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Abstract: In this article, a mathematical model for exchange rate movements is derived by applying random walks theory and involving

Caputo fractional derivative operator. The waiting time distributions for the exchange rate movement of US Dollar to Japanese Yen,

which are intimately related to the mathematical model, during February 2019 are also studied. Three types of waiting time distributions,

i.e., exponential, stretched exponential, and Mittag-Leffler distributions are compared. The result shows that Mittag-Leffler Distribution

is the best distribution to approximate the empirical distribution of the exchange rate data during February 2019 except the data of

February 18, 2019 which is approximated better by stretched exponential distribution.
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1 Introduction

Many researches employed nonpoissonian waiting time distributions to analyze financial instruments. In [1], Mainardi et
al studied the distribution of Germany government obligation transaction data approximated by Mittag-Leffler
distribution. Raberto et al in [2] used stretched exponential distribution to model stock price movement data. Sabateli et
al in [3] approximated the waiting time of 10 stock prices in Ireland stock exchange by using Mittag-Leffler distribution.
In [4], random walks theory was used to analyze financial instrument value waiting time by using two types of survival
distribution, i.e., exponential and Mittag-Leffler distribution. Scalas et al in [5] modelled the waiting time of 30 stock
prices of Dow Jones Industrial Average in American stock exchange by using non-exponential distribution.

Here, a mathematical model for exchange rate movements is derived by applying random walks theory and involving
Caputo fractional derivative operator. The waiting time distributions for the exchange rate movement of US Dollar to
Japanese Yen during February 2019 are also studied. The waiting time distributions are intimately related to the
mathematical model. Three types of waiting time distributions, i.e., exponential, stretched exponential, and
Mittag-Leffler distributions are compared. The result shows that Mittag-Leffler Distribution is the best distribution in
approximating the empirical distribution for the exchange rate data during February 2019 except the empirical
distribution for the exchange rate data on February 18, 2019 which is approximated better by stretched exponential
distribution.

This article is composed of four sections. The second section contains the derivation of fractional Kolmogorov-Feller
equation that can be used to analyze exchange rate movements in value x and time t derived from random walks process.
In the third section, we give the analysis of waiting time distributions for the exchange rate movement of US Dollar to
Japanese Yen during February 2019. In the last section, a conclusion and future work are given.
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2 Mathematical modelling

In this section, we derive mathematical models that can be used to analyze exchange rate movements in value x and time
t. We derive it from random walks process. We suppose that λ (x,y) = λ (y− x) and ψ(t) stand for the probability density
that the exchange rate moves from a value x to a value y and the probability density that the exchange rate moves after a
waiting time t, respectively. We assume that the probability density λ (x,y) is independent of the probability density ψ(t).
Following the way by Othmer et al. in [6] applied to this financial instrument, we denote the conditional probability that
the exchange rate reaches a value x at time t after k jumps by Jk(x, t), that is

Jk(x, t) =

∫ t

0

∫ ∞

−∞
ψ(t − τ)λ (x− y)Jk−1(y,τ)dydτ. (1)

If J(x, t) is the probability density that the exchange rate reaches x at t then

J(x, t) =
∞

∑
k=0

Jk(x, t)

= δ (x)δ (t)+

∫ t

0

∫ ∞

−∞
ψ(t − τ)λ (x− y)J(y,τ)dydτ

(2)

where J0(x, t) = δ (x)δ (t).
We next denote the probability that the exchange rate value is x at t by p(x, t) with the initial condition x0 = 0. Then

p(x, t) =

∫ t

0
Ψ (t,τ : x)J(x,τ)dτ (3)

where Ψ(t,τ : x) =Ψ(t − τ) denotes the probability density that the exchange rate value is x at t < τ and does not move
during the time interval t − τ . Therefore

Ψ(t) =

∫ ∞

t
ψ(τ)dτ = 1−

∫ t

0
ψ(τ)dτ. (4)

By substituting (2) into (3), we have

p(x, t) = δ (x)Ψ (t)+

∫ t

0

∫ ∞

−∞
ψ(t − τ)λ (x− y)p(y,τ)dydτ (5)

where p(x,0) = δ (x). By using Laplace and Fourier transforms

f̃ (s) =

∫ t

0
e−st f (t)dt, f̂ (k) =

∫ ∞

−∞
e−2π ikx f (x)dx (6)

and employing some algebraic operations applied to (5), we get

Φ̃(s)[sp̃(x,s)− 1] = λ̂ (k) ˆ̃p(k.s)− ˆ̃p(k.s) (7)

where Φ̃(s) = Ψ̃(s)/ψ̃(s). By the inverse of Laplace and Fourier Transforms applied to (7), it follows that

∫ t

0
Φ(t − τ)

∂

∂τ
p(x,τ)dτ =

∫ ∞

−∞
λ (x− y)p(y, t)dy− p(x, t). (8)

If the probability density of waiting time is exponential function, i.e.,

ψ(t) =
1

γ
e
−

t
γ , γ > 0 (9)

then Φ̃(s) = γ . By substituting this Φ̃(s) into (7) and then inverting it back to space-time domain, we obtain

∂

∂ t
p(x, t) =

1

γ

∫ ∞

−∞
λ (x− y)[p(y, t)− p(x, t)]dy. (10)
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The equation (10) is well known Kolmogorov-Feller equation. The survival and cumulative hazard functions of (9) are

Ψ (t) = e
−

t
γ (11)

and

Λ =
t

γ
, (12)

respectively.

If the probability density of waiting time is

ψα(t) =
tα−1

γα
Eα ,1

(

−

(

t

γ

)α)

, 0 < α < 1, γ > 0, (13)

where Eα ,β (t) is Mittag-Leffler function defined by

Eα ,β (t) =
∞

∑
n=0

zn

Γ (αn+β )
, (14)

then Φ̃(s) = γα sα−1. Again, by substituting this Φ̃(s) into (7) and then inverting it back to space-time domain, we obtain

∂ α

∂ tα
p(x, t) =

1

γα

∫ ∞

−∞
λ (x− y)[p(y, t)− p(x, t)]dy (15)

where dα/dtα is Caputo fractional derivative defined by

dα

dtα
f (t) =

∫ t

0

(t − τ)−α

Γ (1−α)

d

dτ
f (τ)dτ. (16)

The equation (15) is called fractional Kolmogorov-Feller equation. The survival and cumulative hazard functions of (13)
are

Ψα(t) = Eα ,1

(

−

(

t

γ

)α)

, 0 < α < 1, γ > 0 (17)

and

Λα(t) =− lnEα ,1

(

−

(

t

γ

)α)

, (18)

respectively. Note that if α = 1, (13) is reduced to (9). Thus, Mittag-Leffler distribution and fractional Kolmogorov-Feller
equation become exponential distribution and Kolmogorov-Feller equation, respectively. If we then take only the first two
terms of (17) then

Eα ,1

(

−

(

t

γ

)α)

≈ 1−
tα

γαΓ (1+α)
≈ e

−
tα

γα Γ (1+α) (19)

which is called stretched exponential function and we write

ΨS
α = e

−
tα

γα Γ (1+α) (20)

The cumulative hazard function associated with (20) is

Λ S
α =

tα

γαΓ (1+α)
. (21)

In next section, we compare (11), (17), and (20) with the empirical survival distribution for the exchange rate data of
US Dollar to Japanese Yen during February 2019. We also compare (12), (18), and (21) with the empirical cumulative
hazard distribution for the exchange rate data.
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3 Waiting time distributions

In this section, we give some waiting time distributions for the exchange rate movement of US Dollar to Japanese Yen
during February 2019. We use the exchange rate movement data of USD to JPY per time unit of second during trade hours
opened from February 1 to 28, 2019. The data are obtained from [7]. We first compute the waiting times of the exchange
rates movement by using Microsoft Excel programming and then process them by Matlab.

Following Bain and Engelhardt [8], we determine the waiting time distribution for the empirical data as follows. If
observation data t1, t2, ..., tn are given and yi, i = 1,2, ...,n are the data after sorting from the least value to the largest value
then the empirical cumulative distribution ψ(t) of the data is given by

ψ(t) =











0, t < y1,
i
n
, yi < t < yi+1

1, t ≥ yn

(22)

where n, t, and yi stand for number of observations, the waiting time of the exchange rate movement, and i-th observation
after the data t1, t2, ..., tn are sorted from the least value to the largest value, respectively. Therefore, we have the survival
distribution Ψ(t) of ψ(t), that is

Ψ(t) =











1, t < y1,

1− i
n
, yi < t < yi+1,

0, t ≥ yn.

(23)

To determine Mittag-Leffler distribution estimations, we use the Matlab programmings by Garappa [9] and Podlubny
[10]. Table 1 below represents the parameters values of some waiting time distributions for the exchange rate movement
during February 2019.

Table 1: Distributions parameters

Date (Stretched) Exponential Distribution Mittag-Leffler Distribution

γ α γ
February 1, 2019 3.9798 0.8825 2.4026

February 3, 2019 4.8126 0.8792 2.9608

February 4, 2019 5.2513 0.8782 3.2948

February 5, 2019 4.6169 0.8811 2.8817

February 6, 2019 4.6946 0.8906 3.0377

February 7, 2019 3.6694 0.8926 2.2358

February 8, 2019 4.4332 0.8978 2.9386

February 10, 2019 6.4762 0.8785 4.3212

February 11, 2019 4.3438 0.8864 2.6948

February 12, 2019 5.0975 0.8934 3.3961

February 13, 2019 4.849 0.8926 3.1626

February 14, 2019 3.7803 0.8792 2.2234

February 15, 2019 4.0236 0.8949 2.5624

February 17, 2019 5.7664 0.8651 3.4318

February 18, 2019 5.9816 0.8813 3.9797

February 19, 2019 4.671 0.8981 3.1223

February 20, 2019 4.7577 0.8899 3.0528

February 21, 2019 4.4653 0.8926 2.824

February 22, 2019 4.8803 0.8921 3.2419

February 24, 2019 4.6235 0.8606 2.6691

February 25, 2019 4.6788 0.8944 3.0603

February 26, 2019 5.0985 0.887 3.3017

February 27, 2019 4.6941 0.8822 2.9239

February 28, 2019 4.3893 0.875 2.6435

The following figures represent the comparison between Mittag-Leffler, exponential, stretched exponential
distributions and empirical survival distribution on February 1, 3, and 4, 2019.
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Fig. 1: Exponential, Mittag-Leffler, stretched exponential survival, and empirical survival distributions on February 1, 2019
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Fig. 2: Exponential, Mittag-Leffler, stretched exponential, and empirical survival distributions on February 3, 2019
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Fig. 3: Exponential, Mittag-Leffler, stretched exponential, and empirical survival distributions on February 4, 2019

From Figure 1, 2, and 3, we observe that Mittag-Leffer survival distribution approximates the empirical survival
distribution better than the other survival distributions. This fact also occurs for the exchange rate movement on the other
dates in February 2019. We then determine the best survival distribution by comparing the mean abolute errors between
the empirical survival distribution and Mittag-Leffler, exponential, and stretched survival distributions. The following
table provides them.

c© 2023 NSP

Natural Sciences Publishing Cor.



326 B. H. Guswanto et al. : Fractional derivative and financial instruments ...

Table 2: Mean Absolute Errors

Date Mean Absolute Errors

Mittag-Leffler Stretched Exponential Exponential

February 1, 2019 0.0064 0.0099 0.0124

February 3, 2019 0.0051 0.0055 0.0066

February 4, 2019 0.0062 0.0069 0.0082

February 5, 2019 0.0069 0.0091 0.0109

February 6, 2019 0.0065 0.0105 0.0129

February 7, 2019 0.0051 0.0064 0.0084

February 8, 2019 0.0067 0.0095 0.0118

February 10, 2019 0.0082 0.0112 0.0129

February 11, 2019 0.0050 0.0056 0.0068

February 12, 2019 0.0062 0.0072 0.0088

February 13, 2019 0.0062 0.0092 0.0113

February 14, 2019 0.0061 0.0070 0.00881

February 15, 2019 0.0062 0.0091 0.0117

February 17, 2019 0.0069 0.0124 0.0149

February 18, 2019 0.0053 0.0042 0.0049

February 19, 2019 0.0060 0.0076 0.0094

February 20, 2019 0.0054 0.0063 0.0077

February 21, 2019 0.0048 0.0059 0.0074

February 22, 2019 0.0068 0.0086 0.0104

February 24, 2019 0.0083 0.0141 0.0165

February 25, 2019 0.0052 0.0057 0.0070

February 26, 2019 0.0060 0.0070 0.0083

February 27, 2019 0.0056 0.0061 0.0074

February 28, 2019 0.0067 0.0082 0.0098

From Table 2, we observe that mean absolute error between Mittag-Leffler and empirical survival distributions has
the least value on all dates except February 18, 2019. On the date, mean value error between stretched exponential and
empirical survival distributions has the least value. Thus, Mittag-Leffler survival distribution is the best survival
distribution among the existing distributions.

We next compare the cumulative hazard rates of the ditributions as shown by figures 4-6.
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Fig. 4: The cumulative hazard rates of exponential, Mittag-Leffler, stretched exponential, and empirical distributions on February 1,

2019
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Fig. 5: The cumulative hazard rates of exponential, Mittag-Leffler, stretched exponential, and empirical distributions on February 3,

2019
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Fig. 6: The cumulative hazard rates of exponential, Mittag-Leffler, stretched exponential, and empirical distributions on February 4,

2019

Based on Figure 4, 5, and 6, we observe that the cumulative hazard rate of the empirical distribution is approximated
better by the cumulative hazard rate of Mittag-Leffler distribution than the cumulative hazard rates of the other
distributions. However, the cumulative hazard rate of Mittag-Leffler distribution is sufficiently close to the cumulative
hazard rate of the empirical distribution on the time interval (0,30]. These facts also occur for the exchange rate
movement on the other dates in February 2019.

4 Conclusion

We find that Mittag-Leffler function gives better waiting time distribution for the exchange rate movement of US Dollar
to Japanese Yen during February 2019 if it is compared with exponential and stretched exponential functions. There is a
satisfactory agreement between Mittag-Leffler distribution and the empirical distribution, especially on the time interval
(0,30]. After 30 seconds, Mittag-Leffler survival function tends to 0. It means that the probability that the exchange rate
does not move after the waiting time more than 30 seconds is sufficiently low. In other words, the probability that the
exchange rate moves after the waiting time 30 seconds is sufficiently high. Practitioners in currency trades should not take
a decision to sell or buy US Dollar to Japanes Yen after the waiting time less than 30 seconds since the probability that
the exchange rate moves after the waiting time less than 30 seconds is sufficiently low.

Mittag Leffler waiting time distribution as explained in previous section is associated with fractional
Kolmogorov-Feller equation derived from random walks process. Thus, for future work on this topic, the analysis of the
probability for the exchange rate movement in value x is required so that fractional Kolmogorov-Feller equation can be
used to analyze the exchange rate movement not only in time t but also in value x.
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