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Abstract. Cano-Reinoso DM, Soesanto L, Kharisun, Wibowo C. 2021. Review: Fruit collapse and heart rot disease: Pathogen 
characterization, ultrastructure infections of plant and cell mechanism resistance. Biodiversitas 22: 2477-2488. Fruit collapse and 

bacterial heart rot are diseases in pineapple caused by Erwinia chrysanthemi (later classified as Dickeya zeae) which are increasingly 
prevalent in the last decade, causing devastating production loss in pineapple cultivation. Yet,  comprehensive knowledge to tackle such 
diseases is limited, understandably due to the relatively new emerge of the diseases. Here, we review the causes of bacterial heart rot and 
fruit collapse, stages of infection, typical symptoms and the occurrence of resistance mechanisms in plants. In pineapple, the fruit 
collapse is noticeable by the release of juice and gas bubbles, also the shell of the fruit that turns into olive-green. Meanwhile, bacterial 
heart rot is characterized by water-soaked zones on the leaves, the formation of brown streaks on the lamina and in the mesophyll, and 
light-brown exudate in the blisters. The most common means of penetration into the host plant used by this type of pathogen is through 
plant natural openings, injuries and wounds, and entire surfaces. Concurrently, plants and fruits develop disease-resistant mechanisms to 

inhibit infection growth under this pathogenic attack. These mechanisms can be divided into hypersensitive reactions, locally acquired 
resistance, and systematic acquired resistance. In addition, pathological infections produce an interaction of the cell wall with pectolytic 
enzymes. Understanding the membrane breakdown process carried out by these enzymes has become critical to a pineapple protect ion 
plan. This review suggests that future research to tackle fruit collapse and bacterial heart rot can be focused on disease-resistant 
mechanisms, and their effects on the cell wall status with an enzymatic characterization.  
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INTRODUCTION 

Pineapple (Ananas comosus L. Merr.) is an important 

crop in many tropical areas of Latin America, Asia, and 

Africa. Among various cultivars of pineapple consumed 

globally, the low-acid hybrids have increased their 

popularity in the fresh market, and therefore the 

cultivations grew in the last years. However, these hybrids 

present emerging challenges in the cultivation and post-

harvest handling activities for the breeders and shippers 
(Chen et al. 2009; Zuraida et al. 2011; Žemlička et al. 

2013; Kleemann 2016). 

A fundamental problem with these hybrids is the 

increased susceptibility to natural flowering and abrasion 

injury (Chen et al. 2009; Zuraida et al. 2011; Žemlička et 

al. 2013). Moreover, after harvest, the fruit can produce 

excessively low acidity due to an undesirable increase in 

sugar content, which leads to physiological abnormalities 

(Chen et al. 2009; Žemlička et al. 2013; Soteriou et al. 

2014; Gu et al. 2016; Ibrahim et al. 2016). In addition, due 

to their physicochemical properties, they are prone to 
various diseases (Žemlička et al. 2013; Soteriou et al. 

2014).  

Fruit collapse and bacterial heart rot are common 

diseases in pineapples’ low-acid hybrids. In countries such 

as Malaysia, Brazil, and Indonesia, fruit collapse has 

recently been recorded (Rohrbach and Johnson 2003; 

Korres et al. 2010; Prasetyo and Aeny 2014). Fruit 

collapse, a disease that has never been identified before 

2014 in Indonesia, causes the fruits got rotten and 

collapsing immediately three to two weeks close to fully 

ripening, resulting in considerable losses by 50% suffered 
by the plantation (Peckam et al. 2010; Prasetyo and Aeny 

2014; Sueno et al. 2014). Meanwhile, bacterial heart rot 

cases have been documented in Malaysia, Costa Rica, 

Brazil, Philippines, and Hawaii (Rohrbach and Johnson 

2003; Kaneshiro et al. 2008; Ramachandran et al. 2015; 

Pires de Matos 2017).  

While the two diseases are increasingly prevalent in 

pineapple cultivation in tropical regions, comprehensive 

knowledge to tackle such diseases is limited, 

understandably due to the relatively new emergence, 

especially the fruit collapse disease. As such, the 
understanding of the factors that make the pineapple plant 

and fruit more exposed to these diseases’ infection is 

urgently required, in particular studies on the mechanism of 
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interaction between the host and the environment, 

including the physicochemical process involved, primarily 

in low acid hybrids, which are more susceptible to these 

infections. 

In general, the aim of this article is to review the causes 

of bacterial heart rot and fruit collapse, stages of infection, 

typical symptoms and the occurrence of resistance 

mechanisms in plants. The discussion of the mechanisms of 

resistance in plants is broadly described in order to aid a 

better understanding of the development of the symptoms 
of these diseases. We expect that the comprehensive issues 

discussed in this review can provide guidance, not only for 

scientific purposes (e.g., current knowledge gap, direction 

for future research), but also for management practices of 

low-acid pineapple hybrids since nowadays these varieties 

are the most predominant in the fresh market. 

FRUIT COLLAPSE AND BACTERIAL HEART ROT: 

DEFINITION AND CHARACTERISTICS 

Fruit collapse is a disease in pineapple caused by 

Erwinia chrysanthemi bacteria that was later classified as 

Dickeya zeae (Aeny et al. 2020). This disease probably 
originates from Malaysia (Rohrbach and Johnson 2003; 

Pires de Matos 2017; Aeny et al. 2020); becomes 

economically important due to its distribution in pineapple 

plantations, especially in Southeast Asian countries where 

the production of low acidic hybrids for fresh fruit has 

increased (Rohrbach and Johnson 2003; Pires de Matos 

2017; Prasetyo and Aeny 2014; Aeny et al. 2020). 

Ants, beetles and flies are vectors of these diseases, 

transporting their pathogen to flowers from other collapsed 

fruit and plants with bacterial heart rot infections 

(Rohrbach and Johnson 2003; Pires de Matos 2017; Pires 
de Matos 2019; Oculi et al. 2020). The insects are attracted 

to the nectar of the plant, which is exposed during the open 

flower stage. Therefore, during this stage, the site of 

infection is created where the pathogen enters the 

developing fruit. This pathogen remains latent in the ovary, 

however its activity increase between two to three weeks 

before ripening, when sugar levels increase rapidly and 

enzyme levels like polyphenol oxidase (PPO) decline, 

(Rohrbach and Johnson 2003; Pires de Matos 2017; Pires 

de Matos 2019; Boluk et al. 2020; Boluk et al. 2021).  

Infected fruits are characterized by the release of an 

exudation of juice and gas that create bubbles (Rohrbach 
and Johnson 2003; Pires de Matos 2017; Aeny et al. 2020). 

Due to the high carbohydrates content in the fruit flesh, 

Dickeya zeae bacteria, subject to its anaerobic 

characteristic, use this media to ferment sugars to lactic 

acid and establish its growing pattern (Gänzle 2015; König 

and Fröhlich 2017; Paull and Chen 2018; Tenea et al. 

2020). The color of the fruit shell turns olive-green, and the 

internal part of the fruits show cavities within the flesh's 

skeletal fibers (Figure 1) (Rohrbach and Johnson 2003; 

Pires de Matos 2017; Aeny et al. 2020).  

 On top of that, pineapple bacterial heart rot is another 
disease caused by Erwinia chrysanthemi (Dickeya zeae), 

which is characterized by water-soaked symptoms on the 

white basal side of the leaves located in the central whorl 

(Rohrbach and Johnson 2003; Shen et al. 2013; Pires de 

Matos 2017; Aeny et al. 2018; Sipes and Pires de Matos 

2018). The infection can spread to the hole leave basal 

portion. The spread can also occur on the leaves' green 

mid-portion, causing an olive-green color with a bloated 

appearance. When the infection of the green portion of the 

leaf is captured, a dark border is created (Figure 2) 

(Rohrbach and Johnson 2003; Pires de Matos 2017; Ratti et 
al. 2018; Sipes and Pires de Matos 2018). The symptoms of 

fungal heart rots can be distinguished from those of 

bacterial heart rot, as no extension of the infection is 

observed in the green areas of older leaves (Rohrbach and 

Johnson 2003; Martin and Rahmat, 2017; Pires de Matos 

2017; Aeny et al. 2018; Ratti et al. 2018; Sipes and Pires de 

Matos 2018). 

According to Kaneshiro et al. (2008), in their 

description of E. chrysanthemi from a pineapple bacterial 

heart rot outbreak that occurred in Hawaii in 2003, 

symptoms of this disease usually began with water-soaked 
areas in the leaves around the apical meristem, followed by 

the creation of brown streaks over the lamina and 

mesophyll tissues. They affirmed that frequently 

characterized by gas, these lesions are representative of the 

disease and that eventually, and a brown-light exudate can 

emerge from the blisters when the leaves begin to rot. 

Like in fruit collapse disease, the primary inoculum 

source of bacterial heart rot is considered to be exuded 

juice of previously infected plants. On the contrary, the 

infested seed material like suckers, slip, or crown does not 

represent an essential source of infection because the 
bacteria do not survive long on leaf surfaces (Rohrbach and 

Johnson 2003; Davidsson et al. 2013; Pires de Matos 2017; 

Sipes and Pires de Matos 2018). According to Rohrbach 

and Johnson (2003), and Sipes and Pires de Matos (2018), 

the infection occurs through the stomata, and the bacteria 

can be transmitted primarily by insects, like the big-headed 

ants (Pheidole megacephala) or the Argentine ant 

(Linepithema humile); also, by wind and windblown rain. 

After a meristem infection, the apical and lateral buds, 

heart and stem of the pineapple can easily detach from the 

subterranean part of the plant within a few days (Kaneshiro 

et al. 2008; Nykyri et al. 2012; Sipes and Pires de Matos 
2018). 

Plants that are four to eight months old are more likely 

to have this infection. Common pineapple plant cultivations 

are also thought to be more susceptible than the ratooning 

(Rohrbach and Johnson 2003; Kaneshiro et al. 2008; Pires 

de Matos 2017; Sipes and Pires de Matos 2018). The 

susceptibility appears to be linked to the growth of plants 

because a low leaf water status has been reported to limit 

infection rate (Rohrbach and Johnson 2003; Kaneshiro et 

al. 2008; Pires de Matos 2017; Sipes and Pires de Matos 

2018). Under optimal environmental conditions for the 
development of this disease, its entire cycle occurs between 

one and two weeks (Rohrbach and Johnson 2003; Sipes 

and Pires de Matos 2018). 
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Figure 1. The symptoms of fruit collapse disease in pineapple after harvest. A. Release of gas by bubbles together with olive-green 
color in the shell (red circle). B. Cavities within the skeletal collapsed fibres in the flesh (black circle). 
 
 
 

  

 

Figure 2. The symptoms of bacteria heart rot disease in the pineapple plant. In both parts of the photo, a water-soaked lesion is 
exhibited on the leaves' white basal portion, located in the central whorl. The green mid-portion of the leaves shows the olive-green 
color and dark border formed. A. Aerial view of the plant peduncle (red circle). B. Internal view after removing the peduncle (yellow 
circle) 
 
 
 

PATHOGEN HISTORY, IDENTIFICATION AND 

NEW GENUS CLASSIFICATION 

Erwinia chrysanthemi is a pathogen that occurs in many 

host plants in the tropics and subtropics region (Rohrbach 

and Johnson 2003; Sipes and Pires de Matos 2018). This 

bacteria can potentially thrive at higher temperatures than 

other soft rot bacteria. The virulence of this pathogen is 

linked to the ability to produce large amounts of 

endopolygalacturonic transeliminase (Rohrbach and 

Johnson 2003; Sipes and Pires de Matos 2018). 

Bacterial heart rot and fruit collapse of pineapple were 

first recorded in 1927 and 1935, respectively, by Thompson 

in 1937, but the pathogen involved was not isolated until 

Johnston was working on it in 1957 and discovered that a 

bacterium was responsible for the diseases. According to 

Johnston investigations on the morphology, physiology and 

pathogenicity, it was concluded that it was a strain of 

A B 

A B 
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Erwinia carotovora subsp. carotovora which was distinct 

from those affecting vegetables (Lim 1974; Kaneshiro et al. 

2008; Peckam et al. 2010; Marrero et al. 2013; Green and 

Nelson 2015; Leblanc et al. 2016; Kanda and Minshull, 2020). 

Interest in both diseases increased, and initial 

taxonomical work showed that the organism differed in 

specific physiological characteristics from E. caratovora 

subsp. carotovora (Lim 1974; Kaneshiro et al. 2008; 

Peckam et al. 2010; Marrero et al. 2013; Green and Nelson 

2015; Kumar et al. 2017; Hu et al. 2018). With the help of 
Commonwealth Mycological Institute, the organism was 

finally identified as Erwina chrysanthemi Burkholder et al. 

(Lim 1974; Kaneshiro et al. 2008; Peckam et al. 2010; 

Marrero et al. 2013; Green and Nelson 2015; Li et al. 

2020). Furthermore, E. chrysanthemi was first described as 

a pathogen of chrysanthemum in North America, later on, 

philodendron, and Syngonium (Whelburg 1970; Kaneshiro 

et al. 2008; Bertani et al. 2013; Marrero et al. 2013; Green 

and Nelson 2015). Like pineapple fruit collapse and 

bacterial heart rot, symptoms were also detected in those 

plants consisted of initial necrosis followed by a collapse of 
the tissue (Lim 1974; Kaneshiro et al. 2008; Peckam et al. 

2010; Czajkowski et al. 2011; Marrero et al. 2013; Green 

and Nelson 2015; Krzyzanowska et al. 2019).  

Both E. chrysanthemi and E. carotovora are facultative 

anaerobic bacteria that survive in the soil and cause water-

soaking and rot symptoms in pineapple hearts and leaves 

(Rohrbach and Johnson 2003; Kaneshiro et al. 2008; 

Peckam et al. 2010; Liao et al. 2014; Zhou et al. 2015; 

Sipes and Pires de Matos 2018). However, E. carotovora 

only produces localized rot when plants are wounded or 

grown under stress conditions, while E. chrysanthemi can 
generate a systemic rot that moves from leaves to heart (or 

vice versa), ignoring any stress factor displayed. In 

addition, E. carotovora subsp. carotovora infections 

develop immediately, meanwhile, E. chrysanthemi can 

cause latent infections in planting stocks that can lead to 

severe epidemics in places not previously affected by the 

disease (Kaneshiro et al. 2008; Peckam et al. 2010; Adeolu 

et al. 2016; Prokić et al. 2020). Therefore, differentiation of 

E. chrysanthemi from E. carotovora subsp. carotovora is 

essential for appropriate regulation of imported planting 

materials, especially in areas where the disease has not 

been previously detected (Kaneshiro et al. 2008; Peckam et 
al. 2010; Martinez-Cisneros et al. 2014; Wang et al. 2020). 

Erwinia chrysanthemi and E. carotovora subsp. 

carotovora were later reclassified to the genus 

Pectobacterium as Pectobacterium chrysanthemi and P. 

carotovorum subsp. carotovorum, respectively. 

Furthermore, a significant taxonomic change was later 

proposed in which E. chrysanthemi was divided into six 

species under the new genus Dickeya, Dickeya 

chrysanthemi, D. paradisiaca, D. dadantii, D. dianthicola, 

D. dieffenbachiae, and D. zeae (Kaneshiro et al. 2008; 

Peckam et al. 2010; Parkinson et al. 2014; Sueno et al. 
2014; Zhang et al. 2014; Tian et al. 2016); during that 

change, two strains of E. chrysanthemi isolated from 

pineapple plants were renamed as Dickeya zeae and 

Dickeya sp. Also, in the species characterization for D. 

dadantii, the pineapple was listed as a typical host plant 

(Kaneshiro et al. 2008; Peckam et al. 2010; Sueno et al. 

2014). In concomitance with this, Aeny et al. (2020) also 

named D. zeae as the strain established on pineapple 

variety for a characterization and host range assessment of 

fruit collapse and heart rot disease in Lampung, Indonesia.  

In addition, Brady et al. (2012) reclassified this genus 

with the help of phylogenetic analyzes, eliminated D. 

dieffenbachiae, and divided D. dadantii into two 

subspecies, dieffenbachiae, and dadantii. Recently, the 

addition of a new species, D. solani, has been proposed to 
encompass biovar 3 strains of the predominant blackleg 

and slow wilt pathogen of potato in Europe (Toth et al. 

2011; Van der Wolf 2013; Czajkowski et al. 2014; Suharjo 

et al. 2014; Sueno et al. 2014). 

PATHOGEN PENETRATION THROUGH PLANT 

ULTRASTRUCTURE 

Successful infection of the plant and fruit by this 

pathogen involves its movement towards the plant surface, 

following penetration and its proliferation inside the host 

tissues immediately after entry (Huang 1986; Melotto et al. 

2008; Yadeta and Thomma 2013; Kim 2019; Campilho et 
al. 2020). After interactions with the cuticle, the most 

common ways of penetration into the host plant and fruit 

used by this pathogen can be classified as: penetration 

through plant natural openings (stomata, hydathodes, 

nectarthodes, and lenticels), injuries and wounds (broken 

trichomes and lateral rots emergency), and by the entire 

surfaces.  
 
 

 
 

Figure 3. View of the pineapple shell fruit cuticle in a low acid 
hybrid called MD2 (100 x magnification). The photo shows the 
shell cuticle's micro division in which the stomata, lenticels, and 
natural crack of the shell fruit are located—places of penetration 
of many pathogens (black circles).  
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Figure 4. Low acid hybrid pineapple fruits (MD2). The two photos show the symptoms of a pathogenic infection by Fusarium spp. 1) 
Evidenced penetration of the host possible through the shell stomata, lenticels, trichomes, and natural cracks (red circle). 2) Advance 
flesh infection where the pathogen already starts to eat and colonises the fruit (black circle) 
 
 

 

Natural opening structures 
The cuticle is the gateway between pathogens and plant 

tissue. This structure takes place in critical stages during 

the infection process (Melotto et al. 2008; Wibowo et al. 

2014; Meeteren and Aliniaeifard 2016; Petkar and Ji, 2017; 

Rani and Greb, 2018; Singh and Sharma 2018). 

Furthermore, it is considered that some pathogenic and 

saprophytic microorganisms can survive and reproduce on 

the leaf surface without been exposed to infection (Melotto 

et al. 2008; Olvera-Carrillo et al. 2015; Meeteren and 

Aliniaeifard 2016; Thangavel et al. 2016). Although, many 

pathogenic fungi can penetrate the cuticle and epidermis 

using different paths (Mendgen et al. 1996; Meeteren and 
Aliniaeifard 2016; Singh and Sharma 2018). Some fungal 

diseases and pathogenic bacteria can enter and penetrate 

the host cuticle directly. Therefore, the cuticle represents a 

vital role in plant survival and tolerance against biotic and 

abiotic stresses (Mendgen et al. 1996; Meeteren and 

Aliniaeifard 2016; Nejat and Mantri, 2017; Zaynab et al. 

2019; Prihatiningsih and Soesanto, 2020). The main 

physiological role of the plant cuticle is to protect the tissue 

from a relatively dry atmosphere, thereby preventing 

dehydration by regulating water loss (Figure 3) (Kachroo 

and Robin, 2013; Meeteren and Aliniaeifard 2016; 
Domínguez et al. 2017; Singh and Sharma 2018). 

Therefore, phytopathogenic bacteria can also enter their 

respective hosts via the stomata. It has been proven that 

after a heavy wind-rain, bacteria are randomly dispersed on 

the leaf surface; however, most promptly tend to disappear, 

except for those located near stomata (Huang 1986; 

Gudesblat et al. 2009; Pressel et al. 2014; Meeteren and 

Aliniaeifard 2016; Singh and Sharma 2018; Carriqui et al. 

2019). In the stomatal cavities, bacteria multiply rapidly in 

mass before the infection can be visible to any unaided eye. 

In addition, substomatal cavities function as shelters for 
bacterias (Huang 1986; Gudesblat et al. 2009; Misra and 

Chaturvedi, 2015; Meeteren and Aliniaeifard 2016; Singh 

and Sharma 2018). The bacterial masses arising from the 

substomatal cavities are trapped in polysaccharide slime 

filaments, and therefore the exuding bacteria works as 

inocula for a possible secondary infection (Huang 1986; 

Gudesblat et al. 2009; Spoel and Dong, 2012; Meeteren 

and Aliniaeifard 2016; Singh and Sharma 2018; David et 

al. 2019). 

The position of the stomata between the surrounding 

and internal leaf tissues becomes another role for this 

microscopic pore. It provides a direct way for endophytic 
colonization of pathogens in plant tissues. Therefore, plants 

have established mechanisms to regulate stomatal opening, 

not only in response to harmful environmental factors, but 

also in response to pathogens (Melotto et al. 2008; 

Gudesblat et al. 2009; Shah and Zeier, 2013; Carella et al. 

2016; Meeteren and Aliniaeifard 2016; Singh and Sharma 

2018). 

Wang et al. (2011), in research comparing two types of 

orange, Meiwa Kumquat, and Newhall navel, showed that 

stomatal characteristics may be the most important factor in 

citrus plants against bacteria. For that reason, they 
concluded that the existence of more stomata with larger 

opening areas on the surface of the fruit can increase the 

susceptibility to bacteria attacks. 

It has been reported that the number of fruitlets or eyes 

of pineapple in the shell is arranged in eight long spirals. 

Also, the number of eyes ranged from 96 to 176, with an 

average of 141 (Rohrbach and Johnson 2003; Sipes and 

Pires de Matos 2018). These findings may explain why 

pineapple with a more significant number of eyes in the 

shell are more susceptible to a pathogen infection during 

A B 
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and after ripening compare to those with a lower number of 

eyes, because the eyes of the shell are the primary source of 

the stomata location and natural cracks of the fruit (Figure 

4). However, this research topic needs to be studied further. 

Hydatodes are another opening structure similar to 

stomata except that the protective cells attached to 

hydathodes cannot control the aperture and opening. The 

hydathodes are usually located in the marginal teeth or 

serrations of leaves; also, those exits in the leaf tips of 

Brassica and plants belonging to the Gramineae, 
Crassulaceae, and Saxifragaceae families (Huang 1986; 

Gudesblat et al. 2009; Chen et al. 2015; Meeteren and 

Aliniaeifard 2016; Kim 2019). In these type of plants, 

water is excreted in the morning when the soil condition is 

wet, and transpiration is reduced due to high humidity, 

poor circulation of air, or the closing of stomata under 

reduced light (Huang 1986; Gudesblat et al. 2009; Bailey 

and Leegood, 2016; Meeteren and Aliniaeifard 2016; Kim 

2019). 

The water droplets secreted by the hydathodes are taken 

to the surface by the veins' tracheids and pass through the 
intercellular spaces of the epithem. These water droplets 

are continually in contact with the liquids in the vascular 

system and can be drawn back into the leaf when the 

stomata opened, and transpiration is accelerated (Huang 

1986; Gudesblat et al. 2009; Meeteren and Aliniaeifard 

2016; Kim 2019). Therefore, bacteria suspended in the 

water droplets can enter again into the plant by the vascular 

tissues' vicinity. The water droplets secreted from 

hydathodes contain amounts of substances that serve as 

chemical attractants and as nutrient sources for plant-

pathogenic bacterias (Huang 1986; Gudesblat et al. 2009; 
Meeteren and Aliniaeifard 2016; Kim 2019; Jauneau et al. 

2020).  

Like hydathodes, the nectarthodes are structures-like 

stomata that secrete nectar through the open tissue between 

the appearance of stems and the stamens (Huang 1986; 

Gudesblat et al. 2009; Meeteren and Aliniaeifard 2016; 

Kim 2019; Zeng et al. 2020). Nectarthodes are formed by 

two guard cells comparable to leaf, and the stem stomata, 

except these cells, do not regulate the aperture and opening. 

A defined cuticle covers the entire nectarial surface. In 

addition, nectarthodes are the only places where the 

cuticular covering is interrupted (Huang 1986; Gudesblat et 
al. 2009; Meeteren and Aliniaeifard 2016; Boucher et al. 

2019; Kim 2019). Below the nectar region, there is a 12 to 

15 cell deep area of the tissue in which nectar is produced, 

and many pathogens reproduce well in this tissue once it 

gains entrance (Huang 1986; Gudesblat et al. 2009; 

Meeteren and Aliniaeifard 2016; Kim 2019). 

In the pineapple fruit collapse, the responsible bacteria 

invade the ovary through the style, generating the water-

soaked necrosis symptoms at the base of the stylar canal 

inside the fruitlet core (Huang 1986; Rohrbach and Johnson 

2003; Tancos et al. 2017; Sipes and Pires de Matos 2018). 
However, the exact site of bacterial introduction has not 

been determined. Moreover, the bacteria remain viable but 

quiescent for about two months, and then break out to 

invade the entire fruit (Huang 1986; Rohrbach and Johnson 

2003; Vrancken et al. 2013; Sipes and Pires de Matos 

2018; Polsinelli et al. 2019). 

The opening structure of lenticels consists mainly of the 

periderm of the stems and roots, usually under a stoma in 

the original epidermis. Lenticels usually develop from a 

stoma or a group and their most important function is 

related to gas exchange (Huang 1986; Gudesblat et al. 

2009; Meeteren and Aliniaeifard 2016; Singh and Sharma 

2018; Khanal et al. 2020). During the transformation of 

stomata into lenticels, cells in the first two subepidermal 

cell layers close to the substomatal cavity separated in 
inward and outward directions. This separation results in 

creating a mass of loosely arranged parenchyma cells with 

massive intercellular spaces, with the majority of cell walls 

not being suberised (Huang 1986; Gudesblat et al. 2009; 

Meeteren and Aliniaeifard 2016; Knoche and Lang, 2017; 

Singh and Sharma 2018).  

Due to the continuity in the intercellular spaces and 

inner tissues, lenticels provide entry for several plant 

pathogens (Huang 1986; Gudesblat et al. 2009; Meeteren 

and Aliniaeifard 2016; Khanal et al. 2019; Kim 2019). 

There are no sufficient documented studies about the 
incidence of diseases and the relationship to lenticel 

infection in pineapple plants and fruit. However, research 

in some fruits have been published, like in apple (Guan et 

al. 2015; Wenneker et al. 2017), mango (Rymbai et al. 

2012), and pear (Wenneker et al. 2017). 

Injuries and wound structures 

There are other paths that pathogens have to penetrate 

the host, namely through injuries and wounds. Broken 

trichomes exhibit one of these possibilities. Trichomes are 

epidermal projections of diverse forms, structures, and 

functions (Huang 1986; Gudesblat et al. 2009; Meeteren 
and Aliniaeifard 2016; Vacher et al. 2016; Imboden et al. 

2018; Singh and Sharma 2018). They can be unicellular or 

multicellular, including or excluding secretory functions. 

Most of these trichomes are fragile and mostly collapse 

under slight pressure (Łaźniewska et al. 2012; Ma et al. 

2016; Danovaro et al. 2017). The proportion of trichomes 

on leaf surfaces varies from species to species. In a single 

plant, most of the trichomes are discovered in younger 

leaves than in older leaves, and also more in the lower leaf 

surface than in the upper one (Huang 1986; Gudesblat et al. 

2009; Ensikat et al. 2016; Meeteren and Aliniaeifard 2016; 

Singh and Sharma 2018).  
In pineapple and Bromeliaceae species, few studies 

have been developed to understand the function and impact 

of the trichomes on the quality of plants and fruits. Some 

studies have clearly shown that trichomes provide a 

function on an absorption of dissolved nutrients (Sakai and 

Sanford 1980; Meeteren and Aliniaeifard 2016). 

Furthermore, another finding indicates that an essential 

ancestral function of the foliar trichome in Bromeliaceae 

plants is water repellency (Sakai and Sanford 1980; 

Meeteren and Aliniaeifard 2016). As till, there is no 

enough information regarding pathogen disease incidences 
concerning the trichomes existence in the shell of fruit, 

although some authors have suggested an association to the 

dermal behavior of the fruit involved in skin conductance 

properties influencing the fruit transpiration (Montanaro et 
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al. 2012; Givnish et al. 2011; Givnish et al. 2014; Leroy et 

al. 2019). 

In contrast, the emergence of lateral roots can provide 

another opportunity for pathogens to penetrate the host 

plant. These lateral roots usually originate from the 

pericycle and grow through the cortex of the parent root. 

Once the lateral root breaks through the outer epidermal 

layer to the outside, pathogens create an entrance by the 

resulting crevice (Huang 1986; Gudesblat et al. 2009; 

Meeteren and Aliniaeifard 2016; Vanhoutte et al. 2016; 
Carvalho et al. 2017; Silva et al. 2018; Wibowo et al. 

2021). The space created by lateral-root formation is a 

representative avenue of entry for pathogens. After entering 

the root tissue, the bacteria spread rapidly by the 

intercellular space and finally invade the vascular bundles 

(Huang 1986; Gudesblat et al. 2009; Meeteren and 

Aliniaeifard 2016; Leroy et al. 2019). 

DISEASES RESISTANT MECHANISM IN 

HORTICULTURAL CROPS 

Plants having a disease-resistant mechanism inhibit the 

growth of numerous pathogens (bacterial, fungal, or viral). 
This action is carried out in a restricted area around the 

initial infection point, where a wound is usually developed 

(Jupe et al. 2013; Wang and Balint-Kurti, 2015; Künstler et 

al. 2016; Goñi et al. 2017; Balint‐Kurti, 2019; Kamanga et 

al. 2019). These mechanisms are achieved through a 

preventive controlled death cell, usually called 

hypersensitive reaction (HR). The HR can lead to acquired 

resistance (AR), defined as resistance to subsequent 

pathogen attacks, developed after the initial inoculation 

with lesion-forming in viruses, bacteria, and fungi (Kumar 

and Kirti 2015; Na et al. 2015; Chen et al. 2016; Goñi et al. 
2017; Balint‐Kurti, 2019). Subsequently, the acquired 

resistance can be subdivided into local acquired resistance 

(LAR), detected in the vicinity of the HR lesions, and 

systemic acquired resistance (SAR), detected in uninfected 

parts of the plants (Vlot et al. 2009; Van Doorn et al. 2011; 

Soesanto et al. 2011; Goñi et al. 2017; Birch et al. 2018; 

Balint‐Kurti, 2019).  

Previous studies reported that salicylic acid (SA), a 

second metabolite product of the plants, can promote SAR 

induction after a localized infection, and therefore 

becoming a type of long-distance communication mediator 

(An and Mou, 2011; Fu and Dong, 2013; Goñi et al. 2017; 
Radojičić et al. 2018). SA moves from infected areas of the 

plant to the uninfected ones by the phloem. This 

phenomenon was confirmed by using radiolabeled SA and 

its analogs (Hayat et al. 2010; Goñi et al. 2017). When 

SAR develops in a plant, it can be detected several days 

after the initial infection, lasts for several weeks, and it 

might be effective against a broad range of pathogens (even 

when they are unrelated to the initial infection) (Goñi et al. 

2017).  

Habitually, in association with HR and SAR, there is 

another plant response, the systemic synthesis of 
pathogenesis-related proteins (PRP) (Vlot et al. 2009; 

Soesanto et al. 2011; Dempsey and Klessing, 2012; Goñi et 

al. 2017; Klessing et al. 2018). The localization, timing of 

appearance, and functions of at least some PRP suggest 

their involvement in the mechanisms of acquired resistance 

(Rivas-San Vicente, 2011; Lebeis et al. 2015; Vos et al. 

2015; Goñi et al. 2017). 

In previous research on the systematic acquired 

resistance in pineapple, a case applied to nematode 

infection was reported (Meloidogyne javanica and 

Rotylenchulus reniformis). In this case, it was discovered 

that foliar applications of acibenzolar-s-methyl (100-200 
mg/L) induced SAR, compare to DL-α-amino-n-butyric 

acid (AABA), DL-β-amino-n-butyric acid (BABA), ϒ-

amino-n-butyric acid (GABA), p-aminobenzoic acid 

(PABA), riboflavin, and salicylic acid (SA). In addition, 

this had to be corroborated by the reduction in the number 

of nematode eggs when sprays of acibenzolar-s-methyl 

were used in pineapple inoculations (Walters et al. 2013; 

Mukhopadhyay, 2014; Goñi et al. 2017; Lu et al. 2019).  

Hypersensitive reactions and SAR in pineapple 

diseases, such as fruit collapse or bacterial heart rot, are not 

well investigated as there is a lack of literature regarding 
the topic. Moreover, the mechanics on how HR, LAR and 

SAR are induced and activated in pineapple still need to be 

further studied and documented. 

CELL WALL ENZYMES, DISEASES AND ERWINIA 

FAMILY 

Enzymes of bacterial origin can degrade plant cell 

walls. The production of a large number of enzymes that 

degrade the cell wall by phytopathogenic bacteria is largely 

documented (Marín-Rodríguez et al. 2002; Bellincampi et 

al. 2014; Daher and Braybrook, 2015; De Freitas and De 

Cássia 2017; Cosgrove, 2018). 
During the initial stage of infection, the pathogens 

secrete pectolytic enzymes that degrade pectins in the host 

cell wall, allowing the pathogen to spread the infection in 

the cell membranes (Toth et al. 2011; Schwartz et al. 2015; 

De Freitas and De Cássia 2017; Motyka et al. 2017; Yilmaz 

et al. 2019; Soesanto, 2020). One of the secreted enzymes 

is known as Pectate Lyases (PL). Furthermore, pectate 

Lyases catalyze the eliminatory cleavage of de-esterified 

pectin, representing an essential component of many higher 

plants' primary cell walls (Marín-Rodríguez et al. 2002; 

Bellincampi et al. 2014; Hugouvieux‐Cotte‐Pattat et al. 

2014; De Freitas and De Cássia 2017; Ke et al. 2018; Wang 
et al. 2018). PL cleavage requires the existence of calcium 

ions and oligosaccharides with unsaturated galacturonosyl 

residues at their non-reducing ends (Marín-Rodríguez et al. 

2002; Bellincampi et al. 2014; Dubey et al. 2016; Uluisik et 

al, 2016; De Freitas and De Cássia 2017; Soesanto et al. 

2020). 

It was concluded that PL was produced primarily by 

plant pathogens and that their action can cause the 

maceration of plant tissues. However, the large number of 

PL-like sequences in plant genomes exposed a significant 

role for these enzymes in various plant development 
processes (Marín-Rodríguez et al. 2002; Soesanto et al. 

2013; Bellincampi et al. 2014; De Freitas and De Cássia 
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2017; Paniagua et al. 2017; Yang et al. 2017).  

The pectate Lyases activity was first discovered in 1962 

in cultures of Erwinia carotovora and Bacillus sp. (Marín-

Rodríguez et al. 2002; Joko et al. 2018) and their secretion 

by phytopathogenic bacteria have been well-documented 

(Marín-Rodríguez et al. 2002; Bellincampi et al. 2014; De 

Freitas and De Cássia 2017). The effect of pectate lyases 

not only leads to the deterioration of the plant cell wall 

degradation but also to the activation of defense systems. 

These defensive mechanisms can be generated by the 
release of oligogalacturonides from the plant cell wall, 

which subsequently acts as defense elicitors (Marín-

Rodríguez et al. 2002; Bellincampi et al. 2014; De Freitas 

and De Cássia 2017; Soesanto et al. 2020).  

In conclusion, fruit collapse and bacterial heart rot 

diseases are caused by the pathogen Erwinia chrysanthemi 

(currently classified as D. zeae). The physical symptoms of 

fruit collapse are juice, the release of gas in the form of 

bubbles, and the olive-green color of the fruit shell. 

Meanwhile, bacterial heart rot is characterized by water-

soaked zones on the centermost leaves surrounding the 
apical meristem, formation of brown streaks on the lamina 

and in mesophyll tissues, and a light-brown exudate 

emerging from the blisters as leaves begin to rot. 

It is necessary to understand the media and how the 

pathogen penetrates into the plant and fruit through its 

ultrastructure. In pineapple plant, D. zeae focuses on host 

tissue penetration determined by the plant's natural 

opening, lesions, and injuries, and mainly during the 

opening phase of flowering weeks prior to harvest. 

Consequently, it is important to further study and evaluate 

the defense mechanisms in these infectious diseases of 
pineapple plants and fruit from a cellular and enzymatic 

level, taking into account the hypersensitive reactions, local 

and systematic acquire resistance. This information can 

help determine which type of treatments effectively prevent 

the pathogen attack and what is expected to be carried out 

in order to control the disease once the infection has 

occurred. The review presented here can serve as a future 

reference in order to determine the causes of bacterial heart 

rot and fruit collapse, identify the symptoms, and the 

factors that influence pineapple susceptibility. 
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