PREFACE • OPEN ACCESS

10th Joint Conference on Chemistry

To cite this article: 2016 IOP Conf. Ser.: Mater. Sci. Eng. 107 011001

View the <u>article online</u> for updates and enhancements.

You may also like

- Peer Review Statement
- Peer Review Statement
- Peer Review Statement

Editorial Materials (preface and photograph)

PREFACE

The 10th Joint Conference on Chemistry is an international conference organized by 4 chemistry departments of 4 universities in central java, Indonesia. The universities are Sebelas Maret University, Diponegoro University, Semarang State University and Soedirman University. The venue was at Solo, Indonesia, at September 8-9, 2015. The total conference participants are 133 including the invited speakers. The conference emphasized the multidisciplinary chemical issue and impact of today's sustainable chemistry which covering the following topics:

- Material innovation for sustainable goals
- Development of renewable and sustainable energy based on chemistry
- New drug design, experimental and theoretical methods
- Green synthesis and characterization of material (from molecule to functionalized materials)
- Catalysis as core technology in industry
- Natural product isolation and optimization

The conference speakers are:

Prof. Takuji Ogawa

Prof. Dr. Evamarie. Hey-Hawkins

Prof. Masaaki Nagatsu

Single molecular electronic devices and their integration, Physical Organic Chemistry, Osaka University

Osaka University, Japan. Research Catalysis- A powerful means for sustainable developments, Institute of Inorganic Chemistry Leipzig University, Germany. Research Plasma science and technology, Shizuoka University Shizuoka University, Japan. Research

Prof. Santiago Gómez Ruiz

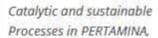
Dr. Henning Störz

Dr. Leny Yuliati

In search of novel sustainable systems based on nanostructured materials for different catalytic applications.", Rey Juan Carlos University, Móstoles (Madrid), Spain Current State and Future
Prospects Including Monomer
Preparation from Biomass
Institute of Agriculture
Technology,
Johann Heinrich Von Thuenen
Institute.

Braunschweig Germany,

Photocatalytic hydrogen production, Ibnu Sina Institute University Teknologi Malaysia. Research


Research

Prof. Effendy, PhD

Dr.rer.nat Hery.Haerudin

Molecular Structure Analysis by Single X-ray Diffraction Method,

Dr. Hasanudin Abdurakhman

Dr. Fitria Rahmawati

Advanced Material Research in Toray, Toray Foundation Materials for Solid Electrolytes, Sebelas Maret University

. Research1 Research2

OPEN ACCESS

Peer review statement

To cite this article: 2016 IOP Conf. Ser.: Mater. Sci. Eng. 107 011002

View the article online for updates and enhancements.

You may also like

- Retraction: Research on the Professional Development of College Teachers Based on Computer Network (*J. Phys.: Conf. Ser.* 1992 032030)
- Peer review declaration
- Retraction: Diversified Research on the Professional Development Path of Rural Physical Education Teachers Based on Big Data Analysis (J. Phys.: Conf. Ser. 1648 022111)

Peer review statement

All papers published in this volume of *IOP Conference Series: Materials Science and Engineering* have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.

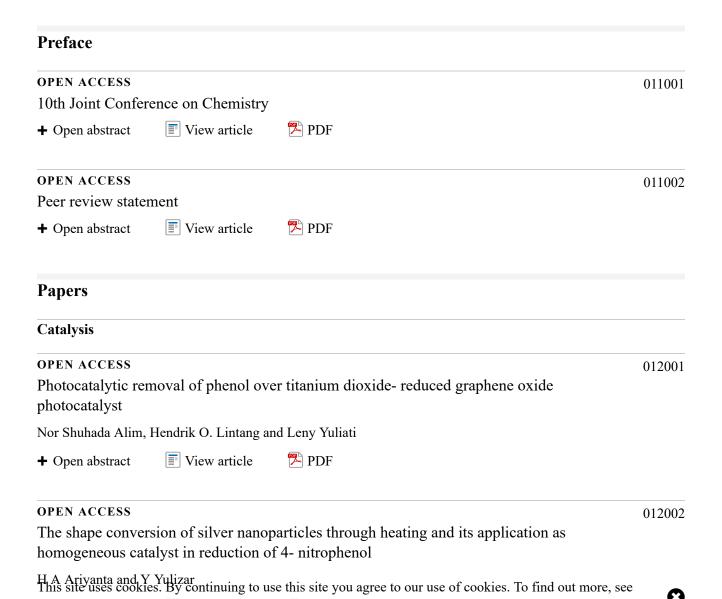
3

Table of contents

Volume 107

2016

◆ Previous issue Next issue >


10th Joint Conference on Chemistry 8-9 September 2015, Solo, Indonesia

Accepted papers received: 21 December 2015

Published online: 05 February 2016

Hun Prinadysand (Cookies policy article

Open all abstracts

1 dari 13 01/04/2023 14.58

🔼 PDF

OPEN ACCESS 012003 Preparation of TiO2-ZnO and its activity test in sonophotocatalytic degradation of phenol Is Fatimah and Novitasari ■ View article 🔼 PDF + Open abstract **OPEN ACCESS** 012004 Chitosan and N-Alkyl chitosan as a heterogeneous based catalyst in the transesterification reaction of used cooking oil T S Julianto and R A Mumpuni ■ View article 🄼 PDF + Open abstract **OPEN ACCESS** 012005 High photocatalytic activity of mixed anatase-rutile phases on commercial TiO2 nanoparticles Wai Ruu Siah, Hendrik O Lintang, Mustaffa Shamsuddin and Leny Yuliati ■ View article 🔼 PDF + Open abstract **Environmental Chemistry OPEN ACCESS** 012006 Synthesis of α-Bismuth oxide using solution combustion method and its photocatalytic properties Y. Astuti, A. Fauziyah, S. Nurhayati, A.D. Wulansari, R. Andianingrum, A.R. Hakim and G. Bhaduri 🔼 PDF **■** View article + Open abstract **OPEN ACCESS** 012007 Aliphatics hydrocarbon content in surface sediment from Jakarta Bay, Indonesia M YAzis, L Asia, A Piram, BBuchari, P Doumenq and A D Syakti View article 🔼 PDF + Open abstract **OPEN ACCESS** 012008 Occurrence of aliphatic and polyaromatic hydrocarbons (PAHs) in Mytillus galloprovincialis from the traditional market in Marseille, France, by Gas Chromatography triplequadropole tandem Mass Spectrometry (GC-QQQ/MS) M Y Azis, Yelmiza, L Asia, A Piram, B. Bucharil, P Doumenq and A D Syakti **View article** 🔼 PDF + Open abstract OPEN ACCESS
This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see Synthesis of thiazole silica hybrid from waste glass for adsorption of cadmium(II) our Privacy and Cookies policy. 012009

2 dari 13 01/04/2023 14.58

8

C. Azmiyawati and TaslimahVirkyanov

🔁 PDF ■ View article + Open abstract

OPEN ACCESS 012010

Alginate cryogel based glucose biosensor

Amin Fatoni, Dian Windy Dwiasi and Dadan Hermawan

View article 🔼 PDF + Open abstract

OPEN ACCESS 012011

Adsorption of remazol yellow FG from aqueous solution on chitosan-linked P-T-Butylcalix[4]Arene

Desi Suci Handayani, Candra Purnawan, Pranoto, Sri Hastuti and Diniyah Hilmiyana

■ View article 🄼 PDF + Open abstract

OPEN ACCESS 012012

Photocatalytic removal of 2,4-dichlorophenoxyacetic acid herbicide on copper oxide/titanium dioxide prepared by co-precipitation method

Shu Chin Lee, Norhasnita Hasan, Hendrik O. Lintang, Mustaffa Shamsuddin and Leny Yuliati

View article + Open abstract 🔼 PDF

OPEN ACCESS 012013

Analysis of diazinon pesticide using potentiometric biosensor based on enzyme immobilized cellulose acetate membrane in gold electrode

Mashuni, L O A N Ramadhan, M Jahiding and Herniati

View article 🔁 PDF + Open abstract

OPEN ACCESS 012014

Cross-linking of succinate-grafted chitosan and its effect on the capability to adsorb Pb(II) ion

Abu Masykur, Sri Juari Santosa and Dwi Siswanta dan Jumina

View article + Open abstract 🔼 PDF

OPEN ACCESS 012015

Development of electrokinetic remediation for caesium: A feasibility study of 2D electrode configuration system

Rudy Syah Putra

PDF + Open abstract **■** View article

This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

3 dari 13 01/04/2023 14.58

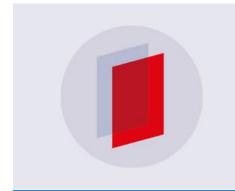
PAPER • OPEN ACCESS

Alginate cryogel based glucose biosensor

To cite this article: Amin Fatoni et al 2016 IOP Conf. Ser.: Mater. Sci. Eng. 107 012010

View the article online for updates and enhancements.

Related content


- Mechanical, Thermal and Acoustic Properties of Open-pore Phenolic Multistructured Cryogel

Rui Yao, Zhengjun Yao, Jintang Zhou et

- The influence of storage duration on the setting time of type 1 alginate impression material

A Rahmadina, S Triaminingsih and B Irawan

 - A New Fabrication Process for High-T_c <u>Superconducting Oxide Ceramic Fibers</u> Hajime Konishi, Takumi Takamura, Hisashi Kaga et al.

IOP ebooks™

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

Alginate cryogel based glucose biosensor

Amin Fatoni*, Dian Windy Dwiasi and Dadan Hermawan

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Jenderal Soedirman, Jl. Dr. Soeparno, Purwokerto 53123, Indonesia

Abstract. Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under subzero temperature. This porous structure was growth in a 100 μ L micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μ m. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R² of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

1. Introduction

The biosensor is an analytical device consist of the biological sensing element and a transducer which convert the biological recognition into a measurable output signal [1]. The advantages of the biosensor such as high selectivity, low-cost, high sensitivity, miniaturization and real-time measurement ability, stimulates researchers to develop this method continuously. One of the strategies reported to improve the biosensor performances is increase the sensitivity and stability, such as the use of cryogel, porous materials, for supporting material in the biosensor development [2].

Chitosan cryogel based biosensors have been reported in order to improve the biosensor performances mainly their sensitivity and stability in the biosensor development to detect glucose [3], sialic acid [4] and microalbumin [5]. However, those previous cryogel based glucose biosensor developments were used electrochemical detection with some disadvantages such as complex electrode preparation and relatively use an expensive instrument. The use of lower cost detection systems has been reported such as cheap potentiostat [6], pocket camera, mobile phone camera [7] and commercial scanner [8]. The use of color change detection system provide some advantages such as simple instrument, easy to prepare a standard solution and the color change sometimes can be easily detected by naked eyes [9].

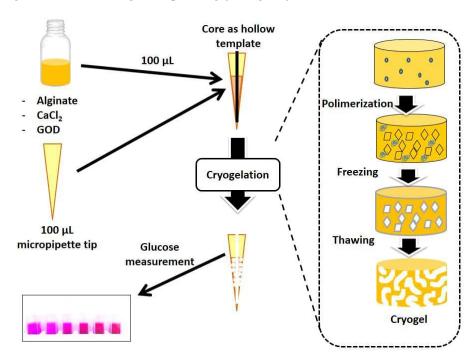
In this work, the advantages of cryogel were used to prepare glucose biosensor using an alginate as polymer backbone. The biosensor was built by developing cryogel in a micropipette tip, thus, easy to operate by sucking and pumping the sample solution. Glucose oxidase enzyme was used as the biological sensing element and a redox indicator was use to record the resulting hydrogen peroxide, which was finally its color change detected by a spectrophotometer.

^{*}E-mail: aminfatoni@unsoed.ac.id

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

2. Materials and Methods

2.1. Materials


Glucose oxidase (GOD) (EC 1.1.3.4, Type II-S, 15-50 unit mg⁻¹) were procured from Sigma (Steinheim, Germany). Commercial sodium alginate, calcium chloride and D-(+)-glucose anhydrous (≥ 98.0%), potassium permanganate, hydrogen peroxide, sodium dihydrogen o-phosphate and disodium hydrogen o-phosphate were from Merck (Germany).

2.2. Apparatus and measurements

Scanning electron microscopy (SEM) Table Top TM3000 (Hitachi, Japan) was used to characterize the morphology of the alginate cryogel. The sample colour change was measured using a Shimadzu Biospec 1601 UV-Vis spectrophotometer (Shimadzu, Japan). The alginate cryogel biosensor preparation and measurement were used a 10-100 µL micropipette (Eppendorf, Germany).

2.3. Cryogel Preparation

Alginate solution was prepared by dissolving 2.0 g sodium alginate with sodium acetate buffer (50 mM, pH of 4.5) to make 100 mL solutions. The alginate solution of 100 μ L was then placed in the microcentrifuge tube to prepare the cryogel. The glucose oxidase (GOD) enzyme of 35 U was then added to the alginate solution, added 12 μ L of calcium chloride solution (5% w/v in distilled water) and mixed immediately. A 100 μ L micropipette tip was used to support this biosensor system by filling this tip using the alginate-GOD-calcium chloride solution of 100 μ L and a 0.5 mm diameter stainless rod as core template. This micropipette tip was then kept in the freezer (-20 0 C) for 6 h to allow cryogelation. The alginate-GOD cryogel was thawed in the refrigerator (4 0 C) for 1 h. The brief of the biosensor fabrication was described in Figure 1. The porous structure of alginate cryogel was then characterized using a scanning electron microscope (SEM). The pore size of the cryogel was measured using a freeware of ImageJ (http://imagej.nih.gov/ij/).

Figure 1. Alginate-GOD cryogel glucose biosensor preparation

2.4. Glucose detection

The glucose detection was based on the redox indicator colour change by the resulted hydrogen peroxide as an enzymatic product of glucose catalysed with glucose oxidase. The redox indicator used was potassium permanganate in appropriate concentration (0.1 mM). The indicator of 2.5 mL was placed in a test tube and then added a 100 μ L of sample. The first indicator colour change was studied using a standard solution of 1.0 to 5.0 hydrogen peroxide. Then the biosensor measurement was performed by filling the in-tip cryogel biosensor with 100 μ L of glucose sample, allowed the enzymatic reaction for 2 minutes and the reaction product was dropped to the 2.5 ml of redox indicator. The filling and releasing of the sample – product in the biosensor was controlled by micropipette sucking and pumping. The redox indicator colour change by hydrogen peroxide or enzymatic glucose product was recorded using a spectrophotometer UV-Vis. The relation between glucose concentration and the colour change was then plotted in the regression line to get the linear equation of y = ax + b.

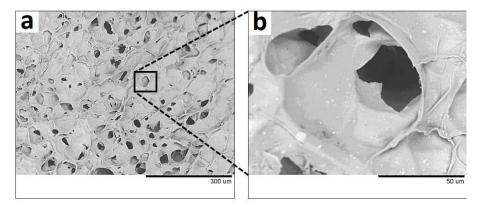
2.5. Stability study

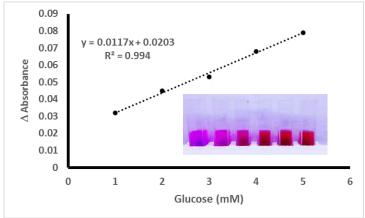
The stability study was performed by measuring glucose solution at certain concentration uninterrupted, similar to the glucose detection procedure above. The stability was determined by the biosensor response given for more than 90% in a series measurements.

3. Results and Discussion

3.1. Alginate cryogel

Cryogel is one of the interesting porous material, especially due to its large surface area, thus, enhance the biosensor performance when it was used as supporting material in the biosensor development [2-4]. The various polymer can be used to prepare cryogel such as polyvinyl alcohol, chitosan and alginate. In this study, the cryogel as biosensor supporting material was prepared using alginate as polymer backbone. The crosslinking of sodium alginate was by divalent calcium cations of calcium chloride. Native sodium alginate has a functional group of –COONa, which in the aqueous solution became –COO⁻ and Na⁺. The calcium ions of calcium chloride replace the sodium ion in the polymer, each calcium ion can attach two polymer strands. This cross-linking process allows to prepare alginate hydrogel in the room temperature. The cryogel preparation or cryogelation was prepared by crosslinking of the sodium alginate at subzero temperatures, which allowed create hydrogels with large interconnected pores [10]. In this process, the reactants remain in the unfrozen phases and form a cross-linked network upon polymerization, while the ice crystals nucleated from the aqueous phase during freezing, act as pyrogens. The interconnected macroporous networks were formed when the ice crystal melt at a temperature above the freezing temperature of water. Scanning electron microscope image showed a porous structure of the cryogel (Figure 2) with pores size diameter of 20-50 μm.




Figure 2. SEM of alginate cryogel surface at x250 (a) and x1500 (b).

3.2. Glucose detection

Glucose detection of the fabricated biosensor was based on potassium permanganate color change by resulted hydrogen peroxide according to the equation (1).

$$H_2O_2 + Mn^{7+}_{(purple)} \rightarrow H_2O + O_2 + Mn^{2+}_{(pale vellow)}$$
 (1)

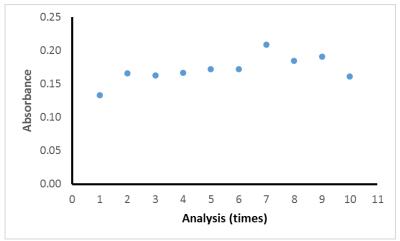

Furthermore, the color change with the increasing glucose concentration was studied in the range of 1.0 to 5.0 mM. The result showed a good relation (Figure 3) between the color changes of the indicator with the glucose concentration with R² of 0.994. The use of potassium permanganate as an indicator was used for the model in this preliminary study to verify the work of the fabricated glucose biosensor since the potassium permanganate was not specific reduce by hydrogen peroxide only. In the real glucose biosensor application, such for glucose detection in the blood, where there are many biological interferences, the specific hydrogen peroxide indicator should be used such as silver nano prism [11], 4-nitrophenyl boronic acid [12] and titanium oxy sulphate [13].

Figure 3. Calibration curve of fabricated alginate cryogel based glucose biosensor at a series glucose concentrations(1.0 - 5.0 mM). Inset, the example of redox indicator colour change by the resulted hydrogen peroxide as glucose conversion by glucose oxidase.

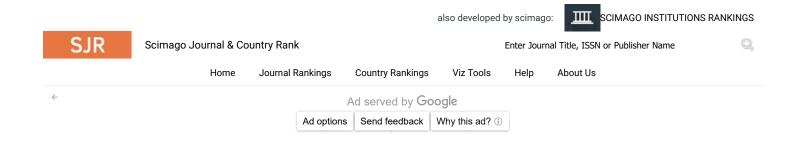
3.3. Operational stability study

The advantages of cryogel in the biosensor development were its ability to hold the enzyme activity, thus, resulted in a high stable biosensor [3, 4]. This was the main purpose of the use of cryogel as biological sensing element supporting material in the biosensor fabrication. However, different polymer material to build the cryogel may result in various stability profile to hold the biological element, due to their nature characteristic, for example, biomaterials usually more biocompatible compare to synthetic material. In this work, the alginate cryogel performance to support the glucose oxidase immobilization was studied by uninterrupted measurement of 3.0 mM glucose solution. The results showed the fabricated biosensor was stable up to 10 times analysis (Figure 4) without significantly lost its activity.

Figure 4. Stability study of fabricated glucose biosensor by measuring uninterrupted analysis of 3.0 mM glucose solution.

4. Conclusion

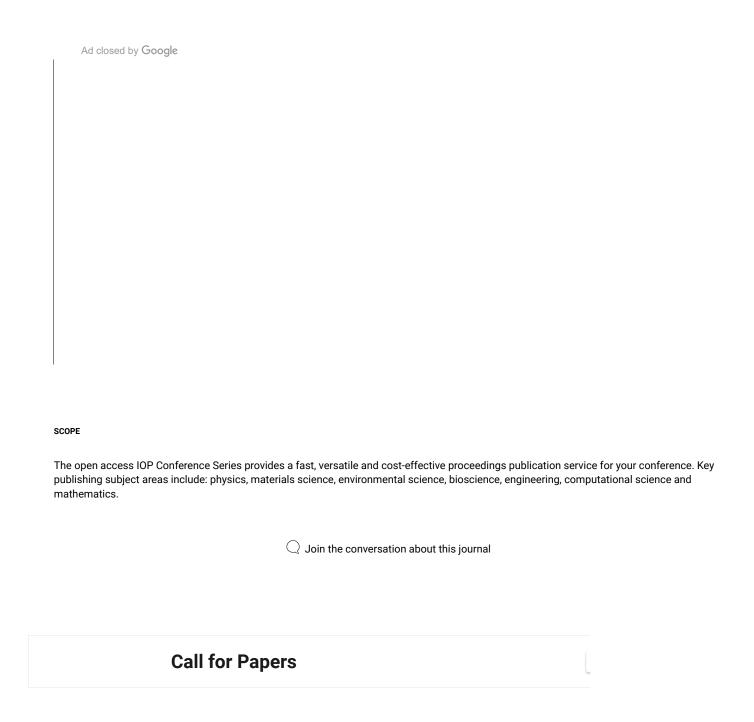
The alginate cryogel as a supporting material in the developed glucose biosensor showed a porous structure, thus, provide a large surface area for glucose oxidase immobilization. The developed glucose biosensor based on alginate cryogel showed a good linear range in the glucose detection, with an operational stability up to 10 times uninterrupted analysis without significant responses decreasing. This simple alginate cryogel based glucose biosensor with colorimetric detection would be an excellent model for other biosensor application.

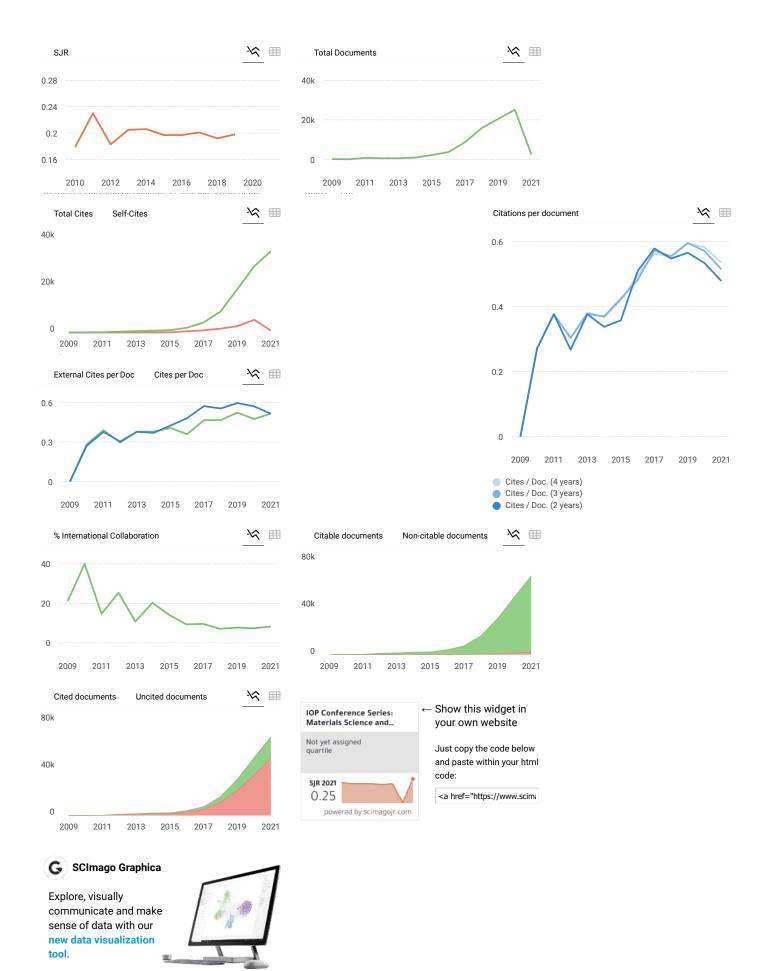

Acknowledgement

We would like to thank the Directorate General of Higher Education (DGHE, DIKTI) and the Jenderal Soedirman University for supporting this research through "Riset Unggulan" grant. We also like to thank Fauziyah Sri P and Makhmudita Eka S for their helping in this research.

References

- [1] Collings A F and Caruso F 1997 *Biosensors: recent advances* Reports on Progress in Physics **60** 1397-445
- [2] Hedström M, Plieva F, Galaev I and Mattiasson B 2008 Monolithic macroporous albumin/chitosan cryogel structure: a new matrix for enzyme immobilization *Analytical and Bioanalytical Chemistry* **390** 907-12
- [3] Fatoni A, Numnuam A, Kanatharana P, Limbut W, Thammakhet C and Thavarungkul P 2013 A highly stable oxygen-independent glucose biosensor based on a chitosan-albumin cryogel incorporated with carbon nanotubes and ferrocene *Sensors and Actuators B: Chemical* **185** 725-34
- [4] Fatoni A, Numnuam A, Kanatharana P, Limbut W and Thavarungkul P 2014 A conductive porous structured chitosan-grafted polyaniline cryogel for use as a sialic acid biosensor *Electrochimica Acta* **130** 296-304
- [5] Fatoni A, Numnuam A, Kanatharana P, Limbut W and Thavarungkul P 2014 A novel molecularly imprinted chitosan-acrylamide, graphene, ferrocene composite cryogel biosensor used to detect microalbumin *Analyst* 139 6160-7


- [6] Rowe A A, Bonham A J, White R J, Zimmer M P, Yadgar R J, Hobza T M, Honea J W, Yaaco I B and Plaxco K W 2011 Cheapstat: an open-source, "do-it-yourself" potentiostat for analytical and educational applications *PloS one* 6 e23783
- [7] Oncescu V, O'Dell D and Erickson D 2013 Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva, *Lab on a Chip*, **13** 3232-8
- [8] Kompany-Zareh M, Mansourian M and Ravaee F 2002 Simple method for colorimetric spot-test quantitative analysis of fe(iii) using a computer controlled hand-scanner, *Analytica Chimica Acta*, **471** 97-104
- [9] Puiu P D 2012 Color Sensors and Their Applications *Optical Nano-and Microsystems for Bioanalytics* Springer pp. 3-45
- [10] Plieva F M, Galaev I Y, Noppe W and Mattiasson B 2008 Cryogel applications in microbiology *Trends in microbiology* **16** 543-51
- [11] Nitinaivinij K, Parnklang T, Thammacharoen C, Ekgasit S and Wongravee K 2014 Colorimetric determination of hydrogen peroxide by morphological decomposition of silver nanoprisms coupled with chromaticity analysis *Analytical Methods* **6** 9816-24
- [12] Su G, Wei Y and Guo M 2011 Direct colorimetric detection of hydrogen peroxide using 4-nitrophenyl boronic acid or its pinacol ester *American Journal of Analytical Chemistry* **2** 879
- [13] Eisenberg G 1943 Colorimetric determination of hydrogen peroxide *Industrial & Engineering Chemistry Analytical Edition* **15** 327-8


IOP Conference Series: Materials Science and Engineering

COUNTRY	SUBJECT AREA AND CATEGORY	PUBLISHER	H-INDEX	
United Kingdom	Engineering Engineering	IOP Publishing Ltd.	48	
Universities and research institutions in United Kingdom	(miscellaneous)		_	
	Materials Science			
Media Ranking in United Kingdom	Materials Science (miscellaneous)			
PUBLICATION TYPE	ISSN	COVERAGE	INFORMATION	
Conferences and Proceedings	17578981, 1757899X	2009-2021	Homepage	
			How to publish in this journal	
			mse@iop.org	

1 dari 18 01/04/2023 15.03

2 dari 18 01/04/2023 15.03

3 dari 18 01/04/2023 15.03