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Abstract 

Alzheimer's is a type of syndrome disease with apoptosis of brain cells at about 

the same time, so the brain appears to shrivel and shrink. This condition causes 

the nerve cell cells in the brain to die, so the brain signal is difficult to transmit 

well. To find out the size of brain changes, the most commonly used equipment 

among physicians is the Magnetic Resonance Imaging (MRI) machine that 

produces medical images. The main purpose of this research is to segment the 

MRI brain image to identify the severity of Alzheimer based on the Clinical 

Dementia Rating (CDR) value. It's just because the image MRI itself consists of 

3 slices of coronal, sagittal and axial, then in this paper, we only discuss coronal 

slices only. Segmentation will be done in the hippocampal and ventricular areas 

using active contour method. In this research, we only focus on measuring the 

area shown on the number of pixels in the two segmentation areas. Furthermore, 

it will automatically identify the number of segmentation pixels in the Alzheimer 

population based on the CDR value. Visualization of hippocampal and 

ventricular cells is done by segmenting the image pieces obtained from the 

OASIS (Open Access Series of Image Studies) database. The results show that 

the normal image of a hippocampal object has a pixel range of 148-296 pixels 

and abnormal images are in the range of 68-144 pixels, while ventricular objects 

have ranges of 50 to 472 pixels for normal imagery and 473-899 pixels for 

abnormal images. 

Keywords: Active contour method, Alzheimer, Coronal slices, Hippocampal, 

Ventricular. 
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1.  Introduction 

Alzheimer's disease is a condition of an abnormality characterized by decreased 

memory, decreased the ability to think and speak, and behavioural changes in 

patients due to disorders in the brain that are progressive or slow. In the early stages, 

a person with Alzheimer's disease will usually look easy to forget, such as 

forgetting the name of a thing or place, forgetting about recent events, and 

forgetting about the contents of a conversation that has just been discussed with 

others. As time progresses, symptoms will increase. People with Alzheimer's 

disease will then have difficulty planning, difficulty speaking or pouring into 

language, difficulty making decisions, often confused, lost in familiar places, 

experiencing anxiety disorders and mood swings, and experiencing personality 

changes, such as suspicion, prosecutor, and aggressive. In severe cases, people with 

Alzheimer's disease can experience delusions and hallucinations and are unable to 

perform activities or even unable to move without the help of others. In the field of 

medicine, all phases in the Alzheimer can be distinguished using a scale known as 

CDR. Specifically, CDR represents the stage of dementia in subjects based on six 

types of functional decline of the brain (domain), namely memory, orientation, 

judgment and problem solving, function in community affairs, home and hobbies, 

and personal care. For CDR value 0, indicating no dementia. While the value of 

CDR from 0.5, 1, 2, and 3 sequentially represent very mild, mild, moderate, and 

severe dementia [1]. 

On the other hand, one of the supporting tools in the diagnosis of Alzheimer's 

severity is the MRI image especially for images in the ventricular and hippocampal 

regions. Many features can be explored from MRI imagery for both areas, which 

can show the characteristic of the severity of Alzheimer's based on the CDR values, 

one of which, is the hippocampal and ventricular area. Digital images can be shown 

by the number of pixels. The problem is not all hospitals or referral centres in 

developing countries have an adequate MRI machine such as many cities in 

Indonesia. While the number of people with Alzheimer's disease in Indonesia in 

2013 reached one million people. The number is expected to increase dramatically 

to double by 2030, and to four million by 2050. Increased. Life expectancy in 

Indonesia increased from 68.6 years in 2004 to 72 years in 2015. Indonesia's 

population life expectancy is projected to continue to increase, so the percentage of 

the elderly population to the total population is projected to continue to increase.  

Based on the results of the 2014 National Socio-Economic Survey, the number 

of elderly people in Indonesia reached 20, 24 million people or around 8.03 percent 

of all residents. The data shows an increase compared to the results of the 2010 

Population Census, which is 18.1 million people or 7.6 percent of the total 

population [2]. According to this condition, the motivation of our work is how 

Indonesians get maximum health care by utilising available devices. Therefore, the 

main purpose of this research is to develop a simple method that can be used to 

automatically classify the severity of Alzheimer's by applying digital image 

processing techniques. In this research, we will emphasize to discuss the calculation 

of the area of hippocampal and ventricle, and then identified using ROC diagrams 

to distinguish between each severity of Alzheimer's based on its CDR value. Area 

calculation will be done using segmentation of active contour method in order to 

get an accurate calculation. We need to emphasize this research deals only with the 

identification of the area of hippocampal and ventricle in coronal slices only.  
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2.  Literature Review  

According to the research about Alzheimer Disease especially in image processing 

field, there some research has been discussed about these topics. Zhang and Wang 

[3] in his research proposed the method of detecting Alzheimer's by estimating the 

movement of space between normal brain and brain with Alzheimer's. This method 

uses features related to Alzheimer's disease, reduces it by the method of Principal 

Component Analysis (PCA), and classifies it by 3 methods of classification; 

Support Vector Machine (SVM), generalised eigenvalue proximal SVM 

(GEPSVM), and twin SVM (TSVM). Rusina et al. [4] proposed a new method on 

SPECT analysis data. They used a combination of parietal, 3D fuzzy edge 

detection, and 3D watershed transformation. They applied to the image of SPECT 

Three Dimensions of the human brain and compared with the number of watershed 

ROI areas between Alzheimer's patients and their controllers.  

Huang et al. [5] presented longitudinal measurements of brain images that have 

moderate damage and how to predict for the classification of Alzheimer's disease. 

Longitudinal images are obtained from exploring the features of Alzheimer's 

patients to get important information contained therein. Classification is performed 

for moderate, unconverted and moderate damage. Lu et al. [6] proposed a novel 

deep-learning based framework to distinguish Alzheimer patients equipped with 

multimodal and multiscale neural networks.  

Gray et al. [7] conducts an experiment to verify a cross-sectional and 

longitudinal multi-region merging values on FDG-PET information for 

classification, using clinical data and imagery data from Alzheimer's patients. 

Khajehnejad et al. [8] proposed the early detection of Alzheimer’s by using 

propagation label-based MRI images in semi-structured learning. The first step is 

to apply the morphometric voxels analysis to execute some important features of 

the Alzheimer associated with the MRI image and the volume segmentation of the 

grayscale image. Prescott [9] presented a framework concept to combine pre-

clinical considerations in the development of quantitative imaging biomarkers and 

computer-based extraction methods. An et al. [10] formulated a hierarchy and 

sample selection framework for selecting informative features and removing 

useless samples in order to improve the classification method, as well as 

experimenting on the diagnosis of Alzheimer by performing informative feature 

selection from both MRI and SNP. Munch et al. [11] presented clinical software 

and preliminary results that simplified the implementation of comparison queries 

by designing and implementing clinical software that allowed users to choose input 

for comparison, and to see images of differences and analysis results.  

Leung et al. [12] proposed anonymous automation infrastructure, extraction 

and processing of imagery stored in clinical data repositories to be made 

routinely on existing data. Dukart et al. [13] systematically applied SVM-based 

whole-brain and region-of-interest (ROI) separately and combines information 

from different image modality to improve the detection and differentiation of 

various types of dementia. Ortiz et al. [14] proposed a method that modelled 

the distribution of GM and WM tissues that grouped voxels belonging to each 

tissue in the ROI associated with specific neurologic abnormalities. Zhang et 

al. [15] did research on 3-D Texture as well as diagnostic markers on 

Alzheimer's disease. He found the results quite encouraging; from 64.3% to 

96.4% performance depending on ROI area selection, feature extraction and 
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selection options, and the most important is the 3D feature extraction selection 

related MMSE scores. Verclytte et al. [16] applied cortical-based surface 

projection of ASL maps to early-stage Alzheimer’s patients in order to improve 

image quality and visual representation of perfusion data. Yoo et al. [17] 

developed the Interdigitated Microelectrode sensor system for blood in 

Alzheimer's disease based on impedimetric detection of the amyloid-β protein 

(Aβ), which is a representation of Alzheimer's biomarker candidate. Colloby et 

al. [18] he examined 99mTc-exametazime on SPECT images using spatial 

covariance analysis to obtain diagnostic values that differentiate dementia from 

Lewy bodies from Alzheimer's disease.  

Herholz [19] reviewed the potential of FDG PET as an image marker in 

clinical trials with respect to patient selection and outcome assessment. He also 

explains and discusses the results of the FDG PET, which has so far been 

published, on therapeutic research and its perspectives in the future. Lacalle-

Aurioles et al. [20] aim to explain whether cerebral blood flow can characterise 

his perfusion abnormalities better in Alzheimer's disease compared with brain 

blood volume and whether cortical atrophy may be associated with decreased 

blood flow or with blood volume.  

Segovia et al. [21] compared the accuracy of systems using neuropsychological 

scores in addition to image data in classification and systems using one of these 

data sources. In our previous research by Supriyanti et al. [22-27], we implemented 

digital image processing techniques in several medical imaging applications. 

However, for research on the application of digital image processing techniques on 

brain images of Alzheimer's patients, we are just in the early stages of research. We 

have calculated the area of the ventricle in the coronal slices image [28]. In this 

research, we will also discuss the area of the hippocampal region of the coronal 

slices image. In addition, we will classify the severity of the CDR-based 

Alzheimer's severity, using features of the ventricular and hippocampal areas of 

coronal slices images. We apply the use of ROC diagram for initial identification 

of this research. Compared to existing work, the main contribution of this research 

is to the application of simple methods to optimize low-resolution MRI machines 

that are widely available in most cities in our country. 

3.  Research Methods 

3.1.  Data acquisition 

In this research, we use data from the Open Access Series of Imaging Studies 

(OASIS). Which provides the dataset of neuroimaging freely for scientific 

purposes. This dataset can be accessed with reference to the paper published by 

OASIS [29, 30].  

In this paper, we only use datasets on coronal slices images only. Initial data 

consisted of a cross-sectional data set of 416 subjects aged 18 to 96 years. One 

hundred subjects over the age of 60 have been clinically diagnosed with 

Alzheimer's disease very mild to moderate. This clinical diagnosis used a CDR 

score [1]. Figure 1 shows examples of coronal slices images that are used in 

these experiments. 

As explained earlier, in this research we will discuss the calculation of the area 

of the ventricle and hippocampal. Then Fig. 2 will show what is meant by the 



1676       R. Supriyanti et al. 

 
 
Journal of Engineering Science and Technology               June 2019, Vol. 14(3) 

 

ventricular and hippocampal areas. The red shaded area indicates the ventricular 

area while the yellow shaded area indicates the hippocampal area. 

As for the summary of data that has been clinically diagnosed using the CDR 

scale presented in Table 1 [1]  

Table 1. Summary of demographic subjects and dementia status. 

Non-demented Demented 
Age 

group 

N n Mean Male Female n Mean Male Female CDR 

0.5/1/2 

< 20 19 19 18.53 10 9 0 0 0 0 0/0/0 
20s 119 119 22.82 51 68 0 0 0 0 0/0/0 

30s 16 16 33.38 11 5 0 0 0 0 0/0/0 

40s 31 31 45.58 10 21 0 0 0 0 0/0/0 
50s 33 33 54.56 11 22 0 0 0 0 0/0/0 

60s 40 25 64.88 7 18 15 66.13 6 9 12/3/0 
70s 83 35 73.37 10 25 48 74.42 20 28 32/15/1 

80s 62 30 84.07 8 22 32 82.88 13 19 22/9/1 

90s 13 8 91 1 7 5 92 2 3 4/1/0 

Total 416 316  119 197 100  41 59 70/28/2 

(Source: Morris [1]) 

 
(Source: OASIS [29, 30]) 

Fig. 1. Examples of input image. 

 
(Source: OASIS [29, 30]) 

Fig. 2. Ventricle and hippocampal area. 
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3.2.  Active contour method 

For active contour is a segmentation method using closed curve models that can 

move wide or narrow. Active contour was first introduced by Casseles, et al. [31] 

and named snakes. Active contour can move widened or narrowed by minimising 

image energy using external power and also influenced by the image characteristic 

such as lines or edges, the energy that affects the active contour is formulated as in 

Eq. (1). 

𝐸 =  ∫ 𝐸𝑖𝑛𝑡 (𝛾(𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
1

0
𝑑𝑠 + ∫ 𝐸𝑒𝑥𝑡 (𝛾(𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) 𝑑𝑠

1

0
                                                        (1) 

where Eint is the internal energy that is influenced by the curve of the object, while 

Eext is external energy that will attract contour either widened or narrowed toward 

the desired object. ɤ (s) is a curve in two-dimensional space. While external energy 

is formulated as in Eq. (2).  

𝐸𝑒𝑥𝑡 = |𝛻𝐺 (𝛾(𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )|
2

                                                                                              (2) 

where G is the image to be segmented. This system consists of a set of 

interconnected and controlled points by a straight line, as shown in Fig. 3. Active 

contour is described as a number of consecutive controlled points with each other.  

The determination of the object in the image through active contour is an 

interactive process. Users should estimate the initial contour, as shown in the 

drawing, the contour is determined to be close to the object's feature form, the 

contour will be drawn towards the feature in the image as it is influenced by the 

internal energy that produces the image. Pixel area calculation is obtained from the 

size of the object of segmentation (object in binary) with an intensity of 1 (white). 

 

Fig. 3. Active contour as a set of controlled coordinate points [31]. 
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3.3.  Receiver operating characteristic (ROC) curve  

Performance of a verification system can be measured based on the value of 

errors that occur and can also be measured from how the success rate of 

introduction of a system. One method that can be used to calculate the value of 

errors and the value of a system's success is the Receiver Operating 

Characteristic (ROC) and its performance value can be measured through 

regional calculations under the ROC curve called the Area Under the Receiver 

Operating Characteristics Curve (AUC).  

The ROC curve is most commonly used to evaluate classifiers because it has 

overall evaluation capability and is good enough [32].   

ROC is a measurement in diagnostic tests, in the medical world, such 

measurements are used for the evaluation of medical tests, e.g., to compare a new 

tool with standard medical devices that have been standard.  

A segmentation application must have sufficient accuracy, to meet these 

requirements, the researcher uses ROC measurement method that calculates the 

False Positive (FP) and False Negative (FN) ratios on the image of the 

segmentation by comparing the results of the test image segmentation on the 

original image.  

TP is true positive (truth-value between image result of segmentation detected 

as a foreground with reference image foreground), TN is true negative (truth-value 

between images of detected segmentation as non-background) with a background 

in reference image). 

FP is false positive (the value of the inaccuracy between the segmented image 

results detected as the foreground with the reference image), and FN is false 

negative (the value of the inaccuracy between the detected segmentation image as 

non-vein) with the reference image).  

The FP or pixel ratio equation is more, and the ratio of FN or missing/fewer 

pixels is described in Eqs. (3) and (4) [33]. 

𝐹𝑃 𝑟𝑎𝑡𝑖𝑜 =  
𝐹𝑃

𝑇𝑁+𝐹𝑃
                                                                                                  (3) 

𝐹𝑁 𝑟𝑎𝑡𝑖𝑜 =  
𝐹𝑁

𝑇𝑃+𝐹𝑁
                                                                                                 (4) 

The ROC curve is a two-dimensional representation of the performance of 

a classifier. A common method used to calculate the performance values of a 

classifier is to calculate the area under the ROC curve, called AUC.  

Since the AUC is the area of the curve of a rectangle, its value is always 

between 0 and 1. For an adequate ROC curve, it is always located in the upper 

region of the diagonal line (0,0) and (1,1), so there is no AUC value smaller 

than 0.5 [32].  

The flowchart of this research is shown in Fig. 4.  



Coronal Slices Segmentation of MRI Images using Active . . . . 1679 

 
 
Journal of Engineering Science and Technology               June 2019, Vol. 14(3) 

 

 

Fig. 4. Flowchart of this research. 

4.  Results and Discussions 

In the previous paper [28], we have discussed in detail about the pre-processing we 

did on these experiments. Our pre-processing steps include several 

implementations of image processing techniques such as crop, brightness and 

contrast. The purpose of the technique is to improve image quality and shorten 

processing time. After completion of pre-processing, we segmented the ventricular 

and hippocampal areas. The detailed result about ventricular segmentation 

presented in the previous paper, which is ventricular objects have ranges of 50 to 

472 pixels for normal imagery and 473-899 pixels for abnormal images [28]. While 

for the hippocampal segmentation process shown in Fig. 4. 

According to Fig. 5, for the hippocampal object, before segmentation, the image 

is cropped with a size of 27×29 pixels to facilitate the initial masking determination 

when segmenting using the active contour method. In testing the results of 

segmentation, each image uses different initial masking but follows the contour of 

the original object of the image to be segmented. For each image given the same 

initial masking coordinates will be tested with the default iteration value, that is 3. 

Further testing is done for hippocampal objects and the results are shown in Table 2.  
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Table 2. Results of hippocampal image pixel calculation. 

No. ID CDR Pixel Range No ID CDR Pixel Range 

1 Img1 2 81 
68-81 

34 Img34 0 244  
 

 

 
 

 

 
 

 

148-
296 

 

 
 

 

 
 

 

 
 

 

 
 

 
148-

296 

2 Img2 2 68 35 Img35 0 225 

3 Img3 1 144 

87-138 

36 Img36 0 251 

4 Img4 1 117 37 Img27 0 224 
5 Img5 1 111 38 Img38 0 258 

6 Img6 1 122 39 Img39 0 282 

7 Img7 1 131 40 Img40 0 187 
8 Img8 1 87 41 Img41 0 211 

9 Img9 1 98 42 Img42 0 261 

10 Img10 1 100 43 Img43 0 217 
11 Img11 1 107 44 Img44 0 167 

12 Img12 1 105 45 Img45 0 222 

13 Img13 1 154 46 Img46 0 172 
14 Img14 1 113 47 Img47 0 192 

15 Img15 1 130 48 Img48 0 205 

16 Img16 1 138 49 Img49 0 195 
17 Img17 0 244 50 Img50 0 218 

18 Img18 0 271 51 Img51 0 227 

19 Img19 0 176 

148-

296 

52 Img52 0 214 
20 Img20 0 218 53 Img53 0 217 

21 Img21 0 223 54 Img54 0 254 

22 Img22 0 227 55 Img55 0 235 
23 Img23 0 173 56 Img56 0 270 

24 Img24 0 245 57 Img57 0 194 

25 Img25 0 297 58 Img58 0 260 
26 Img26 0 242 59 Img59 0 205 

27 Img27 0 143 60 Img60 0 278 

28 Img28 0 197 61 Img61 0 296 
29 Img29 0 236 62 Img62 0 148 

30 Img30 0 245 63 Img63 0 215 

31 Img31 0 245 64 Img64 0 202 
32 Img32 0 266 65 Img65 0 254 

33 Img33 0 177 66 Img66 0 210 

 

 

Fig. 5. (a) Initial masking, (b) Final contour, (c) Segmentation result. 

The average time required to perform 1 segmentation process ± 3 seconds. 

Referring to Table 2, the image range for CDR 2 is 68-81, CDR 1 is 87-131, and 

CDR 0 is in the range 148 to 296. From the analysis found, the image that has the 

largest number of pixels in an abnormal image is Img16, which is 138 pixels. This 

image is then used as a reference image of the hippocampal object's abnormality 

level of an image.  

To identify the normal level of ventricular size, then use the value of FN and 

FP Ratio. The result of the sample test of a ventricular image with the ratio of FN 

and FP ratio, and the accuracy value shown in Table 3. For the image with abnormal 

category has a ratio of FN smaller than FP ratio, and has a high accuracy value that 

is above 98%. While for determining accuracy, we use Eq. (5). 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+ 𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                      (5) 

Table 4 shows the mean values of TP, TN, FP, FN with FP ratios (RFP), the 

ratio of FN (RFN) and sensitivity (Se) and specificity (Sp) to images diagnosed 

with Alzheimer (CDR 1-2) and imagery with a healthy diagnosis (CDR 0). 

Table 3. Examples of ventricular segmentation with 10 iterations. 

No. ID Image 

Detected 

pixel 

number 

RFN RFP 
Accuracy 

% 

1 Img1 

 

516 0,002195248 
0,0036

38986 
99,4221 

2 Img2 

 

749 0,000258264 
0,0047
53631 

99,5061 

3 Img3 

 

566 0,001323605 
0,0043

93011 
99,4350 

4 Img16 

 

514 0,002550362 
0,0039

34039 
99,3576 

5 Img29 

 

164 0,010104597 
0,0001

31135 
98,9766 

6 Img60 

 

305 0,006133781 
0,0007
21241 

99,3156 

Table 4. Results of image calculation of ventricular  

segmentation results with active contour method using ROC. 

No Category FP FN TP TN RFP RFN 
Se 

(%) 

Sp 

(%) 

1 Alzheimer  175,9 33.8 439,2 30327,06 0,005 0,001 92,03 99,54 

2 Healthy 44,1 198,5 274,4 30458,8 0,001 0,006 58,02 99,85 

Referring to Table 4, it can be concluded that images with Alzheimer's disease 

for ventricular objects have a higher number of pixels than healthy images with an 

average value of RFP 0.005 and RFN 0.001. In the same way, we also identified a 
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healthy image and an image with Alzheimer's disease based on hippocampal size. 

The results of the identification are shown in Tables 5 and 6. 

Referring to Tables 5 and 6, it can be concluded that the Alzheimer image for 

the hippocampal object has a smaller number of pixels than the healthy image with 

an average value of RFP is 0.04 and RFN is 0.07. 

Table 5. Examples of RFN, RFP and  

evaluation index values for third iterations. 

No. ID 
Image with 3 

iterations 

Pixel 

number RFN RFP  
Accuracy 

(%) 

1 Img1 

 

78 0,099616858 0,027906977 87,7395 

2 Img2 

 

81 0,102171137 0,035658915 86,8455 

3 Img3 

 

144 0,070242656 0,094573643 85,1852 

4 Img16 

 

113 0,08045977 0,058914729 87,1009 

5 Img29 

 

304 0,008939974 0,268217054 82,1201 

6 Img60 

 

215 0,01532567 0,137984496 87,1009 

Table 6. Results of image calculation of hippocampal  

segmentation results with active contour method using ROC. 

No. Category FP FN TP TN RFP RFN 
Se 

(%) 

Sp 

(%) 

1 Alzheimer 30,0 57,2 80,7 614,9 0,04 0,07 54,01 95,07 

2 Healthy 44,1 198,5 274,4 30458,8 0,15 0,01 89,47 84,49 

5.  Conclusions 

Segmentation of 66 respondents with Alzheimer's disease was successfully done 

with the iteration value 3 for the hippocampal object, and the iteration value of 

10 for the ventricular object. The pixel-based identification is taken from the 

largest pixel value of the image with Alzheimer's on the hippocampal object, 

which is 138 pixels and the smallest value of the image with Alzheimer's 

ventricular object is 473 pixels. Experiments demonstrate a high level of object 

identification success for the hippocampal and ventricular areas based on pixel 
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area for determination healthy imagery and imagery with Alzheimer's based on 

CDR levels. These results can be further used for detailed identification using the 

ROC curve. For further research, we will try to implement watershed 

segmentation as a comparison of the results of this research. 
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Nomenclatures 
 

Eext External energy 

Eint Internal energy 

G Image to be segmented 

ɤ(s) Curve in two-dimensional space 

Se Sensitivity  

Sp Specificity  
 

Abbreviations 

AUC Area Under ROC Curve 

CDR Clinical Dementia Rating 

FN False Negative  

FP False Positive  

GEPSVM Generalised eigenvalue proximal SVM 

MRI Magnetic Resonance Imaging 

OASIS Open Access Series of Image Studies 

PCA Principal Component Analysis 

RFN Ratio of FN  

RFP Ratio of FP 

ROC Receiver Operating Characteristic 

ROI Region of Interest 

SPECT Single Photon Emission Computed Tomography 

SVM Support Vector Machine 

TN True negative 

TP True Positive 

TSVM Twin SVM 
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