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with Surface Tension

Sri Maryani1,∗, Bambang H Guswanto1, Hendra Gunawan2

1Department of Mathematics, Jenderal Soedirman University, Indonesia 
2Department of Mathematics, Bandung Institute of Technology, Indonesia 

Received December 19, 2021; Revised March 29, 2022; Accepted April 15, 2022

Cite This Paper in the following Citation Styles
(a): [1] Sri Maryani, Bambang H Guswanto, Hendra Gunawan, ”Half-Space Model Problem for Navier-Lamé Equations with Surface Tension,” Mathematics and
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and Statistics, 10(3), 498-514 DOI: 10.13189/ms.2022.100305

Copyright ©2022 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of
the Creative Commons Attribution License 4.0 International License

Abstract Recently, we have seen the phenomena in use of partial differential equations (PDEs) especially in fluid dynamic
area. The classical approach of the analysis of PDEs were dominated in early nineteenth century. As we know that for PDEs the
fundamental theoretical question is whether the model problem consists of equation and its associated side condition is well-posed.
There are many ways to investigate that the model problems are well-posed. Because of that reason, in this paper we consider the
R-boundedness of the solution operator families for Navier-Lamé equation by taking into account the surface tension in a bounded
domain of N- dimensional Euclidean space (N ≥ 2) as one way to study the well-posedess. We investigate the R- boundedness
in half-space domain case. The R-boundedness implies not only the generation of analytic semigroup but also the maximal Lp-Lq

regularity for the initial boundary value problem by using Weis’s operator valued Fourier multiplier theorem for time dependent
problem. it was known that the maximal Lp-Lq regularity class is the powerful tool to prove the well-posesness of the model
problem. This result can be used for further research for example to analyze the boundedness of the solution operators of the model
problem in bent-half space or general domain case.

Keywords R-sectoriality, Navier-Lamé equation, Surface Tension, Half-space

1 Introduction
Let u and Ω be a velocity field and a bounded domain in N -dimensional space RN (N ≥ 2), respectively. The formula of

Navier-Lamé equation in bounded domain with surface tension is written in the following:
λu− α∆u− β∇divu = f in RN

+ ,

(αD(u)− (β − α)divuI)n− σ(∆′
Γη)n = g on RN

0 ,

λη + a′ · ∇′η − u · n = d on RN
0 .

(1)

where a′ = (a1, . . . , aN−1) ∈ RN−1 and a′ · ∇′η =
∑N−1

j=1 aj∂jη. Assume that

|a′| ≤ a0 (2)

for some constant a0 > 0. Let RN
+ and RN

0 be a half-space and its boundary, respectively. Namely,

RN
+ = {x = (x1, . . . , xN ) ∈ RN | xN > 0},

RN
0 = {x = (x1, . . . , xN ) ∈ RN | xN = 0},
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and n = (0, . . . , 0,−1) be the unit outer normal to RN
0 . D(u), u = (u1, . . . , uN ), the doubled deformation tensor whose (i, j)

components are Dij(u) = ∂iuj + ∂jui (∂i = ∂/∂xi), I the N × N identity matrix, α, β are positive constants (α and β are the
first and second viscosity coefficients, respectively) such that β − α > 0.

Meanwhile, ∆Γt
is the Laplace-Beltrami operator on ∆Γt

. Let RN
+ and RN

0 be a half-space and its boundary, respectively.
Namely,

RN
+ = {x = (x1, . . . , xN ) ∈ RN | xN > 0},

RN
0 = {x = (x1, . . . , xN ) ∈ RN | xN = 0}

Let n = (0, . . . , 0,−1) be the unit outer normal to RN
0 . We consider the following problem:


λu− α∆u− β∇divu = f in RN

+ ,

(αD(u)− (β − α)divu)n− σ(∆Γη)n = g on RN
0 ,

λη − n · u = d on RN
0 ,

(3)

where α is uniformly continuous function with respect to x ∈ RN
+ , which satisfy the assumptions:

ρ∗/2 ≤ α(x) ≤ 2ρ∗. (4)

The aim of this paper is to derive a systematic way proving the existence and the R-boundedness solution operator of the resolvent
problem for the equation system of Navier-Lamé (3) with surface tension in half-space. By using the Weis operator valued Fourier
multiplier theorem [19], the existence of the R-boundedness solution operator of the problem (1) implies not only the generation
of analytic semigroup but also the maximal Lp-Lq regularity. The Navier-Lamé (NL) equation is the fundamental equation of
motion in classical linear elastodynamics [7]. Sakhr [13] investigated the Navier-Lamé equation by using Buchwald representation
in cylindrical coordinates. The R-sectoriality was introduced by Clément and Prüß[5]. In 2009, Cao [2] investigated the Navier-
Stokes and the wave-type extension-Lamé equations by using Fourier expansion. And also investigated the flag partial differential
equations by using Xu’s method.

In this paper, we investigate the derivation of the R-sectoriality for the model problem in the whole space and half-space by
applying Fourier transform to the model problems. In the other side, Denk, Hieber and Prüß[4] proved the R-sectoriality for BVP
of the elliptic equation which holds the Lopatinski-Shapiro condition.

Recently, there are many researchers who concern to study R-boundedness case. In 2014, Murata [8] investigated the R-
boundedness of the Stokes operator with slip boundary condition. Another researcher who investigated the R-sectoriality is Maryani
[10, 11]. She studied the maximal Lp-Lq regularity class in a bounded domain and some unbounded domains which satisfy some
uniformity and global well-posedness in the bounded domain case, respectively using the result of R-bundedness of the solution
operator of the model problem of the Oldroyd-b model. The main purpose of this paper is to investigate the R-boundedness of
the solution operator families for the Navier-Lamé equation with surface tension in half-space problem. A further result in favour
of focusing on the main problem is finding the characteristic of η and creating the Laplace- Beltrami operator on Γ. This kind of
investigation becomes considerable benefit in studying fluid mechanics.

Several mathematical analysis approach of fluid motion with surface tension have been undertaken in recent years. In 2013,
Shibata [15] investigated the generalized resolvent estimates of the Stokes equations with first order boundary condition in a general
domain. Later year, Shibata and Shimizu [18] studied a local in time solvability of free surface problems for the Navier-Stokes
equations with surface tension. According to those phenomena, it is such an interesting subject to analyze fluid flow of the non-
Newtonian compressible type especially model of the Navier-Lamé equations.

The main aim of this study is to prove the existence of the R-bounded solution operator families for Navier-Lamé equations
with surface tension in a bounded domain for the resolvent problem (1) in half-space for σ > 0 and a = 0 case. This topic becomes
important reference for someone who is concerned with not only local well-posedness but also global well-posedness of Oldroyd-B
model fluid flow. And then, applying the definition of R-sectoriality and Weis’ operator valued Fourier multiplier theorem in [19],
automatically we obtain the generation of analytic semigroup and the maximal Lp-Lq regularity for the equation (3). In 2017,
Maryani and Saito [12] investigated R-boundedness of solution operator of two phase problem for Stokes equations.

To state our main results, at this stage we introduce our notation used throughout the paper.

Notation N denotes the sets of natural numbers and we set N0 = N ∪ {0}. C and R denote the sets of complex numbers, and real
numbers, respectively. For the sets of all N ×N symmetric and anti-symmetric matrices, we denote Sym(RN ) and ASym(RN ),
respectively. Let q′ = q/(q − 1), where q′ is the dual exponent of q with 1 < q < ∞, and satisfies 1/q + 1/q′ = 1. For any
multi-index κ = (κ1, . . . , κN ) ∈ NN

0 , we write |κ| = κ1 + · · · + κN and ∂kx = ∂κ1
1 · · · ∂κN

N with x = (x1, . . . , xN ). For scalar
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function f and N -vector of functions g, we set

∇f = (∂1f, . . . , ∂Nf),

∇g = (∂igj | i, j = 1, . . . , N),

∇2f = {∂i∂jf | i, j = 1, . . . , N},
∇2g = {∂i∂jgk | i, j, k = 1, . . . , N}.

L(X,Y ) denotes the set of all bounded linear operators from X into Y , for Banach spaces X and Y and Hol (U,L(X,Y)) the set
of all L(X,Y ) valued holomorphic functions defined on a domain U in C. Lq(D), Wm

q (D), Bs
p,q(D) and Hs

q (D) denote the usual
Lebesgue space, Sobolev space, Besov space and Bessel potential space, respectively, for any domain D in RN and 1 ≤ p, q ≤ ∞.
Whilst, ∥ · ∥Lq(D), ∥ · ∥Wm

q (D), ∥ · ∥Bs
q,p(D) and ∥ · ∥Hs

q (D) denote their respective norms. For θ ∈ (0, 1), Hθ
p (R, X) denotes the

standard X-valued Bessel potential space defined by

Hθ
p (R, X) = {f ∈ Lp(R, X) | ∥f∥Hθ

p(R,X) <∞},

∥f∥Hθ
p(R,X) <∞} =

(∫
R
∥F−1[(1 + τ2)θ/2F [f ](τ)](t)∥pX dt

)1/p

.

We set W 0
q (D) = Lq(D) and W s

q (D) = Bs
q,q(D). C∞(D) denotes the set all C∞ functions defined on D. Lp((a, b), X) and

Wm
p ((a, b), X) denote the usual Lebesgue space and Sobolev space of X-valued function defined on an interval (a, b), while

∥ · ∥Lp((a,b),X) and ∥ · ∥Wm
p ((a,b),X) denote their respective norms.Moreover, we set

∥eηtf∥Lp((a,b),X) =

(∫ b

a

(eηt∥f(t)∥X)pdt

)1/p

for 1 ≤ p <∞.

The d-product space of X is defined by Xd = {f = (f, . . . , fd) | fi ∈ X (i = 1, . . . , d)}, while its norm is denoted by ∥ · ∥X
instead of ∥ · ∥Xd for the sake of simplicity. We set

Wm,ℓ
q (D) = {(f,g,H) | f ∈Wm

q (D),

g ∈W ℓ
q (D)N , H ∈Wm

q (D)N×N},
∥(f,g,H)∥Wm,ℓ

q (Ω) = ∥(f,H)∥Wm
q (Ω) + ∥g∥W ℓ

q (Ω),

Lp,γ1
(R, X) = {f(t) ∈ Lp,loc(R, X) | e−γ1tf(t) ∈ Lp(R, X)},

Lp,γ1,0(R, X) = {f(t) ∈ Lp,γ1
(R, X) | f(t) = 0 (t < 0)},

Wm
p,γ1

(R, X) = {f(t) ∈ Lp,γ1
(R, X) | e−γ1t∂jt f(t) ∈ Lp(R, X)

(j = 1, . . . ,m)},
Wm

p,γ1,0(R, X) =Wm
p,γ1

∩ Lp,γ1,0(R, X).

Let Fx = F and F−1
ξ = F−1 denote the Fourier transform and the Fourier inverse transform, respectively, which are defined by

Fx[f ](ξ) =

∫
RN

e−ix·ξf(x)dx

F−1
ξ [g](x) =

1

(2π)N

∫
RN

eix·ξg(ξ)dξ.

We also write f̂(ξ) = Fx[f ](ξ). Let L and L−1 denote the Laplace transform and the Laplace inverse transform, respectively,
which are defined by

L[f ](λ) =
∫ ∞

−∞
e−λtf(t)dt,L−1[g](t) =

1

2π

∫ ∞

−∞
eλtg(τ)dτ,

with λ = γ + iτ ∈ C. Given s ∈ R and X-valued function f(t), we set

Λs
γf(t) = L−1

λ [λsL[f ](λ)](t).

We introduce the Bessel potential space of X-valued functions of order s as follows:

Hs
p,γ1

(R, X) = {f ∈ Lp(R, X) | e−γtΛs
γ [f ](t) ∈ Lp(R, X)

for any γ ≥ γ1},
Hs

p,γ1,0(R, X) = {f ∈ Hs
p,γ1

(R, X) | f(t) = 0 (t < 0)}.
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For x = (x1, . . . , xn) and y = (y1, . . . , yn), we set x · y =< x,y >=
∑n

j=1 xjyj . For scalar functions f, g and N -vectors
of functions k, g we set (k, g)D =

∫
D
kg dx, (k,g)D =

∫
D
k · g dx, (k, g)Γ =

∫
Γ
kg dσ, (k,g)Γ =

∫
Γ
k · gdσ, where σ is

the surface element of Γ. For N × N matrices of functions F = (Fij) and G = (Gij), we set (F,G)D =
∫
D
F : G dx and

(F,G)Γ =
∫
Γ
F : G dσ, where F : G ≡

∑N
i,j=1 FijGij and |F| ≡

(∑n
i,j=1 FijFij

)1/2

. Moreover, x · F means vectors with

components
∑n

i=1 aiFij . Let C∞
0 (G) be the set of all C∞ functions whose supports are compact and contained in G. The letter

C denotes generic constants and the constant Ca,b,... depends on a, b, . . .. The values of constants C and Ca,b,... denote a positive
constant which may be different even in a single chain of inequalities. We use small boldface letters, e.g. u to denote vector-valued
functions and capital boldface letters, e.g. H to denote matrix-valued functions, respectively. But, we also use the Greek letters, e.g.
ρ, θ, τ , ω, such as to denote mass densities, and elastic tensors in case the confusion may occur, although they are N ×N matrices.

Research methodology of this paper is literature review. In this article, we consider the R-Boundedness of the operator solution
of the Navier-Lamé equation with surface tension in half-space case. The procedures of how to prove the purpose of the article
are explained in the following. First of all, we define half-space and its boundary, then by using the partial Fourier transform and
inverse partial Fourier transform of resolvent problem of (1) in whole and half-space, we get new solution formula of velocity and
also density of Navier-Lamé equations. In the end, we use Weis’s operator valued Fourier multiplier for time dependent problem.

2 Result and Discussion
2.1 Main Theorem

Before stating our main result, firstly, we introduce the definition of R-boundedness and the operator valued Fourier multiplier
theorem due to Weis [19]. The following theorem is obtained by Weis [19].

Theorem 2.1. Let X and Y be two UMD Banach spaces and 1 < p <∞. Let M be a function in C1(R\{0},L(X,Y )) such that

RL(X,Y )({(τ
d

dτ
)ℓM(τ) | τ ∈ R\{0}}) ≤ κ <∞ (ℓ = 0, 1)

with some constant κ. Then, the operator TM defined in (5) is extended to a bounded linear operator from Lp(R, X) into Lp(R, Y ).
Moreover, denoting this extension by TM , we have

∥TM∥L(Lp(R,X),Lp(R,Y )) ≤ Cκ

for some positive constant C depending on p, X and Y .

Definition 2.2. A family of operators T ⊂ L(X,Y ) is called R-bounded on L(X,Y ), if there exist constantsC > 0 and p ∈ [1,∞)
such that for any n ∈ N, {Tj}nj=1 ⊂ T , {fj}nj=1 ⊂ X and sequences {rj}nj=1 of independent, symmetric, {−1, 1}-valued random
variables on [0, 1], we have the inequality:{∫ 1

0

∥
n∑

j=1

rj(u)Tjxj∥pY du
}1/p

≤ C

{∫ 1

0

∥
n∑

j=1

rj(u)xj∥pX du

}1/p

.

The smallest such C is called R-bounded of T , which is denoted by RL(X,Y )(T ).

Let D(R, X) and S(R, X) be the set of all X valued C∞ functions having compact support and the Schwartz space of rapidly
decreasing X valued functions, respectively, while S ′(R, X) = L(S(R,C), X). Given M ∈ L1,loc(R\{0}, X), we define the
operator TM : F−1D(R, X) → S ′(R, Y ) by

TMϕ = F−1[MF [ϕ]], (F [ϕ] ∈ D(R, X)). (5)

Remark 2.3. For the definition of UMD space, we refer to a book due to Amann [1]. For 1 < q < ∞, Lebesgue space Lq(Ω) and
Sobolev space Wm

q (Ω) are both UMD spaces.

We quote a proposition [4], which tell us that R-bounds behave like norms.

Lemma 2.4. Let X, Y and Z be Banach space and T and S be R-bounded families

1. If X and Y be Banach spaces and let T and S be R-bounded families in L(X,Y ). Then T + S = {T + S|T ∈ T , S ∈ S} is
also an R-bounded family in L(X,Y ) and

RL(X,Y )(T + S) ≤ RL(X,Y )(T ) +RL(X,Y )(S)
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2. If X, Y and Z be Banach spaces and let T and S be R-bounded families in L(X,Y ) and L(Y, Z), respectively. Then
ST = {ST |T ∈ T , S ∈ S} is also an R-bounded family in L(X,Z) and

RL(X,Z)(T S) ≤ RL(X,Y )(T )RL(X,Y )(S)

Definition 2.5. Let V be a domain in C, let Ξ = V × (RN−1 \ {0}), and let m : Ξ → C; (λ, ξ′) 7→ m(λ, ξ′) be C1 with respect to
τ , where λ = γ + iτ ∈ V , and C∞ with respect to ξ′ ∈ RN−1 \ {0}.

1. m(λ, ξ′) is called a multiplier of order s with type 1 on Ξ, if the estimates:

|∂κ
′

ξ′ m(λ, ξ′)| ≤ Cκ′(|λ|1/2 + |ξ′|)s−|κ′|,

|∂κ
′

ξ′ (τ∂τm(λ, ξ′))| ≤ Cκ′(|λ|1/2 + |ξ′|)s−|κ′|

hold for any multi-index κ ∈ NN
0 and (λ, ξ′) ∈ Ξ with some constant Cκ′ depending solely on κ′ and V .

2. m(λ, ξ′) is called a multiplier of order s with type 2 on Ξ, if the estimates:

|∂κ
′

ξ′ m(λ, ξ′)| ≤ Cκ′(|λ|1/2 + |ξ′|)s|ξ′|−|κ′|,

|∂κ
′

ξ′ (τ∂τm(λ, ξ′))| ≤ Cκ′(|λ|1/2 + |ξ′|)s|ξ′|−|κ′|

hold for any multi-index κ ∈ NN
0 and (λ, ξ′) ∈ Ξ with some constant Cκ′ depending solely on κ′ and V .

Let Ms,i(V ) be the set of all multipliers of order s with type i on Ξ for i = 1, 2. For m ∈ Ms,i(V ), we set M(m,V ) =
max|κ′|≤N Cκ′ .

Let F−1
ξ′ be the inverse partial Fourier transform defined by

F−1
ξ′ [f(ξ′, xN )](x′) =

1

(2π)N−1

∫
RN−1

eiξ
′·ξ′f(ξ′, xN ) dξ′.

Then, we have the following two lemmas which have proved essentially by Shibata and Shimizu [17, Lemma 5.4 and Lemma 5.6].

Lemma 2.6. Let ϵ ∈ (0, π/2), q ∈ (1,∞) and λ0 > 0. Given m ∈ M−2,1(Σϵ,λ0
), we define an operator L(λ) by

[L(λ)g](x) =

∫ ∞

0

F−1
ξ′ [m(λ, ξ′)λ1/2e−B(xn+yN )ĝ(ξ′, yN )]

(x′) dyN .

Then, we have

RL(Lq(RN
+ ),W 2−j

q (RN
+ )N )({(τ∂τ)

ℓ(λj/2∂αxL(λ)) | λ ∈ Σϵ,λ0
})

≤ rb(λ0) (ℓ = 0, 1), (j = 0, 1, 2).

where τ denotes the imaginary part of λ, and rb(λ0) is a constant depending on M(m,Σϵ,λ0
), ϵ, λ0, N , and q.

Lemma 2.7. Let 1 < q <∞, 0 < ϵ < π/2 dan λ0 > 0 . Let m(λ, ξ′) be a function defined on Σϵ,λ0 and m ∈ M−2,2(Σϵ,λ0) such
that for any multi-index κ′ ∈ NN−1

0 there exists a constant Cκ′ such that

|∂κ
′

ξ′ {(τ
∂

∂τ
)ℓm(λ, ξ′)}| ≤ Cκ′(|λ|1/2 + |ξ′|−2−|κ′|)

(ℓ = 0, 1) (6)

for any (λ, ξ′) ∈ Σϵ,λ0,. Let Ψj(λ) (j = 1, . . . , 4) be operators defined by

Ψ1(λ)f =

∫ ∞

0

F−1
ξ′ [m(λ, ξ′)Be−B(xN+yN )Fx′ [f ](ξ′, yN )]

(x′) dyN ,

Ψ2(λ)f =

∫ ∞

0

F−1
ξ′ [m(λ, ξ′)B M(xN + yN )Fx′ [f ](ξ′, yN )]

(x′) dyN ,

Ψ3(λ)f =

∫ ∞

0

F−1
ξ′ [m(λ, ξ′)AB M(xN + yN )Fx′ [f ](ξ′, yN )]

(x′) dyN ,

Ψ4(λ)f =

∫ ∞

0

F−1
ξ′ [m(λ, ξ′)B2M(xN + yN )Fx′ [f ](ξ′, yN )]

(x′) dyN .
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Then, we have

RL(Lq(RN
+ ),Lq(RN

+ )Ñ )({(τ
d

dτ
)ℓ(GλΨi(λ)) | λ ∈ Σϵ,λ0}) ≤ C

(ℓ = 0, 1, i = 1, 2, 3, 4)

with some constant C. Here and hereafter, Cκ′ denotes a generic constant depending on κ′, ϵ, λ0.

The proof of the Lemma can be seen in [6], [3] and [8].

Lemma 2.8. Let 1 < q <∞ and let Λ be a set in C. Let m =M(λ, ξ) be a function defined on Λ× (RN \ {0}) which is infinitely
differentiable with respect to ξ ∈ RN \ {0} for each λ ∈ Λ. Assume that for any multi-index α ∈ NN

0 there exists a constant Cα

depending on α and Λ such that

|∂αξ m(λ, ξ)| ≤ Cα|ξ|−|α| (7)

for any (λ, ξ) ∈ Λ× (RN \ {0}). Let Kλ be an operator defined by

Kλf = F−1[m(λ, ξ)F [f ](ξ)]. (8)

Then, the family of operators {Kλ | λ ∈ Λ} is R-bounded on L(Lq(RN )) and

RL(Lq(RN ))({Kλ | λ ∈ Λ}) ≤ Cq,N max
|α|≤N+1

Cα (9)

for some Cq,N depending only on q and N .

The following theorem is the main theorem of this article.

Theorem 2.9. Let 1 < q <∞, 0 < ϵ < π/2 and N < r <∞. Assume that r ≥ max(q, q′) and λ ∈ Σϵ,λ0
. Set

Zq(RN
+ ) ={(f ,g, d) | f ∈ Lq(RN

+ ),g ∈W 1
q (RN

+ )N ,

d ∈W 2−1/q
q (RN

0 )},
Zq(RN

+ ) ={(F1,F2,F3, F4)|F1 ∈ Lq(RN
+ )N ,F2 ∈ Lq(RN

+ )N ,

F3 ∈ Lq(RN
+ )N

2

, F4 ∈W 2−1/q
q (RN

0 )}.

Then, there exists a λ0 ≥ 1 and an operator family R(λ) and R1(λ) with

R(λ) ∈ Hol(Σϵ,λ0
,L(Zq(RN

+),W
2
q(RN

+)))

R1(λ) ∈ Hol(Σϵ,λ0
,L(Zq(RN

+),W
3−1/q
q (RN

0 ))) (10)

such that for any (f ,g, d) ∈ Zq(RN
+ ) and λ ∈ Σϵ,λ0

, u = R(λ)(f , λ1/2g,∇g, d) and η = R1(λ)(f , λ
1/2g,∇g, d) are unique

solutions to problem (3). Moreover, there exists a constant rb such that

RL(Zq(RN
+ ),W 2−j

q (RN
+ )N )({(τ∂τ)

ℓ(λj/2R(λ)) | λ ∈ Σϵ,λ0}) ≤ rb

(ℓ = 0, 1, j = 0, 1, 2),

RL(Zq(RN
+ ),W 3−k

q (RN
+ ))({(τ∂τ)

ℓ(λkR1(λ)) | λ ∈ Σϵ,λ0
}) ≤ rb

(ℓ = 0, 1, k = 0, 1), (11)

with λ = γ + iτ .

Remark 2.10. The F1, F2, F3 and F4 are variables corresponding to f , λ1/2g, ∇g and d, respectively.

The resolvent parameter λ in problem (3) varies in Σϵ,λ0
with

Σϵ,λ0
={λ ∈ C | | arg λ| ≤ π − ϵ, |λ| ≥ λ0}
(ϵ ∈ (0, π/2), λ0 > 0). (12)

The following section discusses the R-boundedness of the solution operator in the whole space problem.
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2.2 On the R-boundedness of the solution operator in RN

In this section, we consider the R-boundedness of the solution operator of the Navier-Lamé equation:

λu− α∆u− β∇divu = f in Ω (13)

where α and β are positive constants. Applying div to (13), we have

(λ− (α+ β)∆)divu = div f (14)

Substituting (14) to (13) we have the formula of u, that is

u =(λ− α∆)−1f + β∇[(λ− α∆)−1(λ− (α+ β)∆)−1div f ] (15)

By the Fourier transform and the inverse Fourier transform for f = (f1, . . . , fN ) we have S0(λ)f = (u1, . . . , uN ) then we can write
equation (15) to be

S0(λ)g =F−1
ξ

[
F [f ](ξ)

λ+ α|ξ|2

]
+ βF−1

ξ

[
ξξ · F [f ](ξ)

(λ+ α|ξ|2)(λ+ (α+ β)|ξ|2)

]
. (16)

Related to the spectrum, we know the following lemma which is proved by Shibata and Tanaka [14].

Lemma 2.11. Let 0 < ϵ < π
2 , Σϵ,λ0

as defined in (12) Then we have the following assertion

1. For any λ ∈ Σϵ and ξ ∈ RN we have

|α−1λ+ |ξ|2| ≥ sin(
ϵ

2
)(α−1|λ|+ |ξ|2) (17)

2. For any λ0 > 0 we have
|arg(α−1λ)| ≤ π − ϵ

The following theorem is the main result of this section.

Theorem 2.12. Let 1 < q < ∞ , 0 < ϵ < π/2 and we assume that α > 0, α + β > 0. Let S0(λ) be the operator defined in 16.
Then, S0(λ) ∈ Hol(Σϵ,λ0

,L(Lq(RN )N ,W 2
q (RN )N )). For any f ∈ Lq(RN )N and λ ∈ Σϵ,λ0

, u = S0(λ)f is a unique solution to
the problem (13) and we have

RL(Lq(RN )N ,Lq(RN )Ñ )({(τ
d

dτ
)ℓ(GλS0(λ)) | λ ∈ Σϵ,λ0

}) ≤ C

(ℓ = 0, 1) (18)

for λ = γ + iτ and some constant C depends solely on ϵ, λ0, γ, q and N , Gλu = (λu, γu, λ1/2∇u,∇2u).

2.3 On the R-boundedness solution operator in RN
+ ; σ > 0, a = 0

In this section we consider the following generalized resolvent problem of the equation (3) which can be written in the following:
λu− α∆u− β∇divu = f in RN

+ ,

(αD(u)− (β − α)divuI)n− σ(∆Γη)n = g on RN
0 ,

λη − u · n = d on RN
0 .

(19)

where n = (0, . . . , 0,−1) ∈ RN and ∆′η =
∑N−1

j=1 ∂2η/∂x2j .
Furthermore, we consider the following equation system:

λu− α∆u− β∇divu = 0 in Ω,

(αD(u)− (β − α)divuI)n− σ(∆Γη)n = 0 on Γ,

λη + a′ · ∇′η − u · n = d on RN
0 .

(20)

Then, we shall prove the following theorem
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Theorem 2.13. Let 1 < q <∞, 0 < ϵ < π/2 and λ1 > 0 and operator families U(λ) and V(λ) with

U(λ) ∈ Hol(Σϵ,λ0 ,L(Zq(RN
+),W

2
q(RN

+)))

V(λ) ∈ Hol(Σϵ,λ0 ,L(Zq(RN
+),W

3
q(RN

+)))

such that for any d ∈ W 2
q (RN

+ )N , u = U(λ)d and η = V(λ)d are unique solutions of equation (20). Moreover, the following
estimate holds:

RL(Zq(RN
+ ),W 2−j

q (RN
+ )N )({(τ∂τ)

ℓ(λj/2U(λ)) | λ ∈ Σϵ,λ0}) ≤ rb(λ1) (ℓ = 0, 1, j = 0, 1, 2),

RL(Zq(RN
+ ),W 3−k

q (RN
+ ))({(τ∂τ)

ℓ(λkV(λ)) | λ ∈ Σϵ,λ0
}) ≤ rb(λ1) (ℓ = 0, 1, k = 0, 1).

We have Theorem 2.9 immediately with help of the Theorem 2.13.
First of all, applying the partial Fourier transform to equation (20), we have for xN > 0 for first and second equation in the

following 

α(α−1λ+ |ξ′|2)ûj − α∂2N ûN − βiξj(iξ
′ · û′ + ∂N ûN ) = 0,

α(α−1λ+ |ξ′|2)ûN − α∂2N ûN − β∂N (iξ′ · û′ + ∂N ûN ) = 0,

α(∂N ûj + iξj ûN ) |xN=0 = 0,

2α∂N ûN + (β − α)(iξ′ · û′ + ∂N ûN ) |xN=0= −σ|ξ′|2η̂
λη̂ + ûN |xN=0 = d̂

(21)

with iξ′ · û′ =
∑N−1

k=1 iξkûk, ξ′ = (ξ1, . . . , ξN−1) and f̂ = f̂(ξ′, xN ) =
∫
RN−1 e

−ix′·ξ′f(x′, xN )dx′. Here and hereafter, j runs
from 1 to N − 1. Since (λ− α∆)(λ− (α+ β)∆)û = 0 as was seen in (14), we have (∂2N −A2)(∂2N −B2)û = 0 with

A =
√
(α+ β)−1λ+ |ξ′|2, B =

√
α−1λ+ |ξ′|2.

We look for a solution û = (û1, . . . , ûN ) of the form

ûℓ = (Pℓ +Qℓ)e
−BxN − Pℓe

−AxN (22)

for ℓ = 1, . . . , N
First of all, by substituting (22) into (21) and equating the coefficients of e−AxN and e−BxN , we have

α(B2 −A2)Pj − βiξj(iξ
′ · P ′ −APN ) = 0,

α(B2 −A2)PN + βA(iξ′ · P ′ −APN ) = 0,

iξ′ · P ′ + iξ′ ·Q′ −B(PN +QN ) = 0,

α((B −A)Pj +BQj − iξjQN ) = 0

(α+ β)(B(PN +QN )−APN )− βiξ′ ·Q′ = σ|ξ′|2η̂

(23)

with iξ′ · R′ =
∑N−1

k=1 iξkRk for R = P and Q. We consider iξ′ ·Q′ and QN as two unknowns to solve the linear equations (23).
Then by the second and the third equation in (23), we have

iξ′ · P ′ =
|ξ′|2

AB − |ξ′|2
(iξ′ ·Q′ −BQN ),

PN =
A

AB − |ξ′|2
(iξ′ ·Q′ −BQN ) (24)

Since iξ′ · k̂′(0) = α((B−A)iξ′ ·P ′+Biξ′ ·Q′)+α|ξ′|2QN ) as follows from the fourth equation of (23), combining this formula
with the last equation in (23) and (24) and setting

L11 =
αA(B2 − |ξ′|2)
AB − |ξ′|2

L12 =
α|ξ′|2(2AB − |ξ′|2 −B2)

AB − |ξ′|2

L21 =
2αA(B −A)− (β − α)(A2 − |ξ|2)

AB − |ξ′|2

L22 =
(α+ β)B(A2 − |ξ|2)

AB − |ξ′|2
(25)



506 Half-Space Model Problem for Navier-Lamé Equations with Surface Tension

we have a linear system:

L

[
iξ′Q′

QN

]
=

[
0

σ|ξ′|2η

]
(26)

with Lopatinski matrix

L =

[
L11 L12

L21 L22

]
. (27)

The analysis of the Lopatinski determinant can be seen in Götz and Shibata [3].
If detL ̸= 0 at (λ, ξ′) ∈ Σϵ,λ0 , then it follows from (26) that

iξ′ · P ′ =
|ξ′|2

(detL)(AB − |ξ′|2)
M,

PN =
A

(detL)(AB − |ξ′|2)
M (28)

with M = −(L12+BL11
)σ|ξ′|2η. By (28), we have

iξ′ · P ′ −APN =
(|ξ′|2 −A2)

(detL)(AB − |ξ′|2)
M, (29)

so that by (23) we have 

Pj = − βiξj(|ξ′|2 −A2)

α(B2 −A2) detL(AB − |ξ′|2)
(L12+BL11)σ|ξ′|2η̂

PN =
βA(|ξ′|2 −A2)

α(B2 −A2)(detL)(AB − |ξ′|2)
(L12+BL11)σ|ξ′|2η̂

Qj =
iξj

B detL

[
β(|ξ′|2 −A2)

α(A+B)(AB − |ξ′|2)
(L12 +BL11)

+L11

]
σ|ξ′|2η̂

QN =
L11

detL
σ|ξ′|2η̂

(30)

Thus, combining (23) and (30) and setting ω = β/α, we have

ûj(ξ
′, xN ) =− ω(iξj)(L12 +BL11)

B(B +A) detL

|ξ′|2 −A2

AB − |ξ′|2

(BM(xN )− e−BxN )σ|ξ′|2η̂

+
(iξj)L11

B detL
e−BxNσ|ξ′|2η̂

and,

ûN (ξ′, xN ) =
ωA(L12 +BL11)

(B +A) detL

|ξ′|2 −A2

AB − |ξ′|2
M(xN )σ|ξ′|2η̂

+
L11

detL
e−BxNσ|ξ′|2η̂. (31)

with M(xN ) =
e−BxN − e−AxN

B −A
.

Inserting the formula of ûN (ξ′, xN )|xN=0 into the last equation of (21), we have

λη̂ +
L11

detL
σ|ξ′|2η̂ = d̂

which implies that

η̂ =
detL

G
d̂ (32)

with
G = (λ detL+ L11σ|ξ′|2). (33)
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Lemma 2.14. Let 0 < ϵ < π/2 and G be the function defined in (33). Then, there exist λ1 > 0 and C > 0 such that the estimate:

|G| ≥ C(|λ|+ |ξ′|)(|λ|1/2 + |ξ′|)3 (34)

holds for (λ, ξ′) ∈ Σϵ,λ1
× (RN−1 \ {0}).

Proof. Firstly, by using Lemma 5.1 in [3] and technique of the proof of the Lemma 2.14 which can be seen in Shibata [16] we can
proof the Lemma 2.14.

Thus, by substituting the solution formula (33), the equation (31) can be written in the following

ûj(ξ
′, xN ) =− ω(iξj)(L12 +BL11)

B(B +A)

|ξ′|2 −A2

AB − |ξ′|2
(BM(xN )

− e−BxN )σ|ξ′|2 d̂
G

+
(iξj)L11

B
e−BxNσ|ξ′|2 d̂

G

and,

ûN (ξ′, xN ) =
ωA(L12 +BL11)

(B +A) detL

|ξ′|2 −A2

AB − |ξ′|2
M(xN )σ|ξ′|2 d̂

G

+
L11

G
e−BxNσ|ξ′|2d̂. (35)

By using the Volevich trick

p(ξ′, xN )q(ξ′, 0) =−
∫ ∞

0

∂

∂yN
(p(ξ′, xN + yN )q(ξ′, yN ))dyN

=−
∫ ∞

0

∂p

∂yN
(ξ′, xN + yN )q(ξ′, yN ))dyN

−
∫ ∞

0

p(ξ′, xN + yN )
∂q

∂yN
(ξ′, yN ))dyN

and the identities 1 =
λ

1
2

αB2
λ

1
2 −

N−1∑
k=1

iξk
B2

iξk and ∂NM(xN ) = −e−BxN −AM(xN ).



508 Half-Space Model Problem for Navier-Lamé Equations with Surface Tension

In view of equation (35) The solution formula for uj = Uj(λ)d and uN = UN (λ)d can be written as follow

Uj(x) =

∫ ∞

0

F−1
ξ′

[
ω(iξj)(L12 +BL11)

B(B +A)

|ξ′|2 −A2

AB − |ξ′|2
σB

G

AM(xN + yN )F [∆′d](ξ′, yN )

]
(x′) dyN

+

∫ ∞

0

F−1
ξ′

[
ω(iξj)(L12 +BL11)

B(B +A)

|ξ′|2 −A2

AB − |ξ′|2
σB

G

e−B(xN+yN )F [∆′d](ξ′, yN )

]
(x′) dyN

+

∫ ∞

0

F−1
ξ′

[
ω(L12 +BL11)

B(B +A)

|ξ′|2 −A2

AB − |ξ′|2

σ|ξ′|2BM(xN + yN )

G
F [∂j∂Nd](ξ

′, yN )

]
(x′) dyN

−
∫ ∞

0

F−1
ξ′

[
ω(iξj)(L12 +BL11)

B(B +A)

|ξ′|2 −A2

AB − |ξ′|2
σB

G

e−B(xN+yN )F [∆′d](ξ′, yN )

]
(x′) dyN

−
∫ ∞

0

F−1
ξ′

[
ω(L12 +BL11)

B(B +A)

|ξ′|2 −A2

AB − |ξ′|2
σ|ξ′|2

G

e−B(xN+yN )F [∂j∂Nd](ξ
′, yN )

]
(x′) dyN

−
∫ ∞

0

F−1
ξ′

[
(iξj)L11

B

σB

G

e−B(xN+yN )Fx′ [∆′d](ξ′, yN )

]
(x′)dyN

−
∫ ∞

0

F−1
ξ′ [

L11

B2

σB|ξ′|2

G

e−B(xN+yN )Fx′ [∂j∂Nd](ξ
′, yN )](x′)dyN

UN (x) =−
∫ ∞

0

F−1
ξ′

[
ω(L12 +BL11)

B(B +A)

|ξ′|2 −A2

AB − |ξ′|2
σB

G
(36)

AM(xN + yN )F [∆′d](ξ′, yN )

]
(x′) dyN

−
∫ ∞

0

F−1
ξ′

[
ω(L12 +BL11)

B(B +A)

|ξ′|2 −A2

AB − |ξ′|2
σB

G

e−B(xN+yN )F [∆′d](ξ′, yN )

]
(x′) dyN

+

∫ ∞

0

F−1
ξ′

[
ω(L12 +BL11)

B(B +A)

|ξ′|2 −A2

AB − |ξ′|2

σ|ξ′|2BM(xN + yN )

G
F [∂Nd](ξ

′, yN )

]
(x′) dyN

−
∫ ∞

0

F−1
ξ′

[
L11

B

σB

G
e−B(xN+yN )Fx′ [∆′d](ξ′, yN )

]
(x′)dyN

−
∫ ∞

0

F−1
ξ′ [

L11

B2

σB|ξ′|2

G
e−B(xN+yN )

Fx′ [∂Nd](ξ
′, yN )](x′)dyN (37)

where we have used F [∆′d](ξ′, yN ) = −|ξ′|2d̂(ξ′, yN ). We have Uj(λ)d = uj , j = 1 . . . , N − 1 and UN (λ)d = uN . By Lemma
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2.14 and Lemma 2.15, we have

RL(W 2
q (RN

+ ),W 2−κ
q (RN

+ ))({(τ∂τ)
ℓ(λk/2Uj(λ)) | λ ∈ Σϵ,λ0})

≤ rb(λ1) (ℓ = 0, 1, k = 0, 1, 2),

where rb(λ1) is a constant depending on m0, m1, m2 and λ1. Analogously, we have

RL(W 2
q (RN

+ ),W 2−κ
q (RN

+ ))({(τ∂τ)
ℓ(λk/2UN (λ)) | λ ∈ Σϵ,λ0

})

≤ rb(λ1) (ℓ = 0, 1, k = 0, 1, 2).

Furthermore, we construct the formula of η. Let ϕ(xN ) be a function in C∞
0 such that ϕ(xN ) = 1 for |xN | ≤ 1 and ϕ(xN ) = 0 for

|xN | ≥ 2. We define η by

η(x) = ϕ(xN )F−1
ξ′

[
e−AxN

detL

G
d̂(ξ′, 0)

]
(x′).

By the Volevich trick, we have

η(x) =− ϕ(xN )

∫ ∞

0

∂NF−1
ξ′

[
e−A(xN+yN ) detL

G
d̂(ξ′, yN )ϕ(yN )

]
(x′) dyN

=ϕ(xN )

∫ ∞

0

F−1
ξ′

[
e−A(xN+yN )A detL

G
d̂(ξ′, yN )ϕ(yN )

]
(x′) dyN

− ϕ(xN )

∫ ∞

0

F−1
ξ′

[
e−A(xN+yN ) detL

G
∂N (d̂(ξ′, yN )ϕ(yN ))

]
(x′) dyN

=ϕ(xN )

∫ ∞

0

F−1
ξ′

[
e−A(xN+yN ) A detL

G(1 + |ξ′|2)

F ′[(1−∆′)d](ξ′, yN )ϕ(yN )

]
(x′) dyN

− ϕ(xN )

∫ ∞

0

F−1
ξ′

[
e−A(xN+yN ) detL

G(1 + |ξ′|2)(
∂N (d̂(ξ′, yN )ϕ(yN ))−

N−1∑
k−1

iξk∂N (F ′[∂kd](ξ
′, yN )ϕ(yN ))

)]
(x′) dyN

Let V(λ)d |xN=0= η and recall the definition of η in (32).
By the Volevich trick, we have

V(λ)d

= −ϕ(xN )

∫ ∞

0

∂NF−1
ξ′

[
e−A(xN+yN ) detL

G
d̂(ξ′, yN )ϕ(yN )

]
(x′) dyN

= ϕ(xN )

∫ ∞

0

F−1
ξ′

[
e−A(xN+yN )AdetL

G
d̂(ξ′, yN )ϕ(yN )

]
(x′) dyN

− ϕ(xN )

∫ ∞

0

F−1
ξ′

[
e−A(xN+yN ) detL

G
∂N (d̂(ξ′, yN )ϕ(yN ))

]
(x′) dyN

= ϕ(xN )

∫ ∞

0

F−1
ξ′

[
e−A(xN+yN ) AdetL

G(1 + |ξ′|2)

F ′[(1−∆′)d](ξ′, yN )ϕ(yN )

]
(x′) dyN

− ϕ(xN )

∫ ∞

0

F−1
ξ′

[
e−A(xN+yN ) detL

G(1 + |ξ′|2)(
∂N (d̂(ξ′, yN )ϕ(yN ))−

N−1∑
k−1

iξk∂N (F ′[∂kd](ξ
′, yN )ϕ(yN ))

)]
(x′) dyN
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Let V(λ)d = ϕ(xN ){V1(λ)d+ V2(λ)d} with

V1(λ)d =

∫ ∞

0

F−1
ξ′

[
e−A(xN+yN ) AdetL

G(1 + |ξ′|2)

F ′[(1−∆′)d](ξ′, yN )ϕ(yN )

]
(x′) dyN

V2(λ)d =−
∫ ∞

0

F−1
ξ′

[
e−A(xN+yN ) detL

G(1 + |ξ′|2)(
∂N (d̂(ξ′, yN )ϕ(yN ))

−
N−1∑
k−1

iξk∂N (F ′[∂kd](ξ
′, yN )ϕ(yN ))

)]
(x′) dyN

To treat η, we use the following lemma which had been proved by Shibata [9].

Lemma 2.15. Let Σ be a domain in C and let 1 < q <∞. Let ϕ and ψ be two C∞
0 ((−2, 2)) functions. Given m0 ∈ M0,2(Σ), we

define an operator L6(λ) and L7(λ) acting on g ∈ Lq(RN
+ ) by

[L6(λ)g](x) = ϕ(xN )

∫ ∞

0

F−1
ξ′

[
e−A(xN+yN )m0(λ, ξ

′)

ĝ(ξ′, yN )ψ(yN )

]
dyN ,

[L7(λ)g](x) = ϕ(xN )

∫ ∞

0

F−1
ξ′

[
Ae−A(xN+yN )m0(λ, ξ

′)

ĝ(ξ′, yN )ψ(yN )

]
dyN .

Then,

RL(Lq(RN
+ ))({(τ∂τ )ℓLk(λ) | λ ∈ Σ}) ≤ rb

for some constants k = 6, 7, ℓ = 0, 1 and rb depending on Σϵ,λ0

Proof. The lemma 2.15 of the model has been proved by Shibata [16]. Moreover, for (j, α′, k) ∈ N0×NN−1
0 ×N0 with j+|α′+k| ≤

3 and j = 0, 1, we write

λj∂α
′

x′ ∂kNV(λ)d =

k∑
n=0

(
n

k

)
(∂k−n

N ϕ(xN ))

[λj∂α
′

x′ ∂kNV1(λ)d

+ λj∂α
′

x′ ∂kNV2(λ)d]
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and then

λj∂α
′

x′ ∂kNV1(λ)d

=

∫ ∞

0

F−1
ξ′

[
Ae−A(xN+yN )λ

j(iξ′)α
′
(−|ξ′|)n detL

G̃(1 + |ξ′|2)

F ′[(1−∆′)d](ξ′, yN )ϕ(yN )

]
λjV2(λ)d

=

∫ ∞

0

F−1
ξ′

[
e−A(xN+yN )λ

j detL

G̃
∂N (d̂(ξ′, yN )ϕ(yN ))

]
(x′)dyN

λj∂α
′

x′ ∂kNV2(λ)d

=

∫ ∞

0

F−1
ξ′

[
e−A(xN+yN )λ

j(iξ′)α
′
detL

G̃(1 + |ξ′|2)(
∂N (d̂(ξ′, yN )ϕ(yN ))−

N−1∑
k−1

iξk
|ξ′|

∂N (F ′[∂kd](ξ
′, yN )ϕ(yN ))

)]
(x′)dyN (38)

for |α′|+ n ≥ 1, and we use the formula

1 =
1 + |ξ′|2

1 + |ξ′|2
=

1

1 + |ξ′|2
−

N−1∑
j=1

|ξ′|
1 + |ξ′|2

iξj
|ξ′|

iξj

for the third equation of (38).

We can see that for the multipliers in the equation (38) hold Lemma 2.15, then we have

RL(W 2
q (RN

+ ),W 3−k
q (RN

+ ))({(τ
d

dτ
)(λkV(λ)) | λ ∈ Σϵ,λ∗}) ≤ rb

(k = 0, 1).

This completes the proof of Theorem 2.13.

Proof. Furthermore, we prove Theorem 2.9. Let (f ,g, d) ∈ Zq(RN
+ ) and (u, η) be solutions of the equation (3). Setting U(λ) =

(U1(λ), . . . ,UN (λ)), by Theorem 2.13 we see that u = U(λ)d and η = V(λ)d are unique solutions of equation (3), then we can
see that given ϵ ∈ (0, π/2), there exists λ > 0 and operator families R and R1 satisfying (10) such that u = R(λ)(f , λ1/2g,∇g, d)
and η = V(λ)(g, λ1/2k,∇k, d) are unique solutions of equation (3). Moreover, the estimate (11) holds. This completes the
proof of Theorem 2.9. In fact, in view of Definition R-boundedness solution operator, for any n ∈ N, we take {λj}nj=1 ⊂ Σ,
{gj}nj=1 ⊂ Lq(RN

+ ) and rj(u) (j = 1, . . . , n) as Rademacher functions. By the Fubini-Tonelli theorem, we have

∫ 1

0

∥
n∑

j=1

rj(u)L6(λj)gj∥qLq(RN
+ )
du

=

∫ t

0

∫ ∞

0

∫
RN−1

|
n∑

j=1

rj(u)L6(λj)gj |q dy′ dxN du

=

∫ ∞

0

(∫ 1

0

∥
n∑

j=1

rj(u)L6(λj)gj∥qLq(RN−1)
du

)
dxN .
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For any xN ≥ 0, by Minkowski’s integral inequality, Lemma 2.15 and Hölder’s inequality, we have

(∫ 1

0

∥
n∑

j=1

rj(u)L6(λj)gj∥qLq(RN−1)
du

)1/q

= |ϕ(xN )|
(∫ 1

0

∥
∫ ∞

0

F−1
ξ′ [

n∑
j=1

rj(u)e
−A(xN+yN )

m0(λj , ξ
′)ĝj(ξ

′, yN )](y′)ψ(yN )dyN∥q
Lq(RN−1)

du

)1/q

≤ |ϕ(xN )|
(∫ 1

0

(∫ ∞

0

∥F−1
ξ′ [

n∑
j=1

rj(u)e
−A(xN+yN )

m0(λj , ξ
′)ĝj(ξ

′, yN )](y′)ψ(yN )dyN∥Lq(RN−1) dyN

)q

du

)1/q

≤ |ϕ(xN )|
∫ ∞

0

(∫ 1

0

∥F−1
ξ′ [

n∑
j=1

rj(u)e
−A(xN+yN )

m0(λj , ξ
′)ĝj(ξ

′, yN )](y′)∥q
Lq(RN−1)

du

)1/q

|ψ(yN )| dyN

≤ |ϕ(xN )

|
∫ ∞

0

(∫ 1

0

∥F−1
ξ′ [

n∑
j=1

rj(u)ĝj(·, yN )]∥q
Lq(RN−1)

du

)1/q

|ψ(yN )| dyN
≤ |ϕ(xN )

|
∫ ∞

0

(∫ 1

0

∥F−1
ξ′ [

n∑
j=1

rj(u)ĝj(·, yN )]∥q
Lq(RN−1)

du dyN

)1/q

(∫ ∞

0

|ψ(yN )|q
′
dyN

)1/q′

≤ |ϕ(xN )|
∫ ∞

0

(∫ 1

0

∥F−1
ξ′ [

n∑
j=1

rj(u)ĝj(·, yN )]∥q
Lq(RN

+ )
du

)1/q

(∫ ∞

0

|ψ(yN )|q
′
dyN

)1/q′

.

In fact since,

|∂α
′

ξ′ (e
−A(xN+yN )m0(λ, ξ

′))| ≤ Cα′ |ξ′|−|α′|

for any xN ≥ 0, yN ≥ 0, (λ, ξ′) ∈ Σ× (RN−1 \ {0}), and α′ ∈ NN−1, by Lemma 2.8 we have

∫ 1

0

∥
n∑

j=1

rj(u)

F−1
ξ′

[
e−A(xN+yN )m0(λj , ξ

′)ĝj(ξ
′, yN )

]
(y′)∥q

Lq(RN−1)
du

≤ C

∫ 1

0

∥
n∑

j=1

rj(u)gj(·, yN )∥q
Lq(RN−1)

du.
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Putting these inequalities together and using Hölder’s inequality gives∫ 1

0

∥
n∑

j=1

rj(u)Lq(λj)gj∥qLq(RN
+ )
du

≤
∫ ∞

0

|ϕ(xN )|q
∫ 1

0

∥
n∑

j=1

rj(u)gj∥qLq(RN
+ )
du dxN

(∫ ∞

0

|ψ(yN )|q
′
dyN

)q/q′

,

and so, we have

∥
n∑

j=1

rj(u)Lq(λj)gj∥Lq((0,1),Lq(RN
+ ))

≤ C∥ϕ∥Lq(R)∥ψ∥Lq′ (R)∥
n∑

j=1

rjgj∥Lq((0,1),Lq(RN
+ )).

This shows Lemma 2.15.

By using Lemma 2.6 and 2.15, we can show Theorem 2.13. These complete the proof of Theorem 2.9.

3 Conclusions
Partial Differential Equation (PDE) can describe the phenomena in our daily life. The aim of PDE problem is well-posedness

properties of the model problem. One property of well-posedness is regularity of the solution of the model problem. The R-
boundedness of the solution operator families of model problem is one of the methods to get the regularity. Therefore, the R-
boundedness of Navier-Lamé equation with surface tension can be used to investigate well-posedness properties of model problem.
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