Part of **SPRINGER NATURE** PROCEEDINGS | JOURNALS | BOOKS Search ## Advances in Physics Research | VOLUMES | | | | |---------|--|--|--| | SEARCH | | | | AIMS & SCOPE SERIES HOME PUBLISHING INFO ISSN (Online): 2352-541X ISSN (Print): N/A Series Editor(s): Under appointment... **View Editor Information** The proceedings series *Advances in Physics Research* aims to publish proceedings from conferences on the theories and methods in fields of physics and their applications. Read full Aims & Scope All proceedings in this series are **open access**, i.e. the articles published in them are immediately and permanently free to read, download, copy & distribute. Each volume is published under the CC BY-NC 4.0 user license which defines the permitted 3rd-party reuse of its articles. The online publication of each proceedings is sponsored by the conference organizers and hence no additional publication fees are required. Should you wish to publish a proceedings in this series, then please request a proceedings proposal form by sending an email to contact@atlantis-press.com. Your proposal will be evaluated by a Series Editor(s) and/or a scientific evaluation committee consisting of senior researchers in the relevant field. This is to ensure the integrity and quality of the proceedings that we publish. For any questions about this series, please contact our publishing team. | Latest Volumes | |------------------| | Most Downloaded | | Most Cited | | Upcoming Volumes | Proceedings of the Soedirman International Conference on Mathematics and Applied Sciences (SICOMAS 2021) Editors: Dr. Bilalodin; Sri Maryani, Ph.D.; Dadan Hermawan, Ph.D.; Prof. Wahyu Tri Cahyanto, Ph.D.; Uyi Sulaeman, Ph.D.; Bambang Hendriya G, Ph.D.; Đỗ Ngọc Sơn, Ph.D.; Dr. Wolfgang Bock; Dr. Oliver Tse; Dr. Sangeetha Gnanapragasam; Wahyu Satpriyo Putro, Ph.D.; Volume 5, June 2022 Proceedings of the 2015 International Conference on Materials Chemistry and Environmental Protection ## (meep-15) Editors: Panos M. Pardalos; Bharat Bhushan Volume 4, March 2016 Proceedings of the 2014 International Conference on Physics Editors: Iman Santoso; Ahmad Kusumaatmaja; Fahrudin Nugroho Volume 2, October 2014 **View More Latest Volumes** ### **Atlantis Press** Atlantis Press – now part of Springer Nature – is a professional publisher of scientific, technical & medical (STM) proceedings, journals and books. We offer world-class services, fast turnaround times and personalised communication. The proceedings and journals on our platform are Open Access and generate millions of downloads every month. For more information, please contact us at: contact@atlantis-press.com PROCEEDINGS ABOUT **JOURNALS** NEWS ▶ BOOKS CONTACT POLICIES SEARCH MANAGE COOKIES/DO NOT SELL MY INFO #### Soedirman's International Conference on Mathematics and Applied Sciences October 20-21, 2021 #### Steering Committee : - 1. Drs. Sunardi, M.Si. (Universitas Jenderal Soedirman, Indonesia) - Prof. Dr.-Ing. R. Wahyu Widanarto (Jenderal Soedirman University, Indonesia) Dr. Suwandri, M.Si. (Universitas Jenderal Soedirman, Indonesia) Roy Andreas, Ph.D (Universitas Jenderal Soedirman, Indonesia) - 4. Roy Andreas, Ph.D (Universitas Jenderal Soedirman, Indonesia) 5. Amin Fatoni, Ph.D (Universitas Jenderal Soedirman, Indonesia) 6. Prof. Abdellah Salhi, Ph.D. (University of Essex, UK) 7. Prof. Hendra Gunawan, Ph.D (Institute Technology of Bandung, Indonesia) 8. Drs. Budi Pratikno, M. Stat., Sci.,Ph.D (Universitas Jenderal Soedirman) 9. Prof. Dr. Hadi Nur (University Teknologi Malaysia, Malaysia) 10. Prof. Guiseppe Di Fazio, Ph.D. (University of Catania, Italy) 11. Assoc. Prof. Dr. Imran Parvez (Hajee Mohammad Danesh Science and Technology University (HSTU), Bangladesh) - 12. Dr. Jas Raj Subba (Royal University of Bhutan, Bhutan) - 13. Dr. Saluma Samanman (Faculty of Science and Technology, Princess of Naradhiwas University, Narathiwas, Thailand) #### Conference Chair: Jamrud Aminuddin, Ph.D #### Conference Co-chair : - R. Farzand Abdullatif, S.Si.,M.Si.,Ph.D (Universitas Jenderal Soedirman, Indonesia) Dr. Idha Sihwaningrum, M.Sc.St. (Universitas Jenderal Soedirman, Indonesia) - 1. Dr. Bilalodin, S.Si., M.Si. (Universitas Jenderal Soedirman, Indonesia) - 2. Dr Mashuri, S.Si., M.Si. (Universitas Jenderal Soedirman, Indonesia) 3. Sri Maryani, S.Si., M.Si., Ph.D. (Universitas Jenderal Soedirman, Indonesia) 4. Ari Asnani, Ph.D. (Universitas Jenderal Soedirman, Indonesia) 5. Dadan Hermawan, S.Si., M.Si., Ph.D. (Universitas Jenderal Soedirman, Indonesia) 6. Wahyu Tri Cahyanto, S.Si., M.Si., Ph.D. (Universitas Jenderal Soedirman, Indonesia) 7. Dr. Jajang, S. Si., M. Si. (Universitas Jenderal Soedirman, Indonesia) - 8. Dr. Santi Nur Handayani, S.Si., M.Si. (Universitas Jenderal Soedirman, Indonesia) - 9. Uyi Sulaeman, S.Si.,M.Si.,Ph.D. (Universitas Jenderal Soedirman, Indonesia) 10. Bambang Hendriya G, S. Si.,M.Si.,Ph.D. (Universitas Jenderal Soedirman, Indonesia) 11. Dr. Kartika Sari, S.Si., M.Si. (Universitas Jenderal Soedirman, Indonesia) 12. Dr. Eng. Mukhtar Effendi, S.Si., M. Eng. (Universitas Jenderal Soedirman, Indonesia) 13. Allan Abraham Padama, Ph.D. (University of the Philippines Los Baños, The Philippines) 14. Đỗ Ngọc Sơn, Ph.D. (Ho Chi Minh City University of Technology, Vietnam). - 15. Dr. Wolfgang Bock (Technische Universtat Kaiserslautern, Germany) - 16. Dr. Oliver Tse (Technische Universtat Eindhoven, Netherland) 17. Zulkaida Akbar, Ph.D (Virginia University) 18. Dr. Sangeetha Gnanapragasam (University of Madras, India) - 19. Wahyu Satpriyo Putro, Ph.D (National Institute of Advanced Industrial Science and Technology, Japan) #### Organizing Committee: - 1. Dr. Abdullah Nur Aziz, S.Si.,M.Si - 2. Dr. Undri Rastuti, S.Si, M.Si. 3. Dr. Nunung Nurhayati, M.Si. 4. Dr. Zaroh Irayani, S.Si.,M.Si - 5. Renny, M.Si - 6. Anung Riapanitra, S.Si, M.Sc, Ph.D 7. Rina Reonita, S.Si, M.Si 8. Sugito, S.Si, M.Si - 9. Dian Riana Ningsih, S.Si.,M.Si - 10. Dwi Kartika, S. Si.,M.Sc 11. Wihantoro, S.Si.,M.Sc 12. Agung Prabowo, S.Si, M.Si - 13. Supriyanto, S.Si, M.Si - 14. Hartono, S.Si, M.Si. 15. Sehah, S.Si., M.Si. 16. Aris Haryadi, S.Si, M.Si. - 17. Siti Rahmah Nurshiami, S.Si, M.Si 18. Sukmaji Anom Raharjo, S.Si, M.Si. 19. Akmal Ferdiyan, S.Si, M.Sc - 20. Urip Nurwijayanto Prabowo, S.Pd, M. Sc 21. Efita Pratiwi Adi, S.Pd, M.Sc 22. Ir. Pujo Priyadi - 22. ir. Pujo Priyadi 23. Alifia P. Romadhoni, SE, M.Si, Ak 24. Feby Lestari Supriyono, S.S, M.IP 25. Abdul Naseh, A.Md. Kom 26. Kharis, S.Si - 27. Siti Muniroh, S.Si - 28. Andi Setiawan, A.Md 29. Dena Martini, SE - 30. Listiyani Tri Hastuti, SE - 31. Sherly Arya Iskandar, SE - 32. Eko Jatmiko, SH 33. Ludjeng Wibowo - 34. Elina Dyah Protiwi, A. Md. - 35. Mohamad Muslikhudin 36. Inung Lestari, SE. - 37. Tofik Yudi Harsono 1 dari 2 01/04/2023 16 30 Commitees (cc) BY This work is licensed under a Creative Commons Attribution 3.0 License. Copyright © 2021 Sicomas. All Rights Reserved Faculty of Mathematics and Natural Sciences - Jenderal Soedirman University ### Part of **SPRINGER NATURE** PROCEEDINGS | JOURNALS | BOOKS Search Series: Advances in Physics Research ## Proceedings of the Soedirman International Conference on Mathematics and Applied Sciences (SICOMAS 2021) | HOME | |------------------------| | PREFACE | | ARTICLES | | AUTHORS | | SESSIONS | | ORGANIZERS | | PUBLISHING INFORMATION | | | | Search | | + Advanced search | | SEARCH | | 25 articles | | | ## **Proceedings Article** Photocatalytic and Kinetics Study of Copper Oxide on the Degradation of Methylene Blue Dye ## Anung Riapanitra, Kapti Riyani, Tien Setyaningtyas Methylene blue dyes in is widely used various industries in Indonesia, especially in the textile industry. Methylene blue in waters is toxic and difficult to degrade. One of the methods used is to overcome this problem is photocatalysis under visible light. CuO photocatalyst was prepared using an easy... - Article details - Download article (PDF) ### **Proceedings Article** Prediction of Enantioseparation of Econazole on the Cyclodextrin Derivatives as Chiral Selectors by Molecular Docking Approach Dadan Hermawan, Cacu Cacu, Nurul Alif Septiorini, Ponco Iswanto, Uyi Sulaeman, Hassan Y Aboul-Enein Molecular docking approach has been successfully developed for prediction of enantioseparation of econazole on the cyclodextrin derivatives namely sulfated- β -cyclodextrin (S- β -CD) and hydroxypropyl- γ -cyclodextrin (HP- γ -CD) as chiral selectors. Molecular docking was performed using AutoDock Vina software... - Article details - Download article (PDF) ## **Proceedings Article** Development of Ketorolac Analysis in Water Samples using Micellar Electrokinetic Chromatography Dadan Hermawan, Cacu Cacu, Amin Fatoni, Suwandri, Wan Aini Wan Ibrahim, Hassan Y Aboul-Enein Quantitative determination of ketorolac, a nonsteroidal anti-inflammatory drug (NSAID) in water samples was reported using the micellar electrokinetic chromatography (MEKC) method. The on-line preconcentration technique at MEKC was then investigated to increase the detection sensitivity of ketorolac.... - Article details - Download article (PDF) ## **Proceedings Article** Reducing Levels of Methyl Orange Dye using Crosslinked Chitosan-Tripolyphosphate Mardiyah Kurniasih, Anung Riapanitra, Riyanti Riyanti, Dwi Kartika, Dena Rositasari Chitosan in acid was polycationic and can react with negative charges like tripolyphosphate. Tripolyphosphate was a crosslinking agent with low toxicity. This study was to review the ability of crosslinked chitosantripolyphosphate (Cs-TPP) in reducing the color levels of methyl orange. Synthesizing... - Article details - Download article (PDF) ## **Proceedings Article** Estimation of Neonatal Jaundice from the Chest Images Captured with a Smartphone Mekar Dwi Anggraeni, Amin Fatoni, Eni Rahmawati, Ismei Nartiningsih Hyperbilirubinemia is a common problem in neonatal for contact with the healthcare facilities. Several methods have been used to determine the bilirubin concentration. However, it is not easy to find the healthcare with the instrument to detect bilirubin, mainly in rural area. This research was aimed... - Article details - Download article (PDF) ### **Proceedings Article** The Graphs of the CDF, Power and Its Interpretation on Several Types of Binomial Probability Distribution Budi Pratikno, Evita Luaria Wulandari, Jajang Jajang, Junita Sage Sianipar, Mashuri Mashuri The research discussed the graphically analyzed of the cumulative distribution function (cdf), and the power function of hypothesis testing on the binomial distribution. In this research, we also showed (derived) the formula of the power function on special case of binomial such us Negative Binomial... - Article details - Download article (PDF) ## **Proceedings Article** The Dengue Hemorrhagic Fever Modeling in Banyumas Regency by Using CAR-BYM, Generalized Poisson, and Negative Binomial Jajang Jajang, Budi Pratikno, Mashuri Mashuri, Indriani Eko Cahyarini The research studied disease mapping of dengue haemorrhagic fever (DHF) in Banyumas Regency. The generalized Poisson (GP), negative binomial (NB), and CAR-BYM models are then used to modelling the DHF. The predictor variables used in this research are the number of health worker, altitude, and population... - Article details - Download article (PDF) ## **Proceedings Article** Coefficient Estimates in the Class of Bazilevic Functions $\mathcal{B}_1(\boldsymbol{\alpha})$ Related to the Lemniscate Bernoulli Ni Made Asih, Marjono Marjono, Sa'adatul Fitri, Ratno Bagus E.W In this research, we estimate the coefficient in the class of Bazilevic functions $\mathcal{B}1(\alpha)$ related to the Lemniscate Bernoulli on the unit disk $\mathbb{D}=\{z:|z|<1\}$, satisfying subordination condition $[f'(z)(f(z)z)\alpha-1]<1+z$, for $z\in\mathbb{D}$. The upper bound of the modulus of a2 and a3 are determined. - Article details - Download article (PDF) ## **Proceedings Article** Solution Formula of the Half-Space Model Problem for Incompressible Fluid Flow Maria Leonids Berlian Candra Dewi, Sri Maryani, Ari Wardayani, Bambang Hendriya Guswanto In this paper we determine a slightly detailed the solution formula of the incompressible fluid flows by using Fourier transform in N-dimensional Euclidean space ($N \ge 2$) for the linearized equations. For further research, from this result we can estimate the boundedness of the operator families. This... - Article details - Download article (PDF) ## **Proceedings Article** ### Part of **SPRINGER NATURE** PROCEEDINGS | JOURNALS | BOOKS Search Series: Advances in Physics Research # Proceedings of the Soedirman International Conference on Mathematics and Applied Sciences (SICOMAS 2021) PROCEEDINGS OF THE SOEDIRMAN INTERNATIONAL CONFERENCE ON MATHEMATICS AND APPLIED SCIENCES (SICOMAS 2021) < > ## Prediction of Enantioseparation of Econazole on the Cyclodextrin Derivatives as Chiral Selectors by Molecular Docking Approach #### **Authors** Dadan Hermawan^{1, *}, Cacu Cacu¹, Nurul Alif Septiorini¹, Ponco Iswanto¹, Uyi Sulaeman¹, Hassan Y Aboul-Enein² - Department of Chemistry, Faculty of Mathematics and Natural Science, Jenderal Soedirman University, Indonesia - ² Department of Pharmaceutical and Medical Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Cairo, Egypt - * Corresponding author. Email: dadan.hermawan@unsoed.ac.id #### **Corresponding Author** Dadan Hermawan Available Online 25 May 2022. #### DOI 10.2991/apr.k.220503.002 How to use a DOI? #### **Keywords** Cyclodextrin; Enantioseparation; Econazole; Molecular docking #### Abstract Molecular docking approach has been successfully developed for prediction of enantioseparation of econazole on the cyclodextrin derivatives namely sulfated- β -cyclodextrin (S- β -CD) and hydroxypropyl- γ -cyclodextrin (HP- γ -CD) as chiral selectors. Molecular docking was performed using AutoDock Vina software and the root mean square deviation (RMSD) was calculated using PyMol software. Molecular docking shows that R-Econazole forms more stable interaction with all cyclodextrin derivatives than S-Econazole forms, suggesting that S-econazole will be eluted earlier than R-econazole. In addition, the stability level of cyclodextrin derivatives as chiral selectors was S- β -CD > HP- γ -CD. ### Copyright © 2022 The Authors. Published by Atlantis Press International B.V. #### **Open Access** This is an open access article distributed under the CC BY-NC 4.0 license. #### **Volume Title** Proceedings of the Soedirman International Conference on Mathematics ar... Applied Sciences (SICOMAS 2021) ### **Series** Advances in Physics Research #### **Publication Date** 25 May 2022 #### **ISBN** 10.2991/apr.k.220503.002 #### **ISSN** 2352-541X #### DOI 10.2991/apr.k.220503.002 How to use a DOI? ## Copyright © 2022 The Authors. Published by Atlantis Press International B.V. ## **Open Access** This is an open access article distributed under the CC BY-NC 4.0 license. ## Cite this article | ris | | |-----|--| | enw | | | bib | | TY - CONF AU - Dadan Hermawan AU - Cacu Cacu AU - Nurul Alif Septiorini AU - Ponco Iswanto AU - Uyi Sulaeman AU - Hassan Y Aboul-Enein PY - 2022 DA - 2022/05/25 TI - Prediction of Enantioseparation of Econazole on the Cyclodextri Derivatives as Chiral Selectors by Molecular Docking Approach BT - Proceedings of the Soedirman International Conference on Mathematics and Applied Sciences (SICOMAS 2021) PB - Atlantis Press SP - 6 EP - 11 SN - 2352-541X UR - https://doi.org/10.2991/apr.k.220503.002 DO - 10.2991/apr.k.220503.002 ID - Hermawan2022 ER - - ▶ PROCEEDINGS.ris COPY TO CLIPBOARD ABOUT - **▶** JOURNALS NEWS - B00KS ▶ CONTACT - ▶ POLICIES SEARCH - ▶ MANAGE COOKIES/DO NOT SELL MY INFO Home Privacy Policy Terms of use Copyright © 2006-2023 Atlantis Press – now part of Springer Nature ## Prediction of Enantioseparation of Econazole on the Cyclodextrin Derivatives as Chiral Selectors by Molecular Docking Approach Dadan Hermawan^{1,*} Cacu Cacu¹, Nurul Alif Septiorini¹, Ponco Iswanto¹, Uyi Sulaeman¹, Hassan Y Aboul-Enein² #### **ABSTRACT** Molecular docking approach has been successfully developed for prediction of enantioseparation of econazole on the cyclodextrin derivatives namely sulfated- β -cyclodextrin (S- β -CD) and hydroxypropyl- γ -cyclodextrin (HP- γ -CD) as chiral selectors. Molecular docking was performed using AutoDock Vina software and the root mean square deviation (RMSD) was calculated using PyMol software. Molecular docking shows that R-Econazole forms more stable interaction with all cyclodextrin derivatives than S-Econazole forms, suggesting that S-econazole will be eluted earlier than R-econazole. In addition, the stability level of cyclodextrin derivatives as chiral selectors was S- β -CD > HP- γ -CD. **Keywords:** Cyclodextrin, Enantioseparation, Econazole, Molecular docking. #### 1. INTRODUCTION Econazole is an antifungal agent well-known for the potential treatment of several fungal infections in the skin of both humans and animals. This compound has one chiral center, thus leading to two enantiomers. The activity and toxicity of chiral azole drugs might be influenced by stereoisomerism. Based on several reports, there is only one enantiomer that gives good effects [1]. Therefore, the enantiomeric separation of chiral compounds is important to do. One of the most possible methods to separate enantiomers of chiral compounds is high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE) [2-4]. Chiral separation can be achieved using chiral selectors which clearly distinguish the two enantiomers. Chiral selector changes one of the two enantiomers at different rates into a new compound (kinetics enantioselective) or established a labile molecule at different stability (thermodynamics enantioselective). One of the most widely used chiral selectors is cyclodextrin due to its excellent chiral recognition abilities [5]. Cyclodextrin (CD) is a molecule that has a cyclic torus shape that has an outer surface hydrophilic and a lipophilic middle cavity that can accommodate various lipophilic ligands. Cyclodextrin is a macromolecule consisting of glucopyranose subunits obtained by enzymatic degradation of starch. Cyclodextrin has a conical shape with a lipophilic center cavity and a hydrophilic surface [6-7]. However, the HPLC chiral separation can only separate a limited chiral range. Therefore, a preliminary schematic was needed to analyze the three-dimensional structure of compounds to predict the characteristics and functions of these compounds and analyze the actual interactions at the molecular level [8]. Molecular docking is a computational method that has been used to predict the molecular interactions of ligands and receptors. The molecular docking prediction increases accuracy and precision in chiral recognition and also reduces research time since it can be predicted quickly [9]. The molecular docking method can save time, effort, and the use of solvents or chemicals that pollute the environment [10]. This method was performed by placing the ligands systematically on the active site of receptors. The molecular docking method aims to achieve the optimal complex conformation and to predict the interactions of drugs/ligands and receptors, therefore, the best geometry of ligands and ¹Department of Chemistry, Faculty of Mathematics and Natural Science, Jenderal Soedirman University, Indonesia ² Department of Pharmaceutical and Medical Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Cairo, Egypt ^{*}Corresponding author. Email: dadan.hermawan@unsoed.ac.id receptors complex was obtained. In addition, a more effective ligand can be predicted by calculating the energy interactions of the different ligands [11]. Based on this report, this study aims to analyze the structure of the econazole complex, calculate the binding energy, and determine the most suitable chiral selector to predict the separation of the enantiomers of econazole. Chiral selectors commonly used are cyclodextrin and its derivatives. Cyclodextrin is an oligosaccharide composed of six (α -CD), seven (β -CD), and eight (γ -CD) glucose units through α -1,4 glycoside bonds [12-15]. Cyclodextrin can form an inclusion complex with drugs by inserting drug molecules into the central cavity of cyclodextrin. The inclusion complex formed can improve the solubility, dissolution, stability, and bioavailability of the guest molecule [16]. Cyclodextrin shows enantioselectivity for a wide range of analytes, is transparent to UV light and has good water solubility. In addition, cyclodextrins are available in various ranges, generally, give fast kinetics for the complex formation and breakdown enantiomers, and are relatively cheap [15]. In this study, econazole acts as ligands, and cyclodextrin acts as receptors. Cyclodextrins used for this study are sulfated-β-cyclodextrin (S- β -CD) and hydroxypropyl- γ -cyclodextrin (HP- γ -CD) [17]. #### 2. MATERIALS AND APPARATUS The crystal structure of S- β -CD and HP- γ -CD were obtained from PubChem (CID: 12049144 and 2733545) in SDF format. The crystal structure of R-Econazole and S-Econazole were obtained from PubChem (CID: 6604378 and 12773795). A computer with an Operating System (OS) Windows 10 Enterprise 64-bit with processor Intel® Core™ i3-4005U CPU @ 1.70 GHz (4 CPUs), 1.7 GHz and external hard disk 500 GB, RAM 4 GB. The CDs structures were converted into PDB file format using Avogadro software. The structure of Econazole was optimized using the PM3 method implemented in HyperChem software. The AutoDock Vina software was used as a molecular docking tool. Docking results were calculated RMSD using PyMOL software. #### 2.1. Geometry Optimization The structure of econazole was geometrically optimized using HyperChem software. The calculation used is semiempirical with PM3 as the method. The structure of econazole and its enantiomers are shown in **Figure 1.** Figure 1 Structure of R-Econazole and S-Econazole. #### 2.2. Molecular Docking Molecular docking was carried out using an automated docking program, AutoDock Vina. Water molecules on the receptor structures are removed to avoid interference during the molecular docking process. Polar hydrogen atoms are added to the structure as only polar atoms will interact with ligands while non-polar hydrogen atoms will be hidden to increase molecular docking calculation speed. The grid box was determined according to the coordinates of the active site of receptors. This study was conducted using a blind docking process as the grid box parameters that are not yet known. The large grid box was arranged so that ligands can rotate freely to find the most stable site on the receptors. Exhaustiveness was a parameter in Autodock Vina that can control some of its comprehensive predictions. The increase of the exhaustiveness value will be slow down the docking process. However, the higher the exhaustiveness, the higher the probability of a good result of docking. The default value of Autodock Vina exhaustiveness is 8 [6,19]. In this study, exhaustiveness of 264 was used to obtain a more consistent docking result. The S- β -CD structure was docked with coordinate value of X = -0.437, Y = 9.514, Z = -8.760, Grid Box size of 20 x 20 x 20 and Grid Spacing 1.000. The HP- γ -CD structure was docked with coordinate value of X = -20.980, Y = 2.342, Z = 67.004, Grid Box size of 18 x 18 x 18 and Grid Spacing 1.000. The docking results should have a Root Mean Square Deviation (RMSD) of less than 3 Å [23]. #### 3. RESULTS #### 3.1. Geometry Optimization Geometry optimization can determine the location of atoms in a stable molecular conformation with the lowest energy state to obtain a molecular geometry that is a representation of the molecular structure adopted by compounds in nature. The first step is ligands and receptors preparation using Avogadro software to change the file format into PDB. Econazole is a ligand that was optimized using HyperChem software by the semiempirical PM3 method, therefore, the most stable structure that has the lowest binding energy was obtained. Econazole enantiomers structures before and after optimization were shown in **Figure 1** and **Figure 2**. **Figure 2** The structure of R-Econazole before and after optimization. **Figure 3** The structure of S-Econazole before and after optimization. #### 3.2. Molecular Docking Molecular Docking is a computational simulation used to predict between a drug/ligand and a receptor/protein by attaching a small molecule (ligand) to the active site of the receptor [12]. This method was performed by placing the ligands systematically on the active site of receptors. The molecular docking method aims to achieve the optimal complex conformation and to predict the interactions of drugs/ligands and receptors, therefore, the best geometry of ligands and receptors complex was obtained. In addition, a more effective ligand can be predicted by calculated the energy interactions of the different ligands [16]. The running process was performed using Autodock Vina software. Water molecules on the receptor structures are removed to avoid interference during the molecular docking process. Polar hydrogen atoms are added to the structure as only polar atoms will interact with ligands while non-polar hydrogen atoms will be hidden to increase molecular docking calculation speed. The grid box was determined according to the coordinates of the active site of receptors. This study was conducted using a blind docking process as the grid box parameters are not yet known. The large grid box was arranged so that ligands can rotate freely to find the most stable site on the receptors. Exhaustiveness was a parameter in Autodock Vina that can control some of its comprehensive predictions. The increase of the exhaustiveness value will be slow down the docking process. However, the higher the exhaustiveness, the higher the probability of a good result of docking. The default value of Autodock Vina exhaustiveness is 8 [20,23]. In this study, exhaustiveness of 264 was used to obtain a more consistent docking result. The RMSD values of inclusion complexes obtained are shown in **Table 1.** All of the RMSD values obtained are below 3 Å, this indicates that the ligand structure before and after docking is almost accurate. **Table 1.** RMSD value of the docking results. | Inclusion complex | RMSD value (Å) | |---------------------|----------------| | S-β-CD/R-Econazole | 1.509 | | S-β-CD/S-Econazole | 1.667 | | HP-γ-CD/R-Econazole | 1.642 | | HP-γ-CD/S-Econazole | 2.371 | The results of molecular docking are shown the stability of the inclusion complex based on its binding energy (ΔG). Figure 4 shows the structure of S- β -CD/R-Econazole and S- β -CD/S-Econazole complexes. The complex which the econazole is not included in the S- β -CD has ΔG value of S- β -CD/R-Econazole in the range -5.2 to -4.4 Kcal/mol and S- β -CD/S-Econazole in the range -4.7 to -4.2 Kcal/mol. The S- β -CD/R-Econazole complex has a lower binding energy value (-5.2 Kcal/mol) compared to S- β -CD/S-Econazole (-4.7 Kcal/mol). Econazole that does not include the S- β -CD may be caused by the size of the S- β -CD cavity, therefore, the complexes between econazole and S- β -CD could be trapped. The ΔG value of S- β -CD/R-Econazole and S- β -CD/S-Econazole docked using Autodock Vina software are shown in **Table 2** and **Figure 4**. The negative value of ΔG indicates that the inclusion complex formed is stable [24]. **Table 2.** The ΔG value of S-β-CD/R-Econazole and S-β-CD/S-Econazole. | Inclusion complex | ΔG
(Kcal/mol) | ΔΔG
(Kcal/mol) | |--------------------|------------------|--------------------| | S-β-CD/R-Econazole | -5.2 | 0.5 | | S-β-CD/S-Econazole | -4.7 | 0.5 | **Figure 4** Structure of S- β -CD/R-Econazole and S- β -CD/S-Econazole. The more negative the ΔG value, the higher affinity between ligands and receptors, therefore, the inclusion complex obtained was more stable. The enantiomer with the highest affinity will spend the most time in the mobile phase while the enantiomer with the least affinity will be eluted first from the column. The $|\Delta\Delta G|$ value is the difference ΔG value of R-Econazole and S-Econazole that describes the enantiomer separation ability to econazole compounds using chiral selector cyclodextrin. The value of $|\Delta\Delta G|$ obtained is 0.5 Kcal/mol. The higher $|\Delta\Delta G|$ value of $|\Delta\Delta G|$, the better separation of chiral compounds. The value of $|\Delta\Delta G|$ indicates that cyclodextrin can be used as a chiral selector to separate the enantiomer of econazole compounds. In this study, the inclusion complex of R-Econazole was lower ΔG values compared to S-Econazole. It causes S-Econazole will be eluted first from the cyclodextrin chiral selector because the stability of S-Econazole is weaker than R-Econazole [25-26]. Following the same approach, the ΔG value of the inclusion complex was obtained from the docking process using Autodock Vina. The ΔG value of HP- γ -CD/R-Econazole is in the range -4.2 to -3.7 Kcal/mol and HP- γ -CD/S-Econazole is in the range -4.1 to -3.6 Kcal/mol. HP- γ -CD/R-Econazole complex has a lower binding energy value (-4.2 Kcal/mol) compared to HP- γ -CD/S-Econazole (-4.1 Kcal/mol). This complex has $|\Delta\Delta G|$ value in the range 0.1 Kcal/mol. In addition, HP- γ -CD/R-Econazole was a lower ΔG value compared to S-Econazole, therefore, S-Econazole will be eluted first from HP- γ -CD/R-Econazole and HP- γ -CD/S-Econazole. The ΔG value of HP- γ -CD/R-Econazole and HP- γ -CD/S-Econazole docked using Autodock Vina software are shown in **Table 3** and **Figure 5**. **Table 3.** The ΔG value of HP-γ-CD/R-Econazole and HP-γ-CD/S-Econazole | Inclusion complex | ΔG
(Kcal/mol) | [AAG]
(Kcal/mol) | |--------------------|------------------|---------------------| | S-β-CD/R-Econazole | 1.509 | 0.1 | | S-β-CD/S-Econazole | 1.667 | 0.1 | **Figure 5** Structure of HP-γ-CD/R-Econazole and HP-γ-CD/S-Econazole #### 4. DISCUSSION The molecular docking of econazole and cyclodextrin derivatives showed negative energy and a small number of RMSD. From the docking test, the RMSD value was less than 3 Å, so the prediction was quite accurate. The complexing ability of cyclodextrin was modified by the presence of hydroxypropyl (HP) substituent, therefore, the interaction and complexation energies for S- β -CD are higher than other cyclodextrin derivatives [27-28]. Based on the research that has been done, the use of S- β -CD as a chiral selector for chiral separation of econazole obtained the lowest ΔG value with high affinity and stable complex. It indicates that S- β -CD performed better than HP- γ -CD as a chiral selector for chiral separation of econazole compounds [29-31]. A high performance liquid chromatography (HPLC) method using cyclodextrin-based Astec Cyclobond as a chiral column has been successfully developed for chiral separation of econazole with Rs = 2.29 and analysis time within 9 min. Condition mobile phase composition of acetonitrile: water (0.2% HCOOH) 20:80 (v/v), and UV detection at 220 nm. The calibration curve of econazole was linear with $r^2 = 0.9992$. LOD and LOQ of econazole were 3.31 and 11.03 mg/L, respectively. #### 5. CONCLUSION Cyclodextrin derivatives were used to predict chiral separation of econazole compounds, specifically sulfated- β -cyclodextrin (S- β -CD) and hydroxypropyl- γ -cyclodextrin (HP- γ -CD). The results of molecular docking using Autodock Vina shows that R-Econazole has a more stable interaction with all of the cyclodextrin derivatives compared to S-Econazole based on its lower binding energies. These results indicate that S-Econazole will be eluted first followed by R-Econazole. In addition, the stability level of cyclodextrin derivatives as a chiral selector to predicting the separation of econazole is S- β -CD > HP- γ -CD. #### **AUTHORS' CONTRIBUTIONS** ALL AUTHORS made substantial contributions to CONCEPT and DESIGN, ACQUISITION OF DATA, or ANALYSIS and INTERPRETATION OF DATA; took part in DRAFTING the article or REVISING it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work. All the authors are eligible to be an author as per the international committee of medical journal editors (ICMJE) requirements/guidelines. #### **ACKNOWLEDGMENTS** The authors would like to acknowledge Universitas Jenderal Soedirman (UNSOED) Indonesia for financial support through Basic Research Grant 2021. #### REFERENCES - [1] J. Zhang, B. Liu, Z. Jiang, Y. Cui, X. Guo. Enantioselective determination of econazole in rat plasma and its application to a pharmacokinetic study, Analytical Biochemistry, 2020, vol. 602, pp. 113791. https://doi.org/10.1016/j.ab.2020.113791. - [2] S. Salido-Fortuna, M. Greño, M. Castro-Puyana, M.L. Marina. Amino acid chiral ionic liquids combined with hydroxypropyl-β-cyclodextrin for drug enantioseparation by capillary electrophoresis, Journal of Chromatography A, 2019, vol. 1607, pp. 460375. https://doi.org/10.1016/j.chroma.2019.460375. - [3] S. Salido-Fortuna, M. Castro-Puyana, M.L Marina. Chiral micellar electrokinetic chromatography, Journal of Chromatography A, 2020, vol. 1626, pp. 461383. https://doi.org/10.1016/j.chroma.2020.461383. - [4] S. El Deeb, C.F. Silva, C.S.N. Junior, R.S. Hanafi, K.B. Borges. Chiral capillary electrokinetic chromatography: principle and applications, detection and identification, design of experiment, and exploration of chiral recognition using molecular modeling, Molecules, 2021, vol. 26, pp. 2841. https://doi.org/10.3390/molecules26102841. - [5] C.S. Nascimento, J.F. Lopes, L. Guimarães, K.B. Borges. Molecular modeling study of the recognition mechanism and enantioseparation of 4-hydroxy propanol by capillary electrophoresis using carboxymethyl-β-cyclodextrin as the chiral selector, Analyst, 2014, vol. 139, pp. 3901-3910. https://doi.org/10.1039/C4AN00223G. - [6] V. Suvarna, A. Kajwe, M. Murahari, G.V. Pujar, B.K. Inturi, A.P. Sherje. Inclusion complexes of nateglinide with HP–β–CD and L-Arginine for solubility and dissolution enhancement: preparation, characterization, and molecular docking study, Journal of Pharmaceutical Innovation, 2017, vol. 12, no. 2, pp. 168–181. https://doi.org/10.1007/s12247-017-9275-z... - [7] A.P. Sherje, V.M. Kulkarni, N. Manikanta, Y.B. Usha, S. Pritesh, D. Vasanti. Bushan. Inclusion complexation of etodolac with hydroxypropyl-beta-cyclodextrin and auxiliary agents: Formulation characterization and molecular modeling studies, Molecular Pharmaceutics, 2017, vol. 14, no. 4, pp. 1231–1242. https://doi.org/10.1021/acs.molpharmaceut.6b01115. - [8] D.K. Pratoko. Molecular docking of piper longum (L.) phytochemicals to cyclooxygenase-2 (cox-2) receptors as anti-inflammatory, Chemistry Progress, 2012, vol. 5, pp. 31-36. - [9] S.R. Arsad. H. Maarof, W.A.W. Ibrahim, H.Y. Aboul-Enein. Theoretical and molecular docking study of ketoconazole on heptakis (2,3,6-tri-O-methyl)-βcyclodextrin as chiral selector, Chirality, 2016, vol. 28, pp. 209214. https://doi.org/10.1002/chir.22554. - [10] Y. Liu, L. Cai, J. Lun, M. Zhao, X. Guo. Enantiomeric separation and molecular docking study of seven imidazole antifungal drugs on a cellulose tris-(3,5dimethyl phenyl carbamate) chiral stationary phase, New Journal of Chemistry, 2020, vol. 44, pp. 18337-18346. https://doi.org/10.1039/D0NJ03657A. - [11] H. Setiawan, M.I. Irawan. Study of ligand placement approach in protein using genetic algorithm, Jurnal Sains dan Seni 2017, vol. 6, pp. 68-72 - [12] T. Rostinawati, Y.C. Sumirtapura, Elfahmi, D.S. Retnoningrum. Determination of -cyclization activity of wild-type cyclodextrin glucosyltransferase, H43K, P84Y, Y93F, Y188L, and S468F from Bacillus sp. A2-5a against soluble starch, Pharmauho, 2016, vol. 2, pp. 1-5. - [13] M. Wei, X. Yang, P. Watson, F. Yang, H. Liu. Development of QSAR model for predicting the inclusion constants of organic chemicals with αcyclodextrin, Environmental Science and Pollution Research Environ, 2018, vol. 25, pp. 17565–17574. https://doi.org/10.1007/s11356-018-1917-2. - [14] I.M. Le-Deygen, A.A. Skuredina, I.V. Uporov, E.V. Kudryashova, Thermodynamics and molecular insight in guest–host complexes of fluoroquinolones with β-cyclodextrin derivatives, as revealed by ATR-FTIR spectroscopy and molecular modeling experiments, Analytical and Bioanalytical Chemistry, 2017, vol. 409, pp. 6451–6462. https://doi.org/10.1007/s00216-017-0590-5. - [15] D. Chantasart, P. Rakkaew. Preparation and characterization of dry β-cyclodextrin-based ternary complexes of haloperidol and lactic acid for drug delivery, Journal of Drug Delivery Science and Technology, 2019, vol. 52, pp. 73–82. https://doi.org/10.1016/j.jddst.2019.04.011. - [16] I. Makmur, A. Halim, M.D. Oktavia, H. Anggraeni. Amlodipine Besylate-β-cyclodextrin inclusion complex by kneading method, Jurnal Farmasi Higea, 2018, 10, pp. 60-75. - [17] A.C. Illapakurthy, Y.A. Sabnis, B.A. Avery, M.A. Avery, C.M. Wyandt. Interaction of artemisinin and its related compounds with hydroxypropyl-β-cyclodextrin in solution state: Experimental and molecular-modeling studies, Journal of Pharmaceutical Sciences, 2003, vol. 92, no. 3, pp. 649–655. https://doi.org/10.1002/jps.10319. - [18] B. Varghese, F.O. Suliman, A. Al-Hajri, N.S.S. Al Bishri, N. Al-Rwashda. Spectral and theoretical study on complexation of sulfamethoxazole with β-and HPβ-cyclodextrins in binary and ternary systems, Spectrochimica Acta Part A: Molecular Spectroscopy, 2018, vol. 190, pp. 392–401. https://doi.org/10.1016/j.saa.2017.09.060. - [19] S. Wren, T.A. Berger, K.S. Boos, H. Engelhardt, E.R. Adlard, I.W. Davies, K.D. Altria, R. Stock. The use of cyclodextrins as chiral selectors, Chromatographia, 2001, vol. 54, pp. 59-77. https://doi.org/10.1007/978-3-322-83141-5. - [20] S. Forli, R. Huey, M.E. Pique, M.F. Sanner, D.S. Godsell, A.J. Olson. Computational protein-ligand docking and virtual drug screening with the AutoDock suite, Nature Protocols, 2016, vol. 11, pp. 905-919. https://doi.org/10.1038/nprot.2016.051. - [21] A.N. Jain, A. Nicholls. Recommendations for evaluation of computational methods, Journal of Computer-Aided Molecular Design, 2008, vol. 22, pp. 133-139. https://doi.org/10.1007/s10822-008-9196-5. - [22] A.A. Pratama, Y. Rifai, A. Marzuki. Molecular docking of the compound 5.5'-dibromomethylsesamin, Majalah Farmasi dan Farmakologi, 2017, vol. 21, pp. 67-69. - [23] V. Barillaro, G. Dive, P. Bertholet, B. Evrard, L. Delattre, Z. Eric, G. Piel, Theoretical and experimental investigations on miconazole/cyclodextrin/acid complexes: molecular docking studies, International Journal of Pharmaceutics, 2007, vol. 342, pp. 152-160. https://doi.org/10.1016/j.ijpharm.2007.05.003. - [24] E.S. Nurhidayah, A.L. Ivansyah, M.A. Martoprawiro, M.A. Zulfikar. A molecular docking study to predict enantioseparation of some chiral carboxylic acid derivatives by methyl-β-cyclodextrin, Journal of Physics: Conference Series, 2018, vol. 1013, pp. 012203. doi:10.1088/1742-6596/1013/1/012203. - [25] V. Aiassa, C. Garnero, M.R. Longhi, and A. Zoppi. Cyclodextrin multicomponent complexes: Pharmaceutical applications, Pharmaceutics, 2021, vol. 13, no. 7, pp. 1099. https://doi.org/10.3390/pharmaceutics13071099. - [26] S. Alshehri, S.A. Syed, A.J. Mohammad, A. Mohammad, Z.H. Mohammad, A. Afzal, M.W. Abdul. Host-guest complex of β-cyclodextrin and pluronic F127 with Luteolin: Physicochemical characterization, anti-oxidant activity, and molecular modeling studies, Journal of Drug Delivery Science and Technology, 2020, vol. 55, pp. 101356. https://doi.org/10.1016/j.jddst.2019.101356. - [27] C.V. Bui, T. Rosenau, H. Hettegger. Polysaccharide-and β-cyclodextrin-based chiral selectors for enantiomer resolution: recent developments and applications, Molecules, 2021, vol. 26, pp. 4322. https://doi.org/10.3390/molecules26144322. - [28] S.M. Omar, F. Ibrahim, A. Ismail. Formulation and evaluation of cyclodextrin-based nanosponges of griseofulvin as pediatric oral liquid dosage form for enhancing bioavailability and masking bitter taste, Saudi Pharmaceutical Journal, 2020, vol. 28, pp. 349–361. https://doi.org/10.1016/j.jsps.2020.01.016. - [29] V. Suvarna, S. Thorat, U. Nayak, A. Sherje, M. Murahari. Host-guest interaction study of Efavirenz with hydroxypropyl-β-cyclodextrin and L-arginine by computational simulation studies: Preparation and characterization of supramolecular complexes, Journal of Molecular Liquids, 2018, vol. 259, pp. 55–64. https://doi.org/10.1016/j.molliq.2018.02.131. - [30] T. Bíró, Z. Aigner. Current approaches to use cyclodextrins and mucoadhesive polymers in ocular drug delivery—a mini-review, Scientia Pharmaceutica, 2019, vol. 15, pp. 87. https://doi.org/10.3390/scipharm87030015. - [31] M. Silion, A. Fifere, A.L. Lungoci, N.L. Marangoci, S.A. Ibanescu, R. Zonda, A. Rotaru, M. Pinteala. Mass spectrometry as a complementary approach for noncovalently bound complexes based on cyclodextrins, Advancements of Mass Spectrometry in Biomedical Research, 2019, pp. 685–701. https://doi.org/10.1007/978-3-030-15950-4_41.