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Abstract: Seaweeds or marine macroalgae are known for producing potentially bioactive substances
that exhibit a wide range of nutritional, therapeutic, and nutraceutical properties. These compounds
can be applied to treat chronic diseases, such as cancer, cardiovascular disease, osteoporosis, neurode-
generative diseases, and diabetes mellitus. Several studies have shown that consumption of seaweeds
in Asian countries, such as Japan and Korea, has been correlated with a lower incidence of chronic
diseases. In this study, we conducted a review of published papers on seaweed consumption and
chronic diseases. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) method for this study. We identified and screened research articles published between 2000
and 2021. We used PubMed and ScienceDirect databases and identified 107 articles. This systematic
review discusses the potential use of bioactive compounds of seaweed to treat chronic diseases and
identifies gaps where further research in this field is needed. In this review, the therapeutic and
nutraceutical properties of seaweed for the treatment of chronic diseases such as neurodegenerative
diseases, obesity, diabetes, cancer, liver disease, cardiovascular disease, osteoporosis, and arthritis
were discussed. We concluded that further study on the identification of bioactive compounds of
seaweed, and further study at a clinical level, are needed.
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1. Introduction

Numerous scientific articles have been published on functional foods with puta-
tive beneficial health properties. The term “functional food” was coined as a result of
widespread interest in specific foods that may promote health [1]. These properties are
due to the ability of a food item to lower the risk of chronic diseases and help manage
such diseases, thereby improving quality of life [1,2]. According to a global analysis of new
functional food categories, products focused on digestive health capture the interest of a
broader audience than products with a narrow focus, such as products targeting specific
illnesses [3].

Seaweeds or macroalgae are regarded as one of the non-animal foods of the future
based on their ability to grow without the need for arable land or freshwater resources,
thereby avoiding competition with traditional crops [4–6]. Currently, seaweeds are partic-
ularly appealing because of their high nutrient and bioactive phytochemical content [7].
The active components of seaweed, such as sulfated polysaccharides [8], polyphenols [9],
fucosterol [10], fucoxanthin [11], fucoidan [12], phlorotannin [13], and flavonoids [14], may
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lead to the development of novel drugs and functional foods, or nutraceuticals that may be
used as a natural alternative to commercial synthetic drugs for certain chronic diseases [15].

In recent years, the food industry has increased the development and marketing of a
wide range of functional food products using diverse food sources [16]. Functional food is
defined as food containing one or more ingredients that provide health benefits in addition
to energy and nutrition [17]. Conventional foods containing bioactive components can
also be promoted as having positive health benefits. Some may be fortified or enhanced
foods, created specifically to reduce disease risk in a specific group of people [3]. Seaweed
has been consumed as a food in Asian countries since ancient times, particularly in China,
Japan, and Korea [15]. In China, since 600 BC, seaweed has been served to honored guests,
even to the King himself [18]. In Japan, Sargassum fusiforme (Hijiki), Eisenia bicyclis (Arame),
Saccharina japonica (Kombu or Haidai), Undaria pinnatifida (Wakame or Quandai-cai), Ulva
pertusa (ao-nori) and Porphyra sp. (nori) have been employed in ordinary cooking since the
8th century. As people from these countries have migrated around the world, this custom
has moved with them, so that today there are more countries where seaweed is commonly
consumed [19]. Coastal residents in South Asian countries, such as Indonesia, Malaysia,
Philippines, Vietnam, and Thailand also eat fresh Gracilaria or Caulerpa seaweed, especially
as an ingredient in salads. Some kelp species, such as Alaria esculenta and Himantalia
elongate, are also consumed in European countries.

Seaweed has also been used in traditional Eastern medicine owing to its beneficial
health effects [20]. In Western countries, seaweed has mostly been used in the food, cos-
metics, and pharmaceutical industries as a source of functional polysaccharides (e.g., agar,
carrageenans, and alginates) [21,22]. However, edible seaweeds are increasingly being con-
sumed in Europe, especially in France; in the United States and South American countries,
they are considered to be novel functional foods [15,21]. Several studies have revealed that
dietary habits and traditional culture in consuming seaweed in Asian countries, especially
in Japan and Korea, are correlated with a lower incidence of chronic diseases such as
cancer, cardiovascular disease, hypertension, osteoporosis, and obesity [6,23–27]. Several
studies have also revealed that consumption of seaweed can reduce the occurrence of
chronic pathologies, including neurodegenerative diseases [28], cardiovascular disease [29],
obesity [30], diabetes [14], cancer [31], liver disease [32], osteoporosis [33], and arthritis [34].
Furthermore, collaborative cohort studies have been conducted to investigate the effect
of the seaweed diet in Japan and Korea, and the results of these studies showed that
seaweed-containing diets are related to protection against cancer (Iso and Kubota 2007;
Kim et al. 2020c). Thus, seaweed consumption appears to have an important impact on the
occurrence of chronic diseases. The aim of this study is to review the potential of seaweed
and seaweed-derived bioactive compounds to prevent and treat chronic diseases. This
comprehensive review collected the available data from published papers to identify gaps
where further research is required.

2. Materials and Methods

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) method [35]. The literature search was conducted using PubMed
and ScienceDirect as online databases for collecting and screening the research articles
that met the criteria. The criteria included article type, year of publication, language
used, and topic. We screened the research articles that used English, were published
between 2000 and 2021, and where the topic met our scope. To screen the topic, we used
specific keywords which were found in the titles, abstracts, or text content. The keywords
“seaweed” and “macroalgae” were combined with other keywords such as nutritional,
bioactive compound, chronic disease, neurodegenerative disease, cardiovascular disease,
obesity, diabetes, cancer, liver disease, osteoporosis, and arthritis. Articles that met the
requirements were analyzed, extracted, and reviewed.
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3. Results

A systematic review of the published studies yielded 213 articles. Then, through
identification, screening, eligibility, and inclusion, 107 articles that fulfilled the review
criteria were selected. Previous studies have observed that the use of seaweed modulates
several common chronic diseases, including diabetes, neurodegenerative diseases, obesity,
cancer, liver disease, cardiovascular disease, osteoporosis, and arthritis (Figure 1). Most
of the studies were conducted using in vitro (39.4%) and in vivo (36.4%) models, and only
2.3% of the studies that we found were clinical studies.

1 

 

 

Figure 1. Number of publications on functional seaweed and chronic disease based on (a) the type of
chronic disease and (b) the experimental model.
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We summarized seaweed research on chronic disease based on three groups of sea-
weeds: brown (Phaeophyceae), red (Rhodophyceae), and green (Chlorophyceae) (Figure 2).
Studies of chronic disease were conducted on brown seaweed (68%), red seaweed (18%),
and green seaweed (14%). Among the brown seaweeds, the most studied species were
Ecklonia (21.3%), Sargassum (20.2%), and Fucus (9%). In red seaweed, Gracilaria (20.8%) and
Gelidium (16.7%) were the top two most studied species for potential use in the treatment
of chronic diseases. The most studied green seaweed species were Ulva (47.4%), Codium
(26.3%), and Caulerpa (15.8%). The phylum of Phaeophyta was the most studied species
on cancer (40%), diabetes (85%), arthritis (67%), neurodegenerative diseases (71%), obe-
sity (59%), osteoporosis (46%), liver disease (80%) and cardiovascular disease (84%). The
studies of seaweed in treating chronic diseases were conducted in vivo, in vitro, in silico
and as clinical studies. There was a lack of clinical studies conducted; however, a clinical
study was conducted to test a Maritech® seaweed extract formulation containing extract of
Fucus vesiculosis, Macrocystis pyrifera, and Laminaria japonica on osteoarthritis patients [36].
The study showed that seaweed extract can reduce the symptoms of osteoarthritis in a
dose-dependent manner. 

2 

 

Figure 2. Percentage of published papers of seaweed research on chronic disease based on (a) the
phyla Chlorophyta (green color), Rhodophyta (red color), and Phaeophyta (brown color); (b) chronic
disease for each phylum; and (c) experimental model for each phylum.
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4. Nutritional Value of Seaweed

Seaweed contains a variety of important macro- and micronutrients, including pro-
teins, carbohydrates, phenols, vitamins, and minerals [37,38]. However, the biochemical
composition of seaweeds is affected by the species, time of collection, and habitat, as well as
by external factors such as temperature, light intensity, and nutrient concentration in water.
For example, a study by Garcia-Vaquero et al. [37] reported that the proximate composition
of dry matter of Laminaria digitata, Laminaria hyperborea, and Ascophyllum nodosum was high-
est in the autumn period. While the study conducted by Khairy and El-Shafay [39] showed
that the protein, carbohydrate, lipid, ash, fatty acid and amino acid content of Ulva lactuca,
Jania rubens, and Pterocladia capillacea varied throghout different seasons. Physcio–chemical
parameters also influence the biochemical composition of red seaweed Catenella repens [40].

4.1. Carbohydrates

In seaweed, the carbohydrate content is high, the majority of which is dietary fiber
and is not absorbed by the human body [1]. The carbohydrate of seaweed is different from
the carbohydrate of land-plants. In seaweed, the storage of carbohydrates has an important
function in photosynthesis and osmoregulation. The type and amount of carbohydrate con-
tent in seaweed also vary based on many factors such as the type of seaweed, and physical,
chemical, and biological factors. Most of the red seaweeds contain sulfated galactan (agar
and carrageenan), and some of the brown seaweeds contain sulfated fucans and alginates,
while cellulose has commonly been found in large amounts in green seaweed [41].

Carbohydrates in seaweed are found in large amounts, including monosaccharides,
disaccharides, and polysaccharides; however, their composition depends on many factors.
The components of monosaccharides, such as galactose, glucose, mannose, xylose, fructose,
fucose, and arabinose, were found in the total sugars of seaweed [42,43]. The most represen-
tative polysaccharides in seaweed are agar, alginates, ulvan, and carrageenans [44,45]. Total
polysaccharide content ranges from 4% to 76% of dry weight (dw), with the highest content
found in the genera Ascophyllum, Porphyra, and Palmaria. In general, green seaweed genera
such as Ulva also have a high content, which can be up to 65% of dw [1]. For example,
the carbohydrate contents of Ulva rigida and Ulva pertusa are 58% dw and 56% dw, respec-
tively [4,46]. Other studies reported high carbohydrate content in Gracilaria fisheri and
Gracilaria tenuistipitata, of 63% and 59% dw, respectively [47]. For brown seaweed, Hizikia
fusiforme exhibited a very high amount of carbohydrates, with a value of 72% dw [48].

4.2. Proteins and Amino Acids

Among seaweeds, red seaweed contains the highest protein content, which ranges
from 0.67% to 45.0% dw, followed by green seaweed (3.42–29.80% dw) and brown seaweed
(5.02–19.66% dw) [49]. Specifically, the protein content of red seaweed varies, with values
of 9.32% dw for Gelidium latifolium, 15.58% dw for Gracilaria verrucosa [50], and 26.69% dw
for Plocamium telfairiae [51]. Green seaweeds such as Caulerpa lentillifera, Ulva rigida, and
Ulva pertusa contain protein contents of 7%, 9.3%, and 21.5% dw, respectively [4,46]. The
protein contents of brown seaweeds Hizikia fusiforme and Fucus vesiculosus were reported to
be 12.2% [52] and 15.1% dw [4], respectively. The protein content of seaweed also depends
on the season. For example, Palmaria palmata (Dulse) collected on the French Atlantic coast
during winter and spring, exhibited a higher protein content (21.9% dw) than dusring the
summer and autumn months (11.9% dw), with essential amino acids constituting 26% to
50% dw of the protein [53]. Several studies have examined the amino acid composition of
seaweeds, and aspartic acid, glutamic acid, taurine, threonine, arginine, and alanine have
been reported to be high in concentration. To compare, the concentrations of aspartic acid
and threonine in Ulva armoricana, Ulva Pertusa, Palmaria palmata, and Porphyra tenra were
found to be much higher than in leguminous plants and ovalbumin [54]. Finally, glutamic
and aspartic acids seem to be the most abundant amino acids in most seaweeds [55]. The
reference nutrient intake (RNI) for protein is a 5-g portion equal to a maximum of 1.97%,
4.5%, and 2.98% dw from brown, red, and green seaweed, respectively. The digestibility
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of protein in edible seaweed species ranged from 14.7% to 86.2% dw, with Porphyra tenera
showing the highest value [49].

4.3. Lipids and Fatty Acids

Generally, total lipids found in seaweed range between 0.3% and 7.0% dw [15]. A
previous study reported that Undaria pinnatifida contains lipids comprising 3.71% dw [56].
In contrast, the lipid content of Ulva rigida, Gracilaria sp., Fucus vesiculosus, and Saccharina
latissima ranged from 0.4% to 2.8% dw [4].

Polyunsaturated fatty acids (PUFAs) are common lipids found in seaweed, and are
of great interest due to their biological activity. In seaweeds, PUFAs contain a substantial
amount of ω-3 fatty acids for almost half of the total lipid content [57]. Seaweed also
contains sterol, an important lipid of various types. Brown seaweeds primarily contain
fucosterol, while cholesterol is the predominant sterol type in red seaweeds [3,58,59]. Taken
together, many essential fatty acids found in seaweeds could be combined to increase their
efficacy as a dietary supplement or as part of a well-balanced diet.

4.4. Ash

The ash content of seaweed is quite high compared to common land plants, ranging
from 8.0% to 48.68% dw [15,50]. However, this amount depends on several factors. The ash
content of Saccharina latissima, Laminaria spp., and Alaria esculenta was lowest in September,
October, and November, and highest in spring (February to June); however, it only varied
slightly throughout the year. For these species, total dry weight was lowest from January
to March and highest from July to September [1]. Peñalver and colleagues [60] reviewed
natural products from many seaweed species and demonstrated that brown seaweed
contains more ash in general. Moreover, proximate analysis on red seaweed found an
average value for ash content of 22.9 ± 10.99 g/100 g, which is much higher than that
in terrestrial plants [61]. These results were confirmed in red seaweed Gelidium elegans,
containing 24.1% ash dw [62], and the total ash of Gracilaria verrucosa reached as high as
48.68% dw [50].

4.5. Moisture

The moisture of seaweed is influenced by many factors, especially postharvest treat-
ment. Drying method is the main factor that might influence the moisture of seaweed.
Some fresh seaweeds have a moisture content of 80–90%, whereas seaweeds that are dried
by air have a moisture level of 10–20% [21,63]. A nutritional analysis of selected Azorean
macroalgae (Ulva compressa, Ulva rigida, Gelidium microdon, and Pterocladiella capillacea)
reported that moisture content varied between 83.2% and 90.0% [15]. Holdt and Kraan [1]
reported that water content was lower in some species, but not less than 68.0% dw.

4.6. Dietary Fiber

Non-digestible carbohydrates and lignin are considered dietary fibers [64]. Unlike
sugar or starch, dietary fiber cannot be directly digested by digestive enzymes. In seaweed,
dietary fiber consists mostly of carrageenan and agar (red seaweed), alginate (brown
seaweed), and ulvans (green seaweed), which represent 25% to 75% dw [65]. According
to their solubility in water, fibers are classified as soluble dietary fiber (SDF) or insoluble
dietary fiber (IDF). Seaweed dietary fiber content is similar to or higher than that of
terrestrial plants. The SDF content is typically higher in red seaweeds, such as Chondrus
and Porphyra (15–22% dw). The brown seaweeds Fucus and Laminaria/Saccharina have
higher IDF contents (27–40% dw) [60]. Research by Neto et al. [4] demonstrated that among
four seaweeds, the brown seaweed Fucus vesiculosus contains the highest total fiber, with a
value of 45% dw. Dietary fiber intake for Asians is recommended to be met by consuming
8 g of seaweed, which can meet up to 12.5% of daily requirements [66]. In addition, dietary
fiber can generally retain oil and water, which is beneficial for promoting digestive health.
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4.7. Minerals and Vitamins

Seaweeds are rich sources of important minerals and vitamins. However, amounts
vary according to seaweed species, phylum, season, and environmental, geographical,
and physiological factors. In particular, seaweeds contain substantial amounts of calcium
(Ca), magnesium (Mg), sodium (Na), phosphorus (P), iodine (I), zinc (Zn), and iron (Fe),
at much higher levels than in terrestrial plants. Ca and Mg were found to be the major
minerals in seaweed. A study of several seaweeds from the Kenyan Coast demonstrated
that brown seaweed (Hypnea musciformis and Sargassum oligocystum) and red seaweed
(Laurencia intermedia) contain high amounts of Ca and Mg [67]. Calcium phosphate is more
bioavailable in seaweeds than calcium carbonate, which is found in milk [57]. MacArtain
and colleagues [66] demonstrated that 8 g of Ulva lactuca (sea lettuce), which provides
260 mg of Ca, provides approximately 37% of the RNI of Ca for an adult male, while
cheddar cheese only provides 5% of the RNI in the same portion. Furthermore, seaweed
also contains one of the best natural sources of P, which is beneficial in the human diet.
According to the World Health Organization (WHO) and Food and Agriculture Organiza-
tion (FAO), the dietary reference value of P for adults (>13 years) is 700 µg/day [7]. Brown
algae have been identified as important sources of I for the prevention and treatment of
iodine deficiency goiters. The daily intake of I for adults is 150 µg/day, and excessive
consumption should be avoided [7]. Ca and P are essential for heart and smooth muscle
contraction, as well as for the skeleton. Mg is an important cofactor of many enzymes,
including those involved in cellular respiration, while Na is responsible for maintaining the
body’s water and electrolyte balance. A high intake of Ca, Na, and K is linked to a lower
mean systolic pressure and a lower risk of hypertension [7].

Edible seaweeds are also a valuable source of vitamin content, particularly water-
soluble vitamin C and B complexes and the fat-soluble vitamins A and E [21]. A study
on several red seaweeds showed that, in general, the concentration of vitamin C was
higher than that of vitamin A and vitamin E [61]. Research by Rajapakse and Kim [57]
reported that red and brown algae are rich in vitamin C and A. Undaria pinnatifida and
Porphyra umbilicalis are rich in B vitamins [7]. Vitamins A, B, C, and E are important
antioxidants produced by seaweeds. Vitamin A is found in large amounts in Fucus spiralis
(1.41 mg/100 g of dry weight), Osmundea pinnatifida (1.20 mg/100 g of dry weight), and
Porphyra/Pyropia spp. (1.27 mg/100 g of dry weight). Vitamin C is present in large amounts
in Ulva lactuca (10 mg/8 g of dry weight) and Undaria pinnatifida (14 mg/100 g of dry
weight). Vitamin B12 is abundant in species such as Ulva spp. and Porphyra/Pyropia spp.,
with a recommended dietary allowance (RDA) of 2.5 mg/day for adults [66]. These findings
indicate that seaweed minerals and vitamins have a greater potential to be exploited in
high-demand functional food categories.

5. Bioactive Compounds in Seaweed

Seaweed are potential source of bioactive compounds including fucoidan, agars, kappa
carrageenans, ulvans, alginates, laminarin, fucosterol, phlorotannins, lectins, alkaloids,
diterpenes, and fucoxanthin (Figure 3).
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Figure 3. The chemical structures of fucoidan (1), agars (2), kappa carrageenans (3), ulvans (4),
alginates (5), laminarin (6), fucosterol (7), phlorotannins (8), lectins (9), alkaloids (10), diterpenes (11),
and fucoxanthin (12).
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5.1. Fucoidan

Fucoidan is a high-molecular-weight polysaccharide found in brown seaweeds, such
as Fucus serratus, Ascophyllum nodosum, and Undaria pinnatifida [68]. Fucoidan is made
up of two chains: one with (1→3)- α-L-fucopyranose as the main chain and one with
α-L-fucopyranose linked by (1→3) and (1→4) as the main chain. Single and double
substitutions in the sulfate groups of both skeletons can occur at the C-2 or C-4 positions.
Some fucoidans have substituted branches at positions C-2 and C-3 [69]. Fucoidans are the
most abundant polysaccharides in brown seaweeds, followed by alginates and laminarans;
however, their contents vary depending on the species, geographical area, harvest season,
and environmental factors such as salinity and nutrients [70]. Fucoidan is a large part
of the cell wall comprised of carbohydrate and sulfate content. For example, Hizikia
fusiformis contains 99% dw fucoidan [48], whereas Ascophyllum nodosum contains 84.6%
dw fucoidan [71]. Several studies have reported numerous pharmacological properties of
fucoidans such as antioxidant, anti-inflammatory, anticoagulant, antimicrobial, anticancer,
immunomodulatory, and hepatoprotective activities [72–77].

5.2. Agars

Agar is a linear polysaccharide derived from the cell walls of red seaweeds Gelid-
ium and Gracilaria [78]. Agar is composed of alternating 3,6-anhydro-L-galactose and
D-galactose units linked by α-(1,3) and β-(1,4) glycosidic bonds [79], and is popular as
a phycocolloid consisting mainly of agarose and agaropectin units [78]. Removal of the
agaropectin component from agar yields agarose [80]. The quality of the agar is determined
by the type, pattern, and degree of substitution, as well as molecular weight, chemical
composition (pyruvate, methoxyl, and sulfate), and physical properties (gel strength, gel
syneresis, viscosity, gel temperature, and melting temperature), which determine its market
value [81]. Agar is generally used as an additive in the food industry because of its gelling
ability, and agar and its derivatives have received increasing attention for therapeutic
purposes, apart from their rheological properties [80].

5.3. Carrageenans

Carrageenan is a hydrocolloid consisting of sulfated galactans with alternating (1-4)-
anhydro-D-galactose and (1-3)-D-galactose backbones isolated from red seaweeds
(Rhodophyceae) [82]. Carrageenan is generally considered safe for routine use as a gelling
agent and thickener in foods [83]. Based on their chemical structure and properties, car-
rageenans are divided into kappa (κ), iota (ι), and lambda (λ), which have one, two, and
three sulfate groups per disaccharide unit, respectively [83,84]. Kappa carrageenans form
the strongest gels of any carrageenan, which makes them useful in the food, dairy, and
pharmaceutical industries as thickeners, gelling agents, and stabilizers [85]. Kappaphycus
alvarezii and Eucheuma denticulatum [84] are the most important commercially cultivated
warm-water carrageenan species, producing kappa- and iota-carrageenan, respectively.
These seaweeds are mainly grown commercially in Indonesia, the Philippines, Malaysia,
Brazil, and Tanzania [86].

5.4. Ulvans

Ulvans are highly contentious sulphated polyelectrolytes with gelling properties
that can be extracted from green seaweeds, which are mainly composed of rhamnose
(5.0–92.2 mol%), glucuronic acid (2.6–52.0 mol%), iduronic acid (0.6–15.3 mol%), and
xylose (0.0–38.0 mol%) as the main monomer sugars [87]. Ulvans also contain a common
constituting disaccharide, such as aldobiuronic acid, (1→4)-D-glucuronic acid-(1→4)- L-
rhamnose-3-sulfate- (1→], and iduronic acid [45]. The average molecular weight of ulvans
ranges from 189 to 8.200 kDa [88]. Ulva cell-wall polysaccharides account for 38% to
54% of dry algal matter [88]. Ulvans are mainly found in Ulva sp. with high amounts
of water-soluble ulvan and insoluble cellulose, as well as a minor amount of peculiar
alkali-soluble linear xyloglucan and glucuronan [42]. In this regard, ulvan exhibits potent
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applications in biomaterial science (wound dressings, biofilm prevention, excipients, and
tissue engineering), pharmaceuticals (antiviral, antioxidant, antihyperlipidemic, anticancer,
anticoagulant, and immunostimulatory), functional foods, and agriculture [65,87].

5.5. Alginates

Alginates, which are primarily found in brown algae, are linear polysaccharides with
varying mannuronic and glucuronic acid ratios [65]. This ratio varies between brown algae
species, and can be determined using proton nuclear magnetic resonance (1H NMR). The
monomers in alginate, b-d-mannuronic acid (M) and its C-5 epimer α-l-guluronic acid (G),
can be arranged in varying proportions to form a chain bound by 1→4 linkages [42]. The
M and g residues are organized into blocks of consecutive M (M-blocks), consecutive g
(G-blocks), or alternating M and g residues (MG-blocks). Alginate is a phycocolloid that
can be dissolved in water to produce a gel with specific rheological properties. Ascophyllum,
Laminaria, and Mycrocystis are the most common commercial sources of phaeophytes for
alginates, and Sargassum, Durvillea, Eklonia, Lessonia, and Turbinaria as minor sources [89].
Alginate has also been extensively researched as a biomaterial in biomedical science be-
cause of its biocompatibility, low toxicity, and easy availability [80]. The pharmacological
properties of alginate as immunomodulatory, antioxidant, and anticoagulant agents have
been developed in recent years [70].

5.6. Laminaran

Laminaran is a glucan, built up from a homopolymer of β-d-glucose (β-glucan) linked
by a 1→3 glycosidic linkage (in some cases, having 1→6 linkages that form a branch and
ramifications in the O-6 position), which may contain a mannitol unit or a few uronic
acid residues at their reducing end [70]. The average molecular weight of laminaran is
5 kDa [42]. Laminaran can be found in the fronds of Laminaria/Saccharina and, to a lesser
extent, Ascophyllum, Fucus, and Undaria. The content varies seasonally and by habitat, but
it can reach up to 32% of the dry weight [45]. Laminaran does not gel or form viscous
solutions, and its main application may be in medical and pharmaceutical applications.

5.7. Phytosterols

Seaweeds contain large amounts of phytosterols, such as fucosterol, which is the main
sterol in brown algae and cholesterol in red algae; however, the sterol composition of
green algae is relatively heterogeneous, with a complex mixture of 28-isofucosterol, ergos-
terol, β-sitosterol, poriferasterol, cholesterol, and others [90,91]. These compounds may
have particular biological activities, including antioxidant, antidiabetic, anti-inflammatory,
anticancer, hepatoprotective, and anti-Alzheimer’s disease activity [92]. However, accu-
rate determination of the biological activity of individual phytosterols is currently dif-
ficult because of the high cost and scarcity of pure phytosterols [93]. Fucosterol and
24-methylenecholesterol are sterols found in brown algae such as Sargassum fusiforme and
Undaria pinnatifida, which have been linked to a variety of health benefits in humans [94]. A
feasible, economical, and efficient technique for the rapid extraction of phytosterol may be
conducted using microwave-assisted extraction coupled with high-speed counter-current
chromatography [95].

5.8. Phlorotannins

Marine algae contain bioactive polyphenolic molecules that can modulate biologi-
cal properties, such as phlorotannins. Phlorotannins are tannin derivatives composed of
phloroglucinol-based phenolics (1,3,5-trihydroxybenzene) that are synthesized through
the acetate-malonate pathway [94]. They are thought to be the defense compounds in
brown seaweeds with high concentrations (up to 25%), and are stored in special vesicles
(physodes) [4]. A variety of phlorotannins has been discovered, including eckol, phlo-
rofucofuroeckol A, dieckol, 6,6-bieckol, 8,8-bieckol, 7-phloroeckol, fucodiphloroethol G,
phloroglucinol, and bifuhalol [96–99]. These compounds exhibit a variety of biological activ-
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ities, including high antioxidant activity [100]; inhibition of α-amylase, α-glucosidase, and
lipase, which are key enzymes in obesity and diabetes control [96,101,102]; and neuroprotec-
tive activities [97,98]. Phlorotannins were found to be non-toxic in cell lines, invertebrates,
microalgae, seaweeds, plants, animals (fish, mice, rats, and dogs), and humans [99].

5.9. Carotenoids

Carotenoids are fat-soluble, highly unsaturated red, orange, or yellow pigments com-
posed of isoprenoids, and their basic structure consists of eight isoprene units with a C
40 backbone [103]. Carotenoids are naturally present in plants, fungi, bacteria, and al-
gae. Several types of carotenoids produced by seaweeds are β-carotene and zeaxanthin
(red seaweed), fucoxanthin (brown seaweed), and siphonaxanthin (green seaweed). Fu-
coxanthin is one of the most abundant marine carotenoids with different health benefits,
including anti-oxidative activity [104], and significantly reduces animal weight gain [105].
Furthermore, fucoxanthin can protect neuronal cells from oxidative-stress-induced neuro-
toxicity [106,107]. Siphonaxanthin is a marine carotenoid and a derivative of lutein found
in green algae, such as Caulerpa lentillifera, Codium cylindricum, and Codium fragile [108].
The characteristic structure of siphonaxanthin is a keto group located at C-8 and an extra
hydroxyl group at C-19 [109].

5.10. Lectins

Lectins are sugar-binding proteins, useful for deciphering the glycocode [10]. They
are found in most organisms, from viruses and bacteria to plants and animals [110]. In
general, marine algal lectins have low molecular weights compared to land-plant lectins,
and they appear to induce negligible immunogenicity due to their small size. Furthermore,
due to the presence of disulfide bonds and high specificity for complex carbohydrates
over monosaccharides, marine algae lectins have greater molecular stability than plant
lectins [111]. Lectins have biotechnological significance in a variety of fields, such as bio-
chemistry, agriculture, and pharmacology, including nociception and inflammation [112].

5.11. Alkaloids

Bisindole alkaloids are a large group of structurally diverse secondary metabolites
produced by a diverse range of organisms from both terrestrial and marine environments.
Numerous unique bisindole alkaloids, including meridianins, topsentins, nortopsentins,
dragmacidins, variolins, and rhopaladins, have been reported from sponges, actinomycetes,
tunicates, and green algae [113]. Furthermore, some of these marine bisindole compounds
have been discovered to have potent and diverse bioactive properties, such as antifungal,
antibacterial, antiviral, cytotoxic, anti-inflammatory, and notable antitumor properties [114].

5.12. Halogenated Compounds

Terpenes are compounds found in seaweeds, consisting of two, three, four, or six isoprene
units. Sesquiterpenes are terpenes with antibacterial, antifungal, and anti-inflammatory prop-
erties [115]. Eleganolone and eleganonal belong to the family of diterpenes, and are usually
found in Bifurcaria bifurcata [116]. Diterpenes are non-volatile halogenated compounds with
xenicane, dolabellane, and prenylated guaiane skeletons with different structures. Brown
algae from the genus Dictyota are highly abundant in diterpenes. Dictyodial, dictyol C, and
dictyol H, which are algal terpenes, have previously been isolated from various Dictyota
species. These secondary metabolites deter feeding by marine herbivores [94].

6. Pharmacological Properties of Seaweed to Overcome Chronic Disease

Numerous studies have reported the pharmacological properties of seaweed for the
treatment of chronic diseases, such as neurodegenerative diseases, cardiovascular diseases,
obesity, diabetes, cancer, liver disease, osteoporosis, and arthritis. The bioactive compounds
contained in seaweed are suggested to be beneficial for the management of chronic diseases.
The mechanisms of each of these chronic diseases are shown in Figure 4.
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Figure 4. Mechanisms of chronic diseases, including cancer (a), neurodegenerative disease (b),
alcoholic liver disease (c), diabetes (d), obesity (e), cardiovascular disease (f), osteoarthritis (g) and
osteoporosis (h).

6.1. Cancer

The mechanism of cancer cell formation and proliferation is shown in Figure 4a. Nu-
merous studies on the effects of seaweed extracts against breast cancer have been reported.
Sargassum hemiphyllum fucoidan inhibited the viability of MCF-7 and MDA-MB-231 cell
lines by modulating the miR-29c/ADAM12 and miR-17-5p/PTEN axes [72]. Laurencia
papillosa [117] and Sargassum sp. [118] showed significant inhibition of viability of the
MCF-7 cell line. A high level of inhibition of the MDA-MB-231 cell line was also observed
following treatment with Bifurcaria bifurcata [119] and Ulva fasciata by downregulating the
EGFR/PI3K/Akt pathway [120]. Eucheuma cottonii suppressed the growth of tumor cells
in rats inoculated with breast-cancer tumors in in vivo experiment [118]. Other in vivo
studies reported that Wistar rats administered with 50 mg/kg body weight orally, daily
for 10 weeks, suppressed breast carcinogenesis [121]. Studies of the effects of seaweed-
derived compounds on cancer which were conducted in vitro and in vivo are summarized
in Table 1.
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Table 1. The effects of seaweed-derived compounds on cancer.

Algal Source Constituent Study Type Biological Effects Ref.

Brown seaweed

Sargassum hemiphyllum Fucoidan In vitro Inhibited the progression of MCF-7
and MDA-MB-231 cell lines [72]

Bifurcaria bifurcata Diterpenes In vitro Inhibited the growth of MDA-MB-231
cell line (IC50 = 11.6 to 32.0 µg/mL) [119]

Sargassum sp. Ethanol extract In vitro Inhibited the growth of MCF-7 cell
line (IC50 = 250 µg/mL) [31]

Hizikia fusiforme Sulfated
polysaccharide In vitro and in vivo Inhibited the growth of human

bladder cancer EJ cell line [122]

Laminaria japonica Laminarin In vitro and in vivo Inhibited hepatocellular carcinoma
(HCC) cell proliferation [123]

Fucus vesiculosus Fucoidan In vitro Inhibited HT-29 cell prolifeation [124]

Red Seaweed

Laurencia papillosa Sulfated
polysaccharides In vitro Inhibited MCF-7 cell viability [117]

Eucheuma cottonii Ethanol extract In vivo Inhibited the growth of breast tumor [118]

Gigartina pistillata Carrageenans In vitro Inhibited colorectal cancer stem cell
viability (IC50 = 1 µg/mL) [125]

Champia feldmannii Sulfated
polysaccharides In vitro and in vivo Inhibited sarcoma 180 ascites tumor

cell growth [126]

Gracilaria fisher Sulfated galactans In vitro Restored migration of CCA cells [127]

Green Seaweed

Ulva fasciata Guai-2-en-10a-ol In vitro Inhibited the growth of
MDA-MB-231 cell line [120]

Ulva lactuca Ulvan In vitro and in vivo Inhibited MCF-7 cell viability
Inhibited breast carcinogenesis [121]

Ulva lactuca Aqueous-ethanolic
extract In vivo Inhibited benzo(a)pyrene-induced

toxicity in mice [128]

Gayralia oxysperma Sulfated
heterorhamnans In vitro Inhibited the growth of

U87MG cell line [129]

Carrageenan extract from Gigartina pistillata inhibits cell growth in colorectal cancer
stem cells with an IC50 value of 1 µg/mL [125]. Moreover, Hizikia fusiforme inhibited EJ
tumor growth both in vivo and in vitro through G1-phase cell cycle arrest by downregulat-
ing cyclins and cyclin-dependent kinases (CDKs), as well as by inhibiting the expression
of MMP-9 by downregulating NF-κB, AP-1, and Sp-1 [122]. In addition, seaweed ex-
tract also exhibited potent anticancer activity against hepatocellular carcinoma (HCC) cell
lines [123], the U87MG cell line [129], and sarcoma 180 ascites tumor cells both in vitro and
in vivo [126]. Furthermore, the inhibition of HT-29 cell proliferation by fucoidan may be
due to the downregulation of IGF-IR signaling by the main IRS-1/PI3K/AKT pathway.

6.2. Neurodegenerative Disease

Neurodegenerative diseases are age-related chronic and progressive loss of neurons,
such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Hunting-
ton’s disease, multiple sclerosis, cerebral ischemia, and traumatic brain injury [130,131].
The major cellular and molecular events that cause neurodegeneration are oxidative stress,
misfolded proteins, impaired mitochondrial function, apoptosis induction, proteostasis
impairment, and neuroinflammation [132]. The mechanism of neurodegenerative dis-
ease is shown in Figure 4b. Studies of the effects of seaweed-derived compounds on
neurodegenerative diseases are summarized in Table 2.
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Table 2. The effects of seaweed-derived compounds on neurogenerative diseases.

Algal Source Compound of Interest
and Fraction Study Type Biological Effects Ref.

Brown seaweed (Phaeophyta)

Bifurcaria bifurcata Phenolic fraction In vitro
Prevented mitochondrial potential changes,
decreased H2O2 production, and inhibited

Caspase-3 activity
[116]

Undaria pinnatifida Ethanol extract In vitro Decreased ER stress via upregulating
Akt/mTOR signaling pathway [133]

Undaria pinnatifida Fucoxanthin and
fucosterol In vitro and in silico

Moderate inhibition for fucoxanthin and
inactive for fucosterol on two isoenzymes
Fucoxanthin as potential dopamine D3/D4

agonist

[106]

Undaria pinnatifida Fucosterol and
fucoxanthin In vitro Inhibitory effects on BACE1 [134]

Ishige foliacea Ethanol extract In vitro and in vivo
Decreased Aβ accumulation

Inhibited AChE, BACE1, and memory
deficit

[135]

Sargassum horneri Fucoxanthin In vitro
Decreased H2O2-induced neurotoxicity by

upregulating the PI3K/Akt cascade and
inhibiting the ERK pathway

[107]

Ecklonia cava Polyphenol In vitro and in vivo Reduced Ca2+—mediated neurotoxicity on
ischemic rats

[136]

Ecklonia cava Dieckol and
phlorofucofuroeckol In vivo Increased acetylcholine and reduced

anticholinesterase activities [98]

Ecklonia cava Butanol In vitro and in vivo Reduced Aβ secretion and cell death [137]

Ecklonia cava Phlorotannin In vitro
Regulated the expression and activity of

alpha- and gamma-secretase
Reduced Aβ production

[138]

Eisenia bicyclis Eckol and dieckol In silico Inhibited hMAOs by its higher binding
affinity [97]

Ishige okamurae Fresh seaweed and
ethanolic extract In vitro and vivo

Reduced Aβ25–35-induced phosphorylation
by downregulating ERK, p38 MAPK, and

JNK pathway
[139]

Ecklonia maxima Phenolic extract In vitro Inhibited acetylcholinesterase and
butyrylcholinesterase activities [140]

Sargassum fusiforme Polysaccharide In vivo Reduced memory deficiencies and
improved cognitive abilities of rats [28]

Ecklonia stolonifera Fucosterol and
fucoxanthin In vitro Inhibitory effects on BACE1 [134]

Red seaweed (Rhodophyta)

Gracilaria cornea Sulfated agaran In vivo
Reduced oxidative stress

Recovered behavioral activity and weight
gain of rats to normal

[141]

Gracilaria beckeri Phenolic extract In vitro Inhibited acetylcholinesterase and
butyrylcholinesterase activities [140]

Gelidium pristoides Phenolic extract In vitro Inhibited acetylcholinesterase and
butyrylcholinesterase activities [140]

Gelidium amansii (formerly
Gelidium elegans) Ethanol extracts In vitro Promoted the initial neuronal

differentiation [142]

Green Seaweed (Chlorophyta)

Caulerpa racemosa Racemocin A and
racemocin B In vitro Increased cell viability of SH-SY5Y cells [114]

Ulva rigida Phenolic extract In vitro Inhibited acetylcholinesterase and
butyrylcholinesterase activities [140]

The activation of microglia—a macrophage cell production in the central nervous
system (CNS) due to the excessive production of inflammatory mediators such as nitric
oxide (NO), prostaglandin E2 (PGE2), and pro-inflammatory cytokines, e.g., tumor necro-
sis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and reactive oxygen species (ROS)—can
cause chronic neurodegeneration [130,143]. Myagropsis myagroides sargachromenol reduced
inflammation in lipopolysaccharide (LPS)-stimulated microglia by downregulating the
IκB-α/NF-κB and ERK/JNK pathways [130]. One of the factors causing misfolded proteins
that is associated with neurodegenerative diseases is increased endoplasmic reticulum (ER)
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stress. Ethanol extract from Undaria pinnatifida was reported to decrease endoplasmic retic-
ulum (ER) voltage through the Akt/mTOR signaling pathway [133]. Fucoxanthin extract
of Sargassum horneri showed neurodegenerative effects by decreasing H2O2-induced neuro-
toxicity via upregulating of the PI3K/Akt cascade and inhibition of the ERK pathway [107].
Bisindole alkaloids, namely racemocin A and racemocin B from Caulerpa racemose, reduced
the Aβ25–35-induced SH-SY5Y cell (neuroblast from neural tissue) damage by increasing
cell viability of 5.5% and 14.6% for racemocin A and racemocin B, respectively [114]. Fu-
coxanthin may rescue cerebral ischemic/reperfusion injury from nerve inflammation and
oxidative stress by promoting the Nrf2/HO-1 signaling pathway in rats [21]. Reducing
Ca2+-mediated neurotoxicity could protect rats with cerebral ischemic/reperfusion injury
from nerve inflammation and oxidative stress [136].

Alzheimer’s disease is a type of dementia that causes a global, progressive, and
irreversible deterioration of various cognitive functions (memory, attention, concentra-
tion, language, and thinking, among others) [144]. The main cause of Alzheimer’s dis-
ease is the dysregulation of β-amyloid (Aβ) levels, which induces neuronal death via
multiple mechanisms, including oxidative stress, excitotoxicity, apoptosis, and inflamma-
tion [145]. According to Kim et al. [135], Ishige foliacea may decrease Aβ accumulation,
thus inhibiting AChE and BACE1 [134], and suppress memory deficits by enhancing the
BDNF–TrkB–ERK signaling pathway in the hippocampus. Butanol extracts from Ecklonia
cava have anti-Aβ effects on Aβ-related pathogenesis, including amyloidogenic process-
ing, Aβ oligomerization, Aβ fibrillization, and Aβ-induced neuronal death [137]. By
downregulating the ERK, p38 MAPK, and JNK pathways, compounds isolated from Ishige
okamurae reduced Aβ25–35-induced phosphorylation both in vitro and in vivo [139]. Phe-
nolic compounds from Gracilaria beckeri, Ecklonia maxima, Gelidium pristoides, and Ulva
rigida, such as phloroglucinol, catechin, and epicatechin 3-glucoside, significantly reduced
anti-acetylcholinesterase and butyrylcholinesterase activities [140].

Parkinson’s disease is a prevalent neurological disease affecting the movement of the
elderly. It is characterized by the formation of Lewy bodies, the death of dopaminergic
neurons in the substantia nigra pars compacta (SNpc), and dopamine depletion (DA) [116,146].
During aging, the concentration of iron in the brain can change, resulting in metabolic
stress [147,148]. The neuroprotective activity of Bifurcaria bifurcata fractions suggested that
two major diterpenes (eleganolone and eleganonal) have potential for Parkinson’s disease
management because of their iron-reducing activities [116]. Silva et al. [149] reported that
among the three macroalgae tested, Saccorhiza polyschides exhibited the highest potential as
a therapeutic agent against AD-induced toxicity, exhibiting anti-apoptotic effects associated
with mitochondrial protection and caspase-3 inhibition in a model of Parkinson’s disease.
Two extracts, Undaria pinnatifida and fucoxanthin, showed moderate inhibition and were
inactive against hMAO-A and hMAO-B [135]. These results suggest that fucoxanthin
may be beneficial for Parkinson’s disease due to its ability as a potent dopamine D3/D4
agonist agent. An in vivo study reported that rats fed sulfated agaran exhibited great
neuroprotection due to its ability to reduce oxidative stress, and showed recovery of
behavioral activity and improved weight gain [141].

Based on previous research, extracts of phlorotannins and their derivatives from brown
seaweed demonstrate neuroprotective activity. Ecklonia cava phlorotannin downregulates
the expression and activity of alpha- and gamma-secretase [138], while its derivatives
dieckol and phlorofucofuroeckol increase acetylcholine and reduce anticholinesterase
activities [98], which lead to a reduction in Aβ production. In addition, dieckol and eckol
from Eisenia bicyclis showed a higher binding affinity for hMAOs by hydrogen bonding
and hydrophobic interactions compared to hMAO-A and hMAO-B [97].

6.3. Liver Disease

The liver is the main metabolic organ for the detoxification of drugs and xenobiotics,
crucial to combatting oxidative-stress-inducing agents that circulate in the blood [150].
However, excessive alcohol intake can cause liver diseases, including alcoholic liver disease
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(ALD) and nonalcoholic fatty liver disease (NAFLD). The mechanism of alcocholic liver
disease is shown in Figure 4c. Several studies on bioactive compounds for liver disease
management have been conducted (Table 3).

Table 3. The effects of seaweed-derived compounds on liver disease.

Algal Source Constituents Study Type Biological Effects Ref.

Brown seaweed (Phaeophyta)

Ecklonia cava 7-phloro-eckol In vitro Reduced alcohol-induced oxidative
stress injury [100]

Sargassum fluitans Ethanol extract In vivo Reduced the level of APAP− and
CCl4− induced liver damage [32]

Sargassum ilicifolium Ethanol extract In vivo Showed nephroprotective and
hepatoprotective effects [151]

Turbinaria decurrens Fucoidan In vivo Improved antioxidant status and
reduced liver injury [73]

Myagropsis myagroides Aqueous extracts In vivo
Reduced the CCl4− induced acute
elevation in the levels of GPT and

GOT in rats
[152]

Sargassum
henslowianum Aqueous extracts In vivo

Reduced the CCl4− induced acute
elevation in the levels of GPT and

GOT in rats
[152]

Sargassum siliquastrum Aqueous extracts In vivo
Reduced the CCl4− induced acute
elevation in the levels of GPT and

GOT in rats
[152]

Fucus vesiculosus Fucoidan In vivo Ameliorated thioacetamide
(TAA)-induced liver injury [153]

Fucus vesiculosus Phytocomplex In vitro and in vivo

Reduced both the postprandial
glycemic peak and the blood glucose

curve (AUC)
Inhibited in carbohydrate digestion

[154]

Ascophyllum nodosum Phytocomplex In vitro and in vivo

Reduced both the postprandial
glycemic peak and the blood glucose

curve (AUC)
Inhibited in carbohydrate digestion

[154]

Cladosiphon okamuranus Fucoidan In vivo Showed isoproterenol-induced
myocardial infarction [155]

Sargassum thunbergii Indole-4-
carboxaldehyde In vitro

Reduced pro-inflammatory mediator,
i.e., methylglyoxal (MGO) and

advanced glycation end-product
(AGE) formation

[156]

Red Seaweed (Rhodophyta)

Halymenia porphyroides Ethanol extract In vivo Showed nephroprotective and
hepatoprotective effects [151]

Gracilaria lemaneiformis Oligosaccharides In vivo Exerted antioxidant defense system [157]

Green Seaweed (Chlorophyta)

Ulva lactuca Sulfated
polysaccharide In vivo Reduced D-Gal-induced DNA damage

and necrosis level in rats [8]

Recent studies have reported that Sargassum ilicifolium showed better inhibition of
nephroprotective and hepatoprotective effects than Halymenia porphyroides in the liver
and kidney of rats after damage by administration of acetaminophen or cisplatin [151].
Hepatoprotection has been reported with the administration of Turbinaria decurrens fu-
coidan, which ameliorates antioxidant status and decreases lipid peroxidation marker
levels [73]. Administration of 50 mg/kg Sargassum fluitans ethanol extract reduced the
levels of APAP− and CCl4− in liver damage models through the inhibition of inflamma-
tion and fibrosis in liver tissue [32]. This result is in accordance with the research on the
hepatoprotective effects of Myagropsis myagroides, Sargassum henslowianum, and Sargassum
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siliquastrum [152]. Fucus vesiculosus fucoidan may exert thioacetamide (TAA)-induced liver
injury by downregulating pro-inflammatory cytokines [153]. Moreover, fucoidan from
Cladosiphon okamuranus showed hepatoprotective effects by improving the antioxidant
defense system and reducing ROS [155].

The ALD symptoms, such as fatty liver disease and hepatitis, can progress to steatohep-
atitis, liver fibrosis, cirrhosis, and the most severe form of liver cancer [158]. 7-phloro-eckol
isolated from Ecklonia cava showed an inhibitory effect on ALD by reducing alcohol-induced
oxidative stress injury in HepG2/CYP2E1 cells [100]. Meanwhile, other seaweeds such as
Ulva lactuca can reduce D-Gal-induced DNA damage and necrosis levels in rats [8]. NAFLD
refers to a group of liver disorders that range from fat accumulation in the liver (steatosis)
to nonalcoholic steatohepatitis (necrosis and inflammation), with some cases progressing
to fibrosis, cirrhosis, and liver failure [159]. One of the progressive stages of NAFLD is
called nonalcoholic steatohepatitis (NASH), which is associated with hepatocyte injury,
excessive oxidative stress, and chronic inflammation in the fatty liver, and can progress to
more serious liver diseases such as cirrhosis and hepatocellular carcinoma [160,161]. The
phytocomplex of Fucus vesiculosus and Ascophyllum nodosum suggests a reduction in the
postprandial glycemic peak and the blood glucose curve (AUC), and an inhibitory effect on
carbohydrate digestion [154].

6.4. Diabetes

In recent years, diabetes has become a major health problem worldwide, particularly
among youth [162]. Diabetes is a metabolic disorder characterized by insufficient insulin
secretion and improper insulin utilization [163]. It is divided into two types: insulin-
dependent diabetes mellitus (type 1 diabetes) and non-insulin-dependent diabetes mellitus
(type 2 diabetes) [101]. Previous studies have shown that seaweed, which is high in
bioactive compounds, has anti-diabetic properties (Table 4).

Table 4. The effects of seaweed-derived compounds on diabetes.

Algal Source Constituent Study Type Biological Effects Ref.

Brown Seaweed (Phaeophyta)

Ecklonia cava AG-dieckol In vivo Reduced total glucose and lipid [101]

Ecklonia cava Dieckol In vivo Reduced blood glucose level, serum
insulin level and body weight [102]

Ecklonia cava Polyphenol In vivo
Inhibited the activation of high

glucose-induced hepatic stellate cells
(HSCs)

[164]

Sargassum hemiphyllum Fucoidan and
fucoxanthin In vivo Reduced urinary sugar

Reduced total glucose and lipid [165]

Sargassum hemiphyllum Oligo-fucoidan In vitro and in vivo
Inhibited pro-inflammatory mediators
Inhibitory effects on diabetes-evoked

renal fibrosis
[166]

Padina arborescens Methanolic extract In vivo Ameliorated hyperglycemia and
dyslipidemia [167]

Ascophyllum nodosum
Carbohydrate- and

polyphenolic-enriched
extracts

In vitro
Inhibited α-glucosidase

Inhibition of sucrase
(IC50 = 0.83 mg/mL)

[168]
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Table 4. Cont.

Algal Source Constituent Study Type Biological Effects Ref.

Ascophyllum nodosum Fucoidan In vitro

Inhibited α-glucosidase
(IC50 = 0.013–0.047 mg/mL)

Inhibited α -amylase
(IC50 = 0.12–4.64 mg/mL)

[169]

Fucus vesiculosus
Carbohydrate- and

polyphenolic-enriched
extracts

In vitro Inhibited α-glucosidase [168]

Fucus vesiculosus Fucoidan In vitro Inhibited α-glucosidase
(IC50 = 0.049 mg/mL) [169]

Undaria pinnatifida
Carbohydrate- and

polyphenolic-enriched
extracts

In vitro Inhibited α-glucosidase [168]

Ishige foliacea Octaphlorethol A In vitro Upregulated transporter 4 (Glut4)
translocation [170]

Ishige foliacea Octaphlorethol A In vivo Downregulated hepatic
gluconeogenesis [171]

Sargassum polycystum Ethanolic and aqueous
extracts In vivo Ameliorated kidney, liver, and

pancreas damage [172]

Scagassum Polysaccharide fraction In vivo
Regulated glucose, triglyceride (TG),

and total cholesterol
Ameliorated liver and kidney damage

[173]

Sargassum fusiforme Polysaccharide fraction In vivo Regulated glucose, triglyceride (TG),
and total cholesterol [173]

Macrocystis
pyrifera Polysaccharide fraction In vivo

Regulated glucose, triglyceride (TG),
and total cholesterol

Ameliorated liver and kidney damage
[173]

Laminaria japonica Fucoxanthin In vitro and in vivo

Reduced NO production and ROS
level

Increased insulin resistance
Ameliorated improved

spermatogenesis and male
reproductive function

[104]

Ecklonia stolonifera Phlorotannin In vitro Inhibitory effects on PTP1B and
α-glucosidase [174]

Ecklonia stolonifera Fucosterol In vitro Moderate inhibitory effects on RLAR,
HRAR, and PTP1B [10]

Eisenia bicyclis Phlorotannin In vitro Inhibitory effects on PTP1B and
α-glucosidase [174]

Eisenia bicyclis Fucosterol In vitro Moderate inhibitory effects on RLAR,
HRAR, and PTP1B [10]

Red Seaweed (Rhodophyta)

Bryothamnion seaforthii Lectin In vivo

Exerted hypoglycemic and
hypolipidemic effects

Reduce insulin resistance and
improved pancreatic β-cell function

[111]

Green Seaweed (Chlorophyta)

Enteromorpha prolifera Flavonoids In vitro

Reduced inflammation in liver and
kidney

Regulated insulin signaling pathway
Enriched the abundance of gut

microbiota

[14]

Enteromorpha prolifera Polyphenols In vivo
Regulated gene expression

Enriched the abundance of gut
microbiota

[9]

Ulva rigida Ethanolic extract In vitro
Ameliorated carbohydrate

metabolism, hyperlipidemia, and
oxidative stress

[175]
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Type 2 diabetes is the most common type of diabetes, and its prevalence is increasing
significantly worldwide. The mechanism of diabetes is shown in Figure 4d. Hyperglycemia
plays an important role in the development of type 2 diabetes and complications associated
with the disease, such as microvascular and macrovascular diseases [176]. Several studies
have been conducted that suggest extracts from seaweeds could combat diabetes. For
instance, flavonoids present in Enteromorpha prolifera exhibited hypoglycemic effects by
upregulating IRS1/PI3K/AKT and downregulating the JNK1/2 insulin pathway in the
liver [14]. This study also reported that treatment in type 2 diabetic mice enriched the
abundance of gut microbiota, such as Turicibacter and Alisties [9]. Meanwhile, phlorotannin
(dieckol) of Ecklonia cava, fucoidan, and fucoxanthin of Sargassum hemiphyllum reduced
total glucose, lipid, serum insulin levels, and body weight in vivo [101,102,165]. Fur-
thermore, polyphenols extracted from Ecklonia cava also inhibited the activation of high
glucose-induced hepatic stellate cells (HSCs) by downregulating ROS and/or GSH and
inhibiting TGF-β secretion [164]. In addition, Padina arborescens may ameliorate hyper-
glycemia and dyslipidemia in in C57BL/KsJ-db/db mice. A novel phenolic compound
from Ishige foliacea, octaphlorethol A, was tested in vitro, and may increase glucose trans-
porter 4 (Glut4) translocation, which is mediated by PI3K/Akt and AMPK activation [170]
Additionally, octaphlorethol A was found to downregulate hepatic gluconeogenesis in vivo
by inhibiting G6Pase and PEPCK activity [171]. Polysaccharide fractions from Scagassum,
Sargassum fusiforme, and Macrocystis pyrifera may regulate glucose, triglyceride (TG), and
total cholesterol, subsequently ameliorating liver and kidney damage [173].

Many seaweeds also exhibit inhibitory effects on α-glucosidase and α-amylase, such
as Ascophyllum nodosum, Fucus vesiculosus, and Undaria pinnatifida [168,169]. Bioactive
compounds from Ecklonia stolonifera and Eisenia bicyclis, including phlorotannin, showed
inhibitory effects on protein tyrosine phosphatase 1 B (PTP1B) and α-glucosidase [174],
whereas phlorotannin showed moderate inhibitory effects on rat lens aldose reductase
(RLAR), human recombinant aldose reductase (HRAR), and PTP1B [10]. Other studies have
demonstrated that lectin isolated from Bryothamnion seaforthii exerts hypoglycemic and
hypolipidemic effects, reduces insulin resistance, and improves pancreatic β-cell function in
rats with streptozotocin (STZ)-induced diabetes [111]. In the same animal model, Ulva rigida
showed inhibition of carbohydrate metabolism, hyperlipidemia, and oxidative stress [175].

6.5. Obesity

Recently, the anti-obesity activity of seaweed has received considerable attention
(Table 5). Obesity is generally considered a risk factor for a number of chronic metabolic
diseases, dyslipidemia, hypertension, and hyperglycemia [177]. Obesity can also lead to
musculoskeletal problems and an increased risk of cancers, such as colorectal, breast, and
endometrial cancers [178].

Table 5. The effects of seaweed-derived compounds on obesity.

Algal Source Constituents Study Type Biological Effects Ref.

Brown seaweed (Phaeophyta)

Sargassum miyabei Crude extract In vitro

Reduced lipid accumulation and
differentiation

Inhibited adipogenic and lipogenic gene
expression

[179]

Saccorhiza polyschides Polysaccharide In vivo
Regulated intestinal and systemic glucose

metabolism
Inhibition of α-amylase activity

[180]
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Table 5. Cont.

Algal Source Constituents Study Type Biological Effects Ref.

Fucus vesisulosus Fucoidan In vitro Inhibited lipid accumulation [181]

Petalonia binghamiae Water-soluble extract In vivo
Inhibited adipogenic and lipogenic genes

expression
Reduced body weight

[182]

Ecklonia stolonifera Fucosterol In vitro Inhibited adipogenic and lipogenic gene
expression [183]

Ecklonia stolonifera Fucosterol In vitro Inhibited adipogenesis via FoxO1
pathway modulation [184]

Ecklonia cava Phlorotannin In vitro Inhibited adipogenic expression [185]
Ecklonia cava Polyphenol Extract In vivo Inhibited lipogenesis [186]

Undaria pinnatifida Fucoxanthin In vivo Inhibited lipogenesis [105]
Eisenia bicyclis 6,6′-Bieckol In vitro Inhibited adipogenesis [96]

Red seaweed (Rhodophyta)

Gelidium amansii
(formerly G. elegans)

Polysaccharide-rich
extract In vivo

Decreased triglyceride and total
cholesterol levels

Decreased body and adipose tissue
weights

[43]

Gelidium amansii
(formerly G. elegans) Ethanolic extract In vivo Inhibited adipogenesis [187]

Plocamium telfairiae Ethanolic extract In vitro and in vivo Inhibited adipogenic and lipogenic gene
expression [188]

Sarconema filiforme Carrageenan In vivo
Modulated gut microbiota

Reduced body weight and lipid
accumulation

[84]

Green Seaweed (Chlorophyta)

Codium cylindricum Siphonaxanthin In vitro and in vivo Accumulated in stomach, small intestine,
liver, and adipose tissues [109]

Codium fragile Crude extract In vivo
Modulated gut microbiota

Reduced body weight and accumulation
of cholesterol and glucose

[30]

Codium cylindricum Siphonaxanthin In vitro and in vivo Reduced oxidative and somatic stress on
obese mice [189]

The mechanism of obesity is shown in Figure 4e. Obesity upregulates proinflammatory
cytokines such as tumor necrosis factor (TNF)- α, interleukin (IL)-1β, IL-6, and leptin; TNF-
α and IL-1β subsequently mediate the regulation of matrix metalloproteinases (MMPs) such
as MMP-1, MMP-3, MMP-10, MMP-12, and MMP-1310-12 by stimulating the nuclear factor-
kappa B (NF-κB) pathway. MMP levels are also influenced by mitogen-activated protein
kinases (MAPKs), such as ERK1/2, c-Jun NH2-terminal kinase, and p38 subfamilies [190].
A high-fat diet increases the levels of gut inflammatory cytokines such as TNF-α, IL-1β, and
IL-12, which are linked to weight gain, adiposity, and enhanced plasma insulin and glucose
levels [191]. Obesity-related diseases such as metabolic syndrome may be reduced with
an intervention that decreases gut and systemic inflammation [192]. Modulating the gut
microbiota seems to be an option for reducing obesity [30]. Moreover, siphonaxanthin from
Codium cylindricum showed anti-obesity activity since it accumulates in the stomach and
small intestine, while its metabolites are absorbed and accumulated in the white adipose
tissue (WAT) [109].

In addition, elevated aP2, ACC, and PPARγ gene expression levels cause excessive
fat accumulation [181]. Sargassum miyabei and Saccorhiza polyschides exhibited anti-obesity
effects by downregulating adipogenic and lipogenic gene expression, and intestinal and
systemic glucose metabolism, thus inhibiting α-amylase activity [179,180]. Furthermore,
Plocamium telfairiae [188] and Gelidium amansii [187] also inhibited adipogenic and lipogenic
gene expression in 3T3-L1 preadipocytes. In vivo, seaweed reduced body weight, triglyc-
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erides, total glucose, fatty liver, and white adipose tissue in the tested animals [43,188].
Frequently bioactive compounds that are found in seaweed for anti-obesity activity are fu-
costerol [183,184] and phlototannin [96,185]. Previous studies have reported that siphonax-
anthin, a carotenoid from Codium cylindricum, can restore antioxidative capacity and reduce
somatic stress in obese mice [189].

6.6. Cardiovascular Disease

Seaweeds are increasingly in demand because they contain dietary fiber, peptides,
and carotenoids that have the potential to prevent cardiovascular disease (CVD) [193].
Cardiovascular disease refers to a group of heart- and blood-vessel disorders, including
coronary heart disease, cerebrovascular disease, peripheral artery disease, congenital heart
disease, rheumatic heart disease, deep vein thrombosis, and pulmonary embolism [194].
The effects of seaweed-derived compounds on cardiovascular disease are shown in Table 6.

Table 6. The effects of seaweed-derived compounds on cardiovascular disease.

Algal Source Compound of Interest
and Fraction Study Type Biological Effects Ref.

Brown Seaweed (Phaeophyceae)

Saccharina sculpera Fucoidan In vitro

Inhibited cholesterol synthesis and
reverse transport

Modulated fatty acid synthesis
Accelerated mitochondrial β-oxidation

[195]

Iyengaria stellata Ethanol extract In vivo Great inhibition of the lipid profile in
diet-induced hyperlipidemic rats [196]

Colpomenia sinuosa Ethanol extract In vivo Reduced lipid profile [196]

Spatoglossum asperum Ethanol extract In vivo
Combination with triton showed great

inhibition of the lipid profile in
triton-induced hyperlipidemic rats

[196]

Ascophyllum nodosum Fucoidan A2 In vivo
Reduced lipid profile, including plasma

total cholesterol, triglyceride, and fat pad
index

[29]

Ascophyllum nodosum Fucoidan A3 In vivo
Reduced lipid profile, including plasma

total cholesterol, triglyceride, and fat pad
index

[197]

Cladosiphon okamuranus Fucoidan In vivo Reduced lipid profile via reverse transport [155]
Ecklonia cava Phlorotannin In vivo Reduced lipid profile via reverse transport [198]

Fucus spiralis Peptide and
phlorotannins In vitro Highly inhibited ACE-I yield [199]

Sargassum siliquastrum Sargachromenol D In vitro and in vivo Exerted antagonist of L-type Ca2+ channel
and endothelin A/B2 receptors

[200]

Ecklonia cava Polyphenol extract and
dieckol In vitro and in vivo

Reduced lipid profile in the serum of
HFD-fed mice

Reduced lipid accumulation in 3T3-L1
cells

[201]

Red Seaweed (Rhodophyta)

Solieria robusta Ethanol extract In vivo Great inhibition of the lipid profile in
diet-induced hyperlipidemic rats [196]

Green Seaweed (Chlorophyta)

Caulerpa racemosa Ethanol extract In vivo Reduced lipid profile [196]

The mechanism of cardiovascular disease is shown in Figure 4f. The inhibition of
angiotensin I-converting enzyme (ACE-I) is a well-established approach for the treatment
of hypertension [194]. Paiva et al. [199] suggested that phenolic content and amino acid
profiles, such as peptides and phlorotannins, possessed a higher inhibitory effect on ACE-
I yield [199]. Furthermore, Sargachromenol D from Sargassum siliquastrum could have
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antihypertensive activity, as it can function as an antagonist of the L-type Ca2+ channel and
endothelin A/B2 receptors.

Dyslipidemia is a major risk factor for the development of atherosclerosis and related
CVDs and is a major cause of death in many countries. Dyslipidemia is commonly char-
acterized by elevated levels of total cholesterol (TC), triglyceride (TG), and low-density
lipoprotein cholesterol (LDL-C), and decreased levels of high-density lipoprotein choles-
terol (HDL-C) in the blood [202]. A previous study suggested that fucoidan of Saccha-
rina sculpera may inhibit cholesterol synthesis and reverse transport by downregulating
HMG-CoA-R; upregulating LCAT; modulating fatty acid synthesis by downregulating
SREBP-1c; and accelerating mitochondrial β-oxidation by upregulation of PPARα, PPARγ,
and LPL [195]. Several seaweeds from the Karachi coast showed hypolipidemic effects by
reducing the lipid profile. Solieria robusta was found to be the most effective in reducing the
lipid profile in diet-induced hyperlipidemic rats among Iyengaria stellata, Colpomenia sinuosa,
Spatoglossum asperum, and Caulerpa racemosa [196]. In addition, both fucoidan A2 and A3
from Ascophyllum nodosum reduced the lipid profile, including plasma total cholesterol,
triglyceride, and fat pad index, by regulating reverse cholesterol transport (RCT) [29,197].
Cardioprotection was also shown in a study by Thomes et al., who found that Cladosiphon
okamuranus fucoidan reduced the lipid profile—including total cholesterol, triglycerides,
and low-density lipoprotein (LDL)—via reverse transport isoproterenol-induced myocar-
dial infarction in rats [155], and phlorotannin from Ecklonia cava in a DOX-induced rat
cardiotoxicity model [198]. Other studies have reported that polyphenol extract and dieckol
Ecklonia cava may reduce lipid profiles in the serum of mice fed a high fat diet (HFD), and
reduce lipid accumulation in 3T3-L1 cells [201].

6.7. Arthritis

Arthritis is the most common chronic inflammatory disease; it is characterized by
structural and biochemical changes in major joint tissues, including cartilage matrix degra-
dation and insufficient extracellular matrix synthesis (ECM), resulting in pain, stiffness,
and joint failure [203,204]. Arthritis consists of several types, such as juvenile idiopathic
arthritis (JIA) [205], psoriatic arthritis [206], gouty arthritis [207], rheumatoid arthritis (the
most common form) [208], and osteoarthritis (OA) [209]. Previous studies on the potential
of seaweed compounds for arthritis treatment are reported in Table 7.

Table 7. The effect of seaweed-derived compounds on arthritis.

Algal Source Constituents Study Type Biological Effects Ref.

Brown Seaweed (Phaeophyceae)

Ecklonia cava Phlorotannins In vitro Downregulated pro-inflammatory
cytokines [13]

Undaria pinnatifida Fucoidan In vitro and in vivo Downregulated pro-inflammatory
cytokines [75]

Lobophora variegata Fucan In vitro and in vivo Reduced articular inflammation [210]

Sargassum wightii Alginic acid In vivo Downregulated pro-inflammatory
cytokines [211]

Sargassum wightii Alginic acid In vivo Downregulated pro-inflammatory
cytokines [34]

Fucus vesiculosis Fucoidan Clinical study Reduced the symptoms of osteoarthritis
in a dose-dependent manner [12]

Macrocystis pyrifera, Fucoidan Clinical study Reduced the symptoms of osteoarthritis
in a dose-dependent manner [12]

Laminaria
japonica Fucoidan Clinical study Reduced the symptoms of osteoarthritis

in a dose-dependent manner [12]
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Table 7. Cont.

Algal Source Constituents Study Type Biological Effects Ref.

Red Seaweed (Rhodophyta)

Eucheuma cottonii Polysaccharide-rich In vitro Attenuated cartilage degradation [190]

Laurencia glandulifera Neorogioltriol In vitro and in vivo Downregulated pro-inflammatory
cytokines [212]

Green Seaweed (Chlorophyta)

Codium fragile Oleamide In vitro and in vivo Downregulated pro-inflammatory
cytokines [213]

Caulerpa cupressoides Lectin In vivo Reduced temporomandibular joint
inflammation [112]

Among several types of arthritis, seaweed bioactivity against OA is the most widely
reported. OA is a common type of arthritis that primarily affects the knee [104]. A previous
study suggested that OA joint degeneration results from a combination of mechanical
stresses and biochemical factors, such as ROS and MMPs, which act as precursors to pro-
inflammatory cytokines, including IL-1α, IL-1β, and TNF-α [204,214]. As a result, cartilage
degradation was attenuated in the model tested [190]. Previous studies have reported that
phlorotannin-rich extracts isolated from Ecklonia cava reduce inflammation by downregulat-
ing pro-inflammatory cytokines [13]. Moreover, Lobophora variegate fucan reduced articular
inflammation by downregulating paw edema and serum TNF-α [210]. Meanwhile, Lau-
rencia glandulifera and Codium fragile exhibited anti-OA effects by inhibiting NF-κB activity
and COX-2 expression in RAW264.7 cells in vitro, and reduced carrageenan-induced rat
edema in vivo [212,213]. A study by Rivanor et al. [112] reported that Caulerpa cupressoides
lectin may reduce leukocyte influx and the expression levels of pro-inflammatory cytokines,
including IL-1β and TNF-α, in the temporomandibular joint. The mechanism of OA is
shown in Figure 4g.

Research on the benefits of seaweed for the treatment of OA was conducted in a clinical
study by combining Phase I and II trials [12]. The formulation used contained Maritech®

fucoidan-rich extracts of Fucus vesiculosis, Macrocystis pyrifera, and Laminaria japonica, with
additional vitamin B6, zinc, and manganese taken daily. The study was conducted for
12 weeks in 11 participants, and for 10 weeks in one participant. A multilevel linear model
revealed a decrease of 18% for the 100 mg treatment and of 52% for the 1000 mg dose in the
average COAT score at the end of the study. This result suggests that treatment should be
conducted for more than 12 weeks in a dose-dependent manner to reduce the symptoms of
OA. A phase III randomized controlled trial (RCT) must be conducted to ensure its safety.

Rheumatoid arthritis is a chronic joint disorder affecting the cartilage and subchondral
bone, affecting approximately 1% of the world’s population. The fucoidan derivative
of Undaria pinnatifida showed potential as a rheumatoid arthritis agent both in vitro and
in vivo by downregulating pro-inflammatory cytokines such as COX-2 expression [75].
Other studies have reported that alginic acid from Sargassum wightii may downregulate pro-
inflammatory cytokines such as cycloxygenase-2 (COX-2), lipoxygenase (5-LOX), xanthine
oxidase (XO), and myeloperoxidase (MPO) in adjuvant-induced arthritis [211] and type II
collagen-induced arthritis rat models [34].

6.8. Osteoporosis

Osteoporosis is a major public health issue affecting the aging population, character-
ized by low bone mass. Osteoporosis is linked to decreased bone formation by osteoblasts
and increased bone resorption by osteoclasts; these lead to microarchitectural deterioration
of bone tissue, excessive bone fragility, and increased bone fracture risk [11,215,216]. In
recent years, natural products from seaweed have been explored and investigated more
specifically as sources for osteoporosis treatment. Studies on the osteoprotective activity of
seaweeds are summarized in Table 8.
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Table 8. The effect of seaweed-derived compounds on osteoporosis.

Algal Source Constituents Study Type Biological Effects Ref.

Brown Seaweed (Phaeophyceae)

Dictyota mertensii Fucoidan In vitro Protected bone tissue against oxidative
stress [217]

Laminaria digitata Fucoxanthin In vitro Low pro-osteogenic effects [11]
Ascophyllum nodosum Fucoxanthin In vitro Low pro-osteogenic effects [11]

Padina pavonica Acetonic extract In vitro Promoted osteoblast differentiation
Regulated osteoblast-specific markers [218]

Sargassum hemiphyllum Fucoidan In vitro Protected osteoclast differentiation and
inflammatory bone loss [219]

Ishige okamurae Diphloretho-
hydroxycarmalol In vitro Promoted osteoblastic differentiation from

oxidative stress [220]

Red Seaweed (Rhodophyta)

Plocamium lyngbyanum Methanolic extract In vitro and in vivo
Promoted osteogenic differentiation and

mineralization
Increased opercular bone area

[221]

Ceramium secundatum Methanolic extract In vitro and in vivo
Promoted osteogenic differentiation and

mineralization
Increased opercular bone area

[221]

Dichotomaria obtusata Methanolic extract In vitro Upregulated osteogenic activity [215]

Gracilaria verrucosa Crude extract In vitro and in vivo
Downregulated RANKL-induced

osteoclast differentiation
Inhibited bone loss

[33]

Ceramium pallidum Dichloromethane and
methanol extract In vitro and in vivo

Promoted osteogenic differentiation and
mineralization

Increased opercular bone area
[216]

Green Seaweed (Chlorophyta)

Cladophora rupestris Phenolic extract In vitro and in vivo
Promoted osteoblast-like cell

mineralization
Increased opercular bone area

[222]

Codium fragile Phenolic extract In vitro and in vivo
Promoted osteoblast-like cell

mineralization
Increased opercular bone area

[222]

Some marine algae have been investigated for their beneficial effects as osteogenic
agents because of their important minerals, such as manganese, zinc, calcium, and amino
acids, which can promote bone metabolism [223]. Bone-forming cells include osteoblasts,
osteocytes, and bone-lining cells, whereas osteoclasts participate in bone resorption [218].
Red seaweeds have been reported to have osteoprotective effects on osteogenic differentia-
tion. Dichotomaria obtusata [215], Ceramium secundatum, and Plocamium lyngbyanum [221]
methanolic extracts significantly upregulated osteogenic activity and increased mineral-
ization of bone cells tested in vitro. Furthermore, Ceramium secundatum and Plocamium
lyngbyanum increased the opercular bone area of zebrafish larvae in vivo [221]. Moreover,
two powder-residue-derived extracts of Ceramium pallidum caused significant osteogenic
differentiation and produced mineralogenic effects in vitro, and increased opercular bone
and bone density in zebrafish larvae in vivo [216].

Antioxidant fucoidans from Dictyota mertensii protect pro-osteoblastic cells under
oxidative stress by deregulating osteoblast activity [217]. Furthermore, Padina pavonica
promotes pro-osteogenic effects by enhancing osteoblast differentiation and subsequent
mineralization, as well as by regulating the expression of earlier osteoblast-specific mark-
ers [218]. In contrast, fucoxanthin from Laminaria digitata and Ascophyllum nodosum extract
showed low pro-osteogenic activity in the two cell types tested [11]. Phenolic compounds
from Cladophora rupestris and Codium fragile promoted osteoblast-like cells in vitro and
the mineralized area in zebrafish larvae in vivo [7]. Diphlorethohydroxycamalol-derived



Appl. Sci. 2022, 12, 2638 25 of 34

phlorotannin isolated from Ishige okamurae showed anti-osteoporosis effects by upregulat-
ing osteoblast differentiation against H2O2-induced oxidative damage and promoting bone
resorption, by decreasing the expression level of the receptor activator of NF-κB ligand [220].

The mechanism of osteoporosis is shown in Figure 4h. Osteoclasts are large multin-
ucleated myeloid cells that can break down the bone matrix by proteolytic degradation
and decalcification [224]. The receptor activator of nuclear factor-κB (RANKL) has been
identified as an important transcription factor for osteoclast differentiation from the mono-
cyte/macrophage lineage. Gracilaria verrucose downregulated RANKL-induced osteoclast
differentiation by inhibiting the c-Fos-NFATc1 signaling pathway in vitro, and inhibited
bone loss in an OVX mouse model when tested in vivo [33]. Meanwhile, fucoidan extract
from Sargassum hemiphyllum prevents the differentiation of osteoclasts and inflammatory
bone loss by regulating the Akt/GSK3β/PTEN/NFATc1 signaling pathway and calcineurin
activity [219].

7. Conclusions

The use of seaweeds as food and medicine has a long history, and the benefit of
seaweeds for health have been revealed. Many published studies have demonstrated that
extracts from seaweeds can contribute to the reduction and modulation of several chronic
diseases. However, most of the studies have been conducted in vitro and in vivo, and only
three seaweed studies have been conducted at the clinical stage. Hence, further clinical
studies involving human subjects are required to confirm these therapeutic effects. Results
from clinical studies will provide useful information for understanding the mechanisms un-
derlying the effects of seaweed in modulating chronic diseases. Furthermore, the bioactive
compounds in seaweed need to be purified and identified to better understand the mecha-
nisms and pathways that they affect and, therefore, to develop them as functional food and
nutraceutical products. Future research on the identification, isolation, and purification of
seaweed’s bioactive compounds and its mechanism to treat chronic diseases might provide
a significant contribution to overcoming increasing chronic disease in the world.
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