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Abstract 

This paper studies the probability distribution function (pdf ), 
cumulative distribution function (cdf ) and graphical analysis of a 
noncentral F distribution. The pdf formula of the noncentral F 
distributions is analytically derived, and the graphs are produced using 
R code. The results showed that: (1) the curves of the univarite 
noncentral F distribution decrease as the noncentral parameter 
increases, and they tend to be symmetric for large noncentrality 
parameter ( ),54≥  and (2) the curves of the bivariate noncentral F 

(BNCF) increase as the degrees of freedom, coefficient correlation, 
and noncentrality parameter increase. For coefficient correlation 
( ),5.0±  the graphs of the cdf of the singly BNCF distribution are 

identical. 

1. Introduction 

Many authors have already studied bivariate central F and univariate 
noncentral F distributions such as Krishnaiah [13, 14], Amos and Bulgren 
[4], Schuurmann et al. [6], El-Bassiouny and Jones [1], and Mudholkar et al. 
[8], Graybill [7], Muirhead [16] and Johnson et al. [11], respectively. One of 
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them, Graybill [7] presented the pdf formula of the univariate noncentral F 
distribution. A lot of discussions on the approximation of the univariate 
noncentral F distribution are found in Mudholkar et al. [8] and Tiku [10]. 
Then, Tiku [10] and Krishnaiah and Armitage [15] discussed about 
multivariate noncentral F distribution. Some authors have also studied the 
univariate noncentral F distribution, such as Johnson et al. [11] and Shao [9]. 
Johnson et al. [11] provided the definition of the univariate noncentral F 
distribution known as the singly and doubly noncentral F distributions. Later, 
Yunus and Khan [17] derived the bivariate noncentral chi-square (BNCC) 
distribution by compounding the Poisson distribution with correlated 
bivariate central chi-square distribution. They also used noncentral F 
distribution to compute the power of the test in testing hypothesis with non-
sample prior information (NSPI). 

Saleh and Sen [2] and Yunus and Khan [17] have already used the 
cumulative distribution function (cdf ) of a bivariate noncentral chi-square 
distribution to compute the power function of the test in a statistical test on 
the estimator parameters using NSPI. For large sample, the cdf of the 
bivariate noncentral chi-square (BNCC) distribution is used to compute the 
power function on multivariate simple regression model (MSRM). Similarly, 
in testing hypothesis with NSPI, the power and size of the tests are computed 
using BNCF (the bivariate noncentral F) distribution. This distribution is 
defined by mixing the correlated BNCC distribution with an independent 
central chi-square distribution, as well as compounding bivariate central F 
(BCF) with Poisson distributions. However, the probability distribution 
function (pdf ) and cdf formula of the BNCF are very complicated. Here, 
Pratikno [3] already used the cdf of the BNCF to compute the power of the 
pre-test test (PTT) in testing intercept using NSPI on some regression 
models. Due to its complicated, then the pdf and cdf are computed using R 
code (R statistical package). 

To describe the BNCF distribution in detail, we refer to Johnson et al. 
[11, p. 433, 435], that is, if vUUU ...,,, 21  are independent normal variables 

with mean μ and variance ,2σ  and v∂∂∂ ...,,, 21  are nonzero constants, then 
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the distribution of ( )∑
=

∂+
v

j
jU

1

2  follows a noncentral 2
vχ  distribution with v 

degrees of freedom (d.f.) and noncentrality parameter ∑
=
∂=λ

v

j 1

2.  The cdf of 

noncentral chi-square distribution is then given in Patnaik [12]. Furthermore, 
Johnson et al. [11, p. 480] described the doubly noncentral F distribution 
with ( )21, vv  degrees of freedom and noncentrality parameters 1λ  and 2λ  as 

the ratio between two independent noncentral chi-square variables, 
( )

1

1
2
1
v

v λχ
 

and 
( )

.
2

2
2
2
v

v λχ
 The pdf and cdf of the singly and doubly correlated BNCF 

distributions are also found in Pratikno [3] and Khan et al. [19]. Here, the 
doubly correlated BNCF is defined by mixing the correlated BNCC 
distribution with an independent central chi-square distribution. This 
definition allows for two noncentrality parameters from the two correlated 
noncentral chi-square variables in the numerator of the noncentral F 
variables. 

This paper studied the univariate noncentral F distribution in Section 2. 
The pdf and cdf of the BNCF distribution are derived in Section 3. The 
graphical analysis of the pdf and cdf of the BNCF distribution for some 
selected values of degrees of freedom and the noncentrality parameter are 
given in Section 4. Concluding remarks are provided in Section 5. 

2. The Univariate Noncentral F Distribution 

If 1w  and 2w  are two independent 2χ  random variables with 1n  and 2n  

degrees of freedom, respectively, then 

 
22
11

nw
nwu =  (1) 

follows a central 21, nnF  distribution (Wackerly et al. [5, p. 362]). The pdf of 
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the random variable u is then given by 
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The mean and variance of this distribution are 22
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Following the concept of the central F distribution above and Graybill 
[7, p. 128], the noncentral F distribution is derived as follows. Let =w  
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Let 1xz =  and .
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nxw ==  Then the jacobian transformation is 
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of z and w is written as 
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Finally, we get the pdf of the univariate noncentral F distribution as 
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Following equation (5), for 6021 == nn  and =λ 1, 3, 9, 18, 27, 35, 54, 

100, the curves of the pdf univariate noncentral F distribution are then 
presented in Figure 1. 

 

Figure 1. The pdf curve of univariate noncentral F distribution for 21 nn =  

60=  and some selected λ. 
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For ,0=λ  the curve will be the pdf central F distribution. From a 
simulation, for ,1<λ  we obtain that all the curves are skew positive. Figure 
1 shows that the peak points of the curves of the noncentral F distribution 
decrease (and the tail increases) as the noncentral parameters increase, and 
they will be then symmetric for large λ ( ).54=λ  Moreover, they will be 

linear for .∞→λ  

3. The Bivariate Noncentral F Distribution 

Following Pratikno [3] and Khan et al. [19], the pdf and cdf of the 
bivariate noncentral F (BNCF) distribution are derived as follows. Following 
Krishnaiah [13] for 21,~ vvii FFx =  with ,2,1=i  ( )21, vv  degrees of 

freedom and correlation coefficient ( ),ρ  the pdf and cdf of the BCF 

distribution are defined, respectively, as 
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approximation to the value of the cdf of the BCF distribution is also found in 
Amos and Bulgren [4]. Furthermore, Johnson et al. [11, p. 480] described       
the doubly noncentral F variable with ( )21, vv  degrees of freedom and 

noncentrality parameters 1λ  and 2λ  is defined as ( ) =λλ′′ 21, ,21 vvF  
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 representing product of two independent Poisson 

distributions. The details of the pdf and cdf of G ′′  are also found in Johnson 
et al. [11, p. 500]. 
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Later, following Krishnaiah [13] and Johnson et al. [11, p. 499], for 
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Then the cdf of the singly BNCF distribution is defined as 
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where 
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Furthermore, we derive the doubly BNCF distribution that is defined by 
compounding the pdf of the BNCC distribution of 1x  and 2x  with m degrees 
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and the pdf of a central chi-square variable z with n degrees of freedom is 
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where z is independent of 1x  and .2x  Then using transformation of variable 
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Then the joint pdf of ( ),, 21 yy  where 
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( )
( ) ( )

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

++Γ

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ θ
× −++

θ−
12

2
22

2
2

2

2
22

2!
2 rjm

r
r

yrjm
n
m

r
e  

( ) ( )
( )

,1 21
2 rjq

rj yn
myn

mq
−

⎥⎦
⎤

⎢⎣
⎡ ++ρ−Γ×  (17) 

where ( ) ( ) 1
11 2

2
2

1 +
ρ−

+
ρ−

=
ynmynmwy  and .22 21 rrjnmqrj ++++=  The 

cdf of the doubly BNCF distribution is then defined as 

 ( ) ( )∫ ∫=<<
a b

dydyyyfbyayP
0 0 212121 ,,,  (18) 

where a and b are positive real numbers. The above cdf can be expressed as 

 ( ) ( ) ( )∫ ∫ ∫
∞

=<<
0 0 0 212121 ,,, n

bmy
n

amy
dzdxdxxxgzfbyayP  (19) 

where ( )21, xxg  is the pdf of the BNCC distribution which is given in 

equation (12), ( )zf  is the pdf of the central chi-square variable which is 

given in equation (13), and iy  for ,2,1=i  are given in equation (16). 

Finally, we note that equation (19) is called the cdf of BNCF distribution. 

4. Graphical Analysis of the cdf of the BNCF Distribution 

Following Pratikno [3] and Khan et al. [19], the graph of the cdf of the 
singly BNCF and doubly distributions are presented in Figure 2, which shows 
that the value of cdf of the singly BNCF distributions increases as the value 
of any of the parameters, degrees of freedom 1v  (for fixed ),2v  λ and d, 

increases. From equation (8), we see that the cdf of the singly BNCF 
distribution also depends on ρ. For both 5.0<ρ  and ,5.0>ρ  the curves of 

the cdf of the singly BNCF distribution are lower than that for .5.0=ρ  Note 
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that (in simulation), for 5.0−=ρ  and ,5.0=ρ  the graphs of the cdf of the 

singly BNCF distribution are identical. The graphs of the cdf of the BNCF 
are not presented, but the values of the cdf of the BNCF distribution are 
given in Table 1. Details of the curves of the cdf of the BNCF are found in 
Khan et al. [19] and Pratikno [3]. Table 1 shows the values of the cdf of the 
BNCF distribution approaches 1 quicker for large correlation ( )ρ  and d, and 

these increase as the ρ and d increase. It means that the curve of the cdf of 
the BNCF will also increase as the ρ and d increase. 

 
Figure 2. The curve of the cdf of singly bivariate noncentral F distribution. 

Table 1. The values of the cdf of the BNCF distribution for ,10=m  ,20=n  

,11 =θ  ;5,12 =θ  3;5,2;2;5,1;1;5,0=d  and ;3,0;0;3,0;5,0 −−=ρ  

0, 5 
ρ 

d 
–0, 5 –0, 3 0 0, 3 0, 5 

0, 5 0, 02413 0, 01868 0, 01627 0, 01868 0, 02413 
1 0, 28612 0, 25805 0, 24381 0, 25805 0, 28612 

1, 5 0, 60971 0, 58102 0, 56546 0, 58102 0, 60971 
2 0, 80984 0, 79072 0, 77986 0, 79072 0, 80984 

2, 5 0, 90967 0, 89863 0, 89212 0, 89863 0, 90967 
3 0, 95657 0, 95049 0, 94678 0, 95049 0, 95657 
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Furthermore, Pratikno [3] used the cdf of the bivariate noncentral F 
(BNCF) distribution to compute and figure the power of the unrestricted test 
(UT), restricted test (RT) and pre-test test (PTT) on bivariate simple 
regression model (BSRM) (see Figure 3), that is, the linear relationship 
between two responses (vector) and a single predictor ( ),, ii yx  for ,1=i  

,...,,2 n  is modeled as .10 iii ex +β+β=y  Here, ( )′= ipii yy ...,,1y  is the p 

dimensional ith response vector, ix  is the ith nonzero scalar value of the 

explanatory variable, ( )′ββ= p001 ...,,0β  and ( )′ββ= p111 ...,,1β  are 1×p  

column vectors of unknown intercept and slope parameters, respectively, and 
( )′= ipi ee ...,,1ie  is the 1×p  dimensional ith vector of errors with ~ie  

( ).,0 ∑Np  Later, the integral probability of the cdf of the BNCF of the PTT 

on the BSRM is computed using R code. Detailed formula of the power of 
the tests of the UT, RT and PTT are found at Pratikno [3]. 

 
Figure 3. The power of the tests of the UT, RT and PTT at .1.0=ρ  

From Figure 3, we see that the curves are sigmoid and the PTT lies 
between RT and UT. In the simulation for some selected coefficient 
correlation ( ),5.0;3.0±=ρ  the graphs are similar, and these increase as the ρ 

and d increase. Following Pratikno [3] and previous researches, the PTT will 
be an alternative choice between them. 
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5. Concluding Remark 

The curve of the univarite noncentral F distribution declines (and/or the 
tail increases) as the noncentral parameter increases. For large noncentrality 
parameter λ ( ),54=λ  the curve tends to be symmetric. On the other hand, 

the curves of the bivariate noncentral F (BNCF) distribution are depended on 
degrees of freedom, coefficient correlation and noncentrality parameter. 
These (the cdf of the singly and doubly) BNCF distributions increase as the 
value of any of the parameters, degrees of freedom 1v  (for fixed ),2v  

noncentrality parameter, increase. For 5.0−=ρ  and ,5.0=ρ  the graphs of 

the cdf of the singly BNCF distribution are identical. The cdf of the BNCF 
distribution approaches 1 quicker for large correlation ( ).ρ  
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