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THE DHF MODELING IN CIAMIS REGENCY BY 

USING CAR-BYM, GENERALIZED POISSON, 

AND NEGATIVE BINOMIAL 

 

Abstract 

Dengue hemorrhagic fever (DHF) is one of contagious diseases               

that may threaten human health. It is necessary to study the                  

DHF distribution patterns in the affected area for its transmission 

prevention and control. This research studied disease mapping of  

DHF in Ciamis Regency by using generalized Poisson (GP), negative 

binomial (NB), and CAR-BYM models. Based on the root mean 

square error (RMSE), the CAR-BYM is the best model for DHF case 

modeling in Ciamis Regency. The highest relative risk value is that of 
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Cijeungjing district and the lowest relative risk value is that of Lakbok 

district. Lakbok district is at the lowest risk of transmission and 

Cijeungjing district is at the highest risk of transmission. 

1. Introduction 

Non-overlapping data related to medical research such as disease 

distribution pattern in an area have high complexity and spatial 

heterogeneity. Research on spatial data model, such as disease mapping, 

requires correct parameter estimation. Disease mapping is useful to find 

geographic distribution of disease burden and disease incident based on risk 

level. The clustering of relative risk (RR) in this case is almost the same with 

hotspot in general spatial model case, such as in determining landscape by 

[1]. Disease mapping certainly cannot be separated from spatial effect. In 

spatial effect accommodation, this model involves spatial weights matrix. 

Spatial weights matrix is a non-negative matrix, scored 1 if units are              

close to each other and 0 otherwise. The other way to reconstruct spatial 

weights matrix is to combine similarity of variable attribute and proximity 

relationship, W-AMOEBA matrix [2, 3]. 

Data of the number of DHF cases are the count data. Generally, the 

model used to count data is Poisson, generalized Poisson, or negative 

binomial. However, in these models, the spatial aspect is not included. Even 

though in disease mapping, spatial aspect is important. 

Two of the popular spatial models are spatial autoregressive (SAR) and 

spatial error model (SEM). The other model that can be used is conditional 

autoregressive-Bessag-York-Mollie (CAR-BYM). The CAR-BYM model 

can accommodate spatial and non-spatial aspects as the consequence of 

heterogeneity of cases between regions. In addition, the CAR-BYM model 

can detect areas with relative risk through interpolation of disease mapping 

resulting from information available from neighborhood. Study on spatial 

models for area data has been commonly carried out, especially for a model 

with continued response variable type [4, 5]. In the CAR-BYM model, the 

error distribution is dependent. Therefore, the popular parameter estimation 
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methods such as ordinary least square (OLS) and maximum likelihood 

cannot be used to estimate the parameter in the CAR-BYM model. As an 

alternative, Bayes method can be used to estimate the parameter of the CAR-

BYM model. The advantage of this method is flexibility in assumption of the 

error distribution. However, to determine the estimate of parameter by          

using Bayes method need to find the integral for high dimensional               

space. Therefore, the Bayesian method through Markov Chain Monte           

Carlo (MCMC) is used. The MCMC method has been commonly used by 

researchers in medical field [4, 6-9]. 

Ciamis Regency is one of the 27 Regencies/Cities in West Java 

Province. In 2019, the DHF cases in Ciamis increased from previous years 

whereas in 2017-2018, the DHF cases in Ciamis were quite low, and in 

2020, Ciamis Regency was once again a red zone for DHF case. According 

to the Epidemiologic Data and Surveillance Center of the Ministry of Health 

of the Republic of Indonesia, the causes of increase in and distribution of 

DHF were, among others, high mobility of the people, urban development, 

climate change, changes in population density, population distribution, and 

other epidemiologic factors. The number of regional DHF cases such as the 

case in Ciamis Regency is one type of area data. Interaction is possible since 

a DHF case is of contagious type of case. Therefore, the quantitative 

measure of a variable that is the attention in an area will be influenced by 

other areas as the consequence of interaction. 

2. Research Method 

2.1. The data 

The research was conducted from March 2021 to October 2021. The 

research location was the Department of Mathematics, and the data were 

collected from Ciamis Regency, West Java Province. 

2.2. Spatial data and spatial weights matrix 

The area data was one of the spatial data besides point reference and 

point pattern data [10]. If D was a region consisting of non-intersecting sub-
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areas, the type of area data has characteristics where fixed D is partitioned 

into finite number of area units [11, 12]. Spatial weights matrix (W) is a 

nonnegative matrix that specifies neighborhood set for each observation. 

Matrix W used geographic relationship (spatial contiguity, inverse distance, 

and k-nearest neighbors, k-NN). Matrix W with geographic distance concept 

is 1 for adjacent inter-areas, and 0 for between distant areas. 

2.3. Count data models 

2.3.1. Negative binomial and generalized Poisson model 

The Poisson model is a common model that is often used for data   

counts. Suppose Y is random variable Poisson distributed, ( ),~ ii PoiY µ  

....,,2,1 ni =  Then the probability mass function of Y is 
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Expected value and variance of Y are ( ) iiYE µ=  and ( ) ,iiYVar µ=  

respectively. This condition is called equidispersion. Poisson’s model 

assumes this equidispersion condition. However, in many cases, this 

equidispersion condition is not met, the situation is called as overdispersion. 
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where µ  is the mean of Poisson random variable and m is the overdispersion 

parameter. In addition to the NB model, the generalized Poisson (GP) model 

is also commonly used to overcome the problem of overdispersion in the 

data count. Probability mass function (pmf) of GP is 
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where µ  is the mean of Poisson random variable, and m is the 

overdispersion parameter. 

2.3.2. Poisson-lognormal model 

Poisson-lognormal model was derived from a combination of Poisson 

distributions by assuming Poisson heteroscedasticity parameter. Suppose      

iY  is a random variable that follows Poisson distribution, ( ),~ ii POIY µ  

iii E θ=µ  and ( ).exp ii η=θ  Based on the characteristics of exponential 

family distribution [13], the mean Poisson can be stated as 

 ( ) ( ) ,loglog iiii vxE +β′+=µ  (4) 

where iµ  is the mean of Poisson distributed response variable, ( )iElog  is 

the offset, ix′  is the free vector variable, β  is the vector parameter, and iv  is 

the error that follows CAR. 

2.3.3. Intrinsic conditional autoregressive (ICAR) model 

When an area n was given to consist of non-overlapping sub-areas, each 

adjacent sub-area (having shared borders) was scored 1, otherwise scored 0. 

Spatial interaction between area pair i and j could be modeled as conditional 
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jiijii RR ϕ=ϕ<ρ∈τ∈µ + ,1,, 2  and .0=ϕii  In spatial autoregressive, 

ijϕ  describes the element of weights matrix. The spatial matrix W is given 

by 
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2.3.4. Conditional autoregressive-BYM (CAR-BYM) model 

Conditional autoregressive-BYM (CAR-BYM) model is a Poisson log 

normal model developed for disease mapping risk. This model covers ICAR 

component for spatial rarefaction and ordinary random effect component           

for non-spatial heterogeneity. Poisson regression model has been used to 

estimate relative risk (RR), that is, iη  for region ,...,,2,1, nii =  given the 

number iy  of cases. CAR-BYM model is specified as follows: 

 ,...,,2,1, nix iiii =θ+φ+β′+µ=η  (6) 

where =′ix observational vector of independent variable i, =β vector            

of parameter, ICAR=φi  component, =µ average risk level, and =θi  

random effect of non-spatial heterogeneity component. 

2.3.5. Bayesian estimation framework 

Suppose ,iY  ni ...,,2,1=  are random samples of probability mass 

functions, pmf ( ),θ|yP  with the vector of parameter ( )....,, pi θθ=θ  

Then, according to [14], 

 ( ) ( ) ( )∏ =
θθ|=θ|

n

i
i PypyP

1
.  (7) 

Parameter estimation by using the Bayesian method needed information 

about parameter ,θ  is called prior distribution. Prior distribution is viewed 

as introductory knowledge of parameter θ  and is determined before            

the given observation data. Here, without losing generality, we take one 

parameter ,θ  so we obtain prior distribution ( )θp  and we then create          
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joint pdf/pmf ( )., yp θ  Based on ( )θp  and ( ),, yp θ  we obtain the posterior 

distribution of θ  as 
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where ( )yp  is the marginal probability and ( )θ|yP  is the joint pdf/pmf. 

Furthermore, based on this posterior distribution, the estimator for parameter 

θ  is ( ).ˆ yE |θ=θ  

The stages of parameter estimation by using Bayes are given below: 

(1) Forming likelihood function: 
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(2) Determining prior distribution of β  and v: 
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(3) Forming posterior distribution based on the equations in stage (1) 

and (2). 

2.3.6. Markov chain Monte Carlo 

Apparently, it is not easy to determine expected value with posterior pdf 

on (6). Therefore, Bayes parameter estimation is used through Markov Chain 
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Monte Carlo (MCMC). For this, let parameter θ  be a vector of parameters. 

Then the Gibb sampler method is as follows: 
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If the condition is stable in case of iteration ,0τ  then the estimation of 

the parameter iθ  is given by 
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3. Result and Discussion 

3.1. Description analysis 

The correlational analysis between response and predictor variables is 

the initial stage of regression model. Correlation between variables is initial 

description of the relationship between predictor variable and response 

variable. However, here we used only three predictor variables. These are 

the number of health workers, population density, and altitude. Meanwhile, 

the response variable used is the number of dengue hemorrhagic fever 

(DHF). 
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Figure 1. The scatterplot among variables. 

The number of health workers consisted of the number of midwives and 

the number of community health center personnel. The scatterplot of the 

variables is presented in Figure 1. 

Based on Figure 1, we cannot see relationship clearly, and hence it is 

necessary to create a model for interpretation of the relationship between 

predictor variables and response variable. From the model, we also can know 

contribution of each of the predictor variables to the response variable. 

3.2. Model 

In disease mapping, relative risk (RR) is often used to measure the risk 

of a region with others. Relative risk values in a model data count depends 

on observations and the expected values. Here, the expected values are 

obtained from the best model. The best model is selected from generalized 

Poisson, negative binomial, and CAR-BYM models. The criterion used for 

model selection is the root mean square error (RMSE). 

The results of analysis of variance (ANOVA) of the three models that 

are used for this data are listed in Tables 1-3. 
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Table 1. ANOVA of the generalized Poisson model 

Coefficients Estimate Std. error z-value ( )z>Pr  

(Intercept):1 3.7305 0.3514 10.616 < 2e-16*** 

(Intercept): 2 1.1196 0.1208 9.265 < 2e-16*** 

density 0.0011 0.0001 8.560 < 2e-16*** 

health.worker -0.0275 0.0131 -2.103 0.0355* 

altitude -0.0013 0.0006 -2.340 0.0193* 

Table 2. ANOVA of the negative binomial model 

Coefficients Estimate Std. error z-value ( )z>Pr  

(Intercept) 3.8239 0.3995 9.572 < 2e-16*** 

density 0.0010 0.0003 3.942 8.08e-05*** 

health.worker -0.0138 0.0172 -0.801 0.423 

altitude -0.0025 0.0006 -4.042 5.30e-05*** 

Signif. codes: ‘***’ for α = 0.001 and ‘*’ for α = 0.05 

 Based on Tables 1 and 2, we see that the effects of density and altitude 

to the number of DHF are significant. However, health.worker effect is not 

significant. 

Table 3. ANOVA of the CAR-BYM model 

 Median 2.5% 97.5% n.effective Geweke.diag 

(Intercept) 0.2514 -0.4553 1.0594 16.7 0.8 

Density 0.0012 0.0007 0.0018 7.9 -1.3 

health.worker -0.0675 -0.0959 -0.0191 7.5 -0.7 

altitude -0.0011 -0.0030 0.0004 7.7 1.7 

tau2 0.0207 0.0036 0.1590 86.2 0.8 

sigma2 0.5295 0.2891 1.0312 128.2 1.3 

The value of Geweke.diag on Table 3 is used to test significance of the 

predictor variables. The Geweke’s diagnostic is used to determine the burn-

in period of the smallest early portion of the chain that passes the diagnostic. 

From the Geweke.diag value of Table 3, we see that the altitude and density 

are significant. 
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Based on Tables 1-3, we can see that the coefficient of the population 

density is positive and significantly correlated with the number of DHF 

cases. This means that if the population density in a district increases, then 

the number of DHF cases also increases. Meanwhile, coefficients of the 

number of health workers and altitude are negative. This means that if the 

health workers and altitude increase, then the number of DHF cases 

decreases. 

Furthermore, to calculate the relative risk of DHF for each district in 

Ciamis regency, we selected the best model by using the root mean square 

error (RMSE). Figure 2 shows accuracy model by using plot between DHF 

actual and DHF prediction. 

 

Figure 2. Plot of DHF actual and DHF predictions. 

Based on Figure 2, we can see that accuracy of the CAR-BYM 

prediction for DHF is good (green color line close to black color line). Based 

on generalized Poisson, negative binomial, and CAR-BYM model, we then 

computed their root mean square errors. The RMSEs found are 40.95, 40.64 

and 1.29, respectively. Due to this, we conclude that the CAR-BYM model 

is the best model for DHF modeling. Therefore, here we used CAR-BYM 

model to determine relative risk (RR). The relative risk (RR) values for each 

district resulting from CAR-BYM model are presented in Table 4. Table 4 

gives the detail of RR value in each district. Figure 1 is the presentation of 

RR value in map. 
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Table 4. The relative risk (RR) values of each district 

No Districts Relative risk No Districts Relative risk 

1 Banjarsari 0.76 14 Ciamis 3.23 

2 Banjaranyar 0.33 15 Baregbeg 1.47 

3 Lakbok 0.16 16 Cikoneng 0.91 

4 Purwadadi 0.39 17 Sindangkasih 0.48 

5 Pamarican 0.44 18 Cihaurbeuti 0.26 

6 Cidolog 0.47 19 Sadananya 0.57 

7 Cimaragas 1.38 20 Cipaku 1.18 

8 Cijeungjing 3.43 21 Jatinagara 0.72 

9 Cisaga 2.70 22 Panawangan 0.21 

10 Tambaksari 0.26 23 Kawali 0.97 

11 Rancah 0.41 24 Lumbung 0.38 

12 Rajadesa 0.43 25 Panjalu 0.52 

13 Sukadana 1.37 26 Sukamantri 0.18 

   27 Panumbangan 0.34 

 

Figure 3. The DHF cases distribution mapping based on RR value in Ciamis 

Regency. 

The values of RR for each district are presented in Figure 3. Based on 

Figure 3, we found and identified which areas have high, medium, and low 

RR. 
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The DHF cases of Cijeungjing and Ciamis districts are 222 and               

382, respectively. However, the RR of Cijeungjing district (3.43) is higher          

than the RR value of Ciamis district (3.22). These are two districts having 

exceedingly high number of DHF cases compared to average RR of the 

Ciamis Regency. Table 4 has also shown that the most of its RR values are 

below 1. This means that the effect of high DHF in Ciamis Regency occurs 

in certain districts having high RR values. 

Figure 3 shows the distribution of RR values for each district. The dark 

color indicates a high risk area of DHF and light color indicates a low risk 

area of DHF. 

4. Conclusion 

The CAR-BYM model is the best model that can be used for DHF case 

modeling in Ciamis Regency. Based on factors studied, it is noted that if 

both the number of health workers and altitude are increased, then the DHF 

cases decrease. Also, it is obtained that if the population density is increased, 

then the DHF cases increase. 

The best model for modeling the DHF cases in Ciamis Regency is the 

CAR-BYM model. The relative risk for each area is determined by using the 

CAR-BYM model. The relative risk is directly proportional to the number of 

DHF cases. 

The highest relative risk value is that of Cijeungjing district and the 

lowest relative risk value is that of Lakbok district. Lakbok district is at the 

lowest risk of transmission and Cijeungjing district is at the highest risk of 

transmission. 
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