 7 28 84 210 462           

 (3) 

Using the equation (3) and R-code, we then produced the 

graphs (curves) of the power in figure 1. 
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(a) 

 

(b) 

Figure 1.  The power of the Binomial Distribution at several n and Y=5 

and 9 

Figure 1 showed that the curve of the power of the 

Binomial distribution (figure 1 (a) and (b)) are sigmoid (S 

curve) and depends on the number of trials (n) and the 

bound of the rejection area (Y). They are going to be zero 

for 0.4  . The curve decreases (started from 0.2  ) 

as the parameter increases. From figure 1 (a) and (b), it is 

clear that both n and Y have significant effect on the shape 

of the curve (see figure 1 (a) and (b), they move to the 

right). Here, the maximum power is one and the minimum 

power is zero. The size is then produced using the equation 

(3) under H0, as 

0 0(reject under )

  ( 5 0,7)

  0.04.

P H H

P Y







  



 

It is clear that the size is constant and is less than 0.05, as 

expected  

3.2. The Power and Size of the Poisson Distribution 

Let, 
1, , nX XK  follow Poisson distribution, the 

probability distribution function (pdf) of random variable X 

is then given by 

 ,
!

ix

i

e
f x

x






             (4) 

with 0,1,2,...,and 0.x    The pdf curve of the 

Poisson distribution (positive skew) tends to be normal for 

large values ,  where the center of the pdf curve always 

moves to the right when   increases. 

To find the power, we then derive sufficient statistics 

and a rejection area using factorization theorem and UMP 

test. In other words, let S be sufficient statistics. The join 

distribution of the Poisson distribution is then expressed as  

     1 1,..., ; , ,...,n nf x x g s h x x      (5) 

where the pdf of the join distribution of the Poisson 

distribution is 

   1

1

1

1

,..., ; ,

                      .
!

!

ii

n

n i

i

xx nn

n
i i

i

i

f x x f x

e e

x
x

 

 

 



 








 






    (6) 

We therefore conclude that 

1

n

i

i

s x


  sufficient 

statistics, this is due to the equation (6) can be expressed as  

 

 

   

1

1

1

1

,..., ;

!

                      

!

                      ,..., ,

ixn

n n

i

i

n
s

n

i

i

n

e
f x x

x

e

x

h x x g s























 
 
 
 
 
 







    (7) 

The rejection area is then derived using uniformly the 

most powerful (UMP) test as follow. Using the properties 

of maximum likelihood ratio (MLR) of the 

 1,..., ;nf x x  on
1

n

i
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Using the equation (8) and (9), we presented the graph of 

the power of the Poisson distribution (figure 2), and the 

value of the size and power for n=3 in testing 0 : 1H    

versus 1 : 3H   , respectively, as 

 

Figure 2.  The power of the Poisson Distribution at several n 
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From figure 2, we see that the power of the Poisson 

distribution tends to be 1 when 10  . Here, the 

simulation of the n has not influenced to the curve of the 

power yet. Thus, we conclude value of n whether small or 

large does not affect to change the shape of the curve of the 

power. Similarly, for large  , the shape of the curve of 

the power does not change. Here, the size 0.408 is greater 

than 0.05 (too high), and it is not as expected.  

3.3. The Power and Size of the Chi-square Distribution 

Let, X  be a random variable that follows Chi-square 

distribution. The probability distribution function (pdf) of 

random variable X is then given by 
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with r is the degree of freedom (as parameter). The cdf of 

this distribution is the written as  
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Here,
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. Using the equation (11), we then produced 

the graphs of the power and size as presented in figure 3 

and figure 4. 
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Figure 3.  The power of the Chi-square Distribution at several k 

From figure 3, we see that the curves of the power depend on of the values k. They skew to the right (S-curve positive) 

as k increases. 
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Figure 4.  The Size of the Chi-square Distribution at several k 

Similarly, we also see from figure 4 that the sizes are 

constant and depended on the k, and they decrease as the k 

increases. To illustrate the values of the size of the 

Chi-square distribution, we present a simulation k=5 and 

k=10, on r =1, as below  
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4. Conclusions 

To find the power of the Poisson distribution, we 
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consider sufficient statistics and UMP test for getting the 

rejection area. In the Binomial distribution context, the 

curve of the power depends on the number of trials n and 

the bound of the rejection area. The curves tend to be zero 

when 0.4  , and it decreases (started from 0.2  ) as 

the parameter increases. We also note that, the curve is 

sigmoid (S curve). In the Poisson distribution context, the 

result showed that the power of the Poisson (not sigmoid, S 

curve) tends to be 1 on several simulation  2n n  and 

 10 .    In the context of chi-square distribution, we 

note that the curves of the power depend on the k and the 

skewness of the S-curve is positive as k increases. On the 

size context, we note that the size is constant. The size also 

depends on the k and decreases as k increases. 
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