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Abstract 
Parameter estimation for the spatial autoregressive (SAR) model by using maximum 
likelihood (MLE) method involve log determinant of spatial weight matrix where its 
dimension is large.  Therefore, to solve log determinant of this matrix often used 
approximation.  The paper studied performances of Taylor series and Chebyshev 
polynomial methods in parameter estimation of SAR model. In this paper, we also studied 
performance of two types of spatial matrices, W-AMOEBA and W-contiguity, to choose 
the best of spatial weighted matrix in SAR model.  Evaluation of approximation methods 
to solve log determinant and to choose the best performance model, we used data 
simulation and root mean square error (RMSE) criteria.  The data simulation is 
generated by Monte Carlo simulation methods.  Furthermore, the best model (the best 
performances of approximation method and spatial weight matrix) is implemented to 
model human development index (HDI) and its factors in Central Java Province.  The 
HDI factors are population, gross enrolment rate, district minimum wage, the number of 
poor people and poverty line.  The results showed that RMSE of models used to 
Chebyshev polynomial is smaller than Taylor series.  Therefore, Chebyshev polynomial 
approximation is more accurate than Taylor series approximation.  Furthermore, the 
Chebyshev polynomial is used to analysis the human development index (HDI) and its 
factors by using SAR model.  The result showed that the gross enrollment rate, district 
minimum wage, and poverty line then the HDI have positive impact.  It means that 
increasing of theirs factors can improve HDI. 
 
Keywords: W-AMOEBA, SAR, HDI, Taylor series , Chebyshev polynomial, poverty line.  
 
 

1.  Introduction 

In recent years, spatial regression model have been developed to take spatial 
dependence.  The models that involve statistical dependence are often more realistic [7], 
[8]. A fundamental concern of spatial analysts is to find patterns in spatial data that lead 
to the identification of spatial autocorrelation or association [16].  Taking spatial 
dependences into account when dealing with spatial data is very important, and 
neglecting them can cause problems. For example, ignoring spatial lag structures causes 
ordinary least squares (OLS) estimators to become bias and inconsistent. The spatial 
weights matrix is one of the most convenient ways to summarize spatial relationship in 
the data. Spatial weights matrix is a nonnegative matrix that specifies the neighborhood 
set for each observation. Here, the data are collected from different spatial locations. 
Spatial weights characterize cross-section dependence in useful ways their measurement 
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has an important effect on the estimation of a spatial dependence model [1], [9], [15]. 
The prediction result becomes accurate if we found a representative spatial weight matrix 
and parameter estimation method.  There are many to create spatial weight matrix [10].  
However the most commonly use spatial weight matrix is a binary matrix based on 
geographic distance and contiguity. Furthermore, the spatial weight matrix is also found 
on Aldstadt and Getis [1], namely a multidirectional optimum ecotope-based algorithm 
(AMOEBA). Here, elements of AMOEBA matrix depend on both neighborhood among 
spatial units and variable [1], [13], [14]. Moreover, Aldstadt and Getis [2] used local 
Getis statistic to create the matrix.  Jajang et al [13],[14] shown that the in spatial 
dynamic model performance of  AMOEBA matrix is better than Contiguity matrix 
(W.Contiguity). 

In the spatial model, we also found endogenous problem in the model.  Therefore, 
classic method such as ordinary least square (OLS) is not relevant to solve it problem.  
The OLS estimator will be biased as well as inconsistent for the parameters of the spatial 
model [2].  The inappropriateness of the least squares estimator for models that 
incorporate spatial dependence has focused attention on the maximum likelihood (MLE), 
generalized method of moment (GMM), and Two-Stage Least Square (TSLS) methods 
approach as alternative [11], [12].  In this paper, we use maximum likelihood method to 
estimate the parameters of SAR model. 

Parameter estimation of spatial autoregressive model (SAR) use maximum likelihood 
method involve log determinant of large matrix, so it is computationally expensive.  
Therefore, approximation method to find solution in this problem is needed.  Two 
approximation methods, Taylor series and Chebyshev polynomial  approximation, are 
often used to solve this problem. 

Based on the description above, this study aims to determine the best performances of 
two approximation method and two spatial weighted matrix in modeling HDI and its 
factor in Central Java Province. 

2. Material and Method  
 

In this section, the materials and methods used are described as follows. 

 
2.1. Material 

In this paper, we use simulation data and real data.  The simulation data is 
generated by using Monte Carlo simulation method.  In this simulation, we only use 
one predictor variable, spatial weight matrix, and take values of intercept is 1 and 
slope is 2.  In addition, the real data used in SAR model is human development 
index (HDI and its factors in Central Java Province 2017. The HDI factors are 
population, gross enrolment rate, district minimum wage, the number of poor 
people and poverty line. 
 
2.2 Method 

In this section, we discuss the methods used for modeling HDI data in central 
Java Province.  Discussions include MLE estimation in SAR model, approximation 
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method to calculate logarithm of determinant spatial weight matrix, and 
implementation the model to real data. 
 
 
 
 
3. Statistical models  

This section discusses the related material that will be used in the parameter 
estimation of SAR model and its implementation to HDI data. 

 
3.1 Maximum likelihood estimation 

Spatial lag dependence or spatial autoregressive model in a regression model is 
similar to the inclusion of serially autoregressive term for dependent variable in a time-
series context.  Spatial autoregressive model (SAR) is specified as [2] ,[3] 

𝒚𝒚 = 𝜌𝜌𝑾𝑾𝒚𝒚 + 𝑿𝑿𝑿𝑿 + 𝜺𝜺                                                      (1) 

where y is the n x 1 of the response variable,   X  is the n x k matrix of the non-stochastic 
explanatory variables, W is the n x n non-stochastic weights matrix,  is a spatial 
autoregressive parameter,  𝑿𝑿   is a parameter vector, and 𝜺𝜺   is an n x 1 vector of 
innovations.  To estimate parameters of the model use maximum likelihood method, we 
assume vector of innovations are normally distributed.  

Maximum likelihood estimation (MLE) of the SAR models described involves 
maximizing the log likelihood function with respect to the parameters.  The MLE selects 
the set of values of the model parameters that maximizes the likelihood function.  The 
MLE for estimate SAR parameters was first outlined by Ord [12].  The model (1) 
represent as equilibrium, so (𝐼𝐼 − 𝜌𝜌𝜌𝜌) is assumed invertible. To avoid calculating the 
determinant of the  matrix, Ward and Kristiani [21] proposed that 𝑙𝑙𝑙𝑙|𝐼𝐼 − 𝜌𝜌𝜌𝜌| =
∑ ln(1− 𝜌𝜌𝜔𝜔𝑖𝑖)𝑖𝑖 , where 𝜔𝜔𝑖𝑖, i=1,2,….,n are eigenvalues of the matrix W.  

 

 The equilibrium vector y is given by 𝑦𝑦 = (𝐼𝐼 − 𝜌𝜌𝜌𝜌)−1(𝑋𝑋𝑋𝑋 + 𝜀𝜀).  We assumed that 
errors are normally distributed, 𝜀𝜀~𝑁𝑁(0, 𝐼𝐼𝜎𝜎2).  For this errors are normally distributed, we 
can be expressed by 

𝑓𝑓(𝜀𝜀) =
1

(2𝜋𝜋)𝑛𝑛/2𝜎𝜎𝑛𝑛
exp �−

𝜀𝜀′𝜀𝜀
2𝜎𝜎2

� .                                            (2) 

Based on the equation in (1) and invertible condition of matrix (𝐼𝐼 − 𝜌𝜌𝜌𝜌), then the 
equation in (1) can be rewritten by 

  𝑦𝑦 = (𝐼𝐼 − 𝜌𝜌𝜌𝜌)−1(𝑋𝑋𝑋𝑋 + 𝜀𝜀).         (3) 

Furthermore, the probability density function (pdf) in equation in (2) can be 
transformed into Y to obtain likelihood function of Y.  From the equation (1) we 
have 𝜀𝜀 = (𝐼𝐼 − 𝜌𝜌𝜌𝜌)𝑦𝑦 − 𝑋𝑋𝑋𝑋, and from here we ca use Jacobi transformation method to 
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find pdf of Y.  The Jacobi transformation in this here is = �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� = |𝐼𝐼 − 𝜌𝜌𝜌𝜌| .  Based on 

this Jacobi, we can get pdf y as follows [4,6]  

𝑓𝑓(𝑦𝑦) =
1

(2𝜋𝜋)
𝑛𝑛
2𝜎𝜎𝑛𝑛

exp �−
(𝑦𝑦(𝐼𝐼 − 𝜌𝜌𝜌𝜌) − 𝑋𝑋𝑋𝑋)′(𝑦𝑦(𝐼𝐼 − 𝜌𝜌𝜌𝜌)− 𝑋𝑋𝑋𝑋)

2𝜎𝜎2
� . |𝐼𝐼 − 𝜌𝜌𝜌𝜌|.    (4) 

Here, the maximum likelihood Estimation method (MLE) is the method maximizes 
likelihood function.  The likelihood function in this as follow 

𝐿𝐿(𝜌𝜌,𝜎𝜎2,𝑋𝑋) =
1

(2𝜋𝜋)𝑛𝑛/2𝜎𝜎𝑛𝑛
exp �−

(𝑦𝑦(𝐼𝐼 − 𝜌𝜌𝜌𝜌) − 𝑋𝑋𝑋𝑋)′(𝑦𝑦(𝐼𝐼 − 𝜌𝜌𝜌𝜌)− 𝑋𝑋𝑋𝑋)
2𝜎𝜎2

� .     (5) 

The expression in (5) is actually quite a pain to differentiate, so it is almost always 
simplified by taking the natural logarithm of the expression. This is absolutely fine 
because the natural logarithm is a monotonically increasing function. This is important 
because it ensures that the maximum value of the log of the probability occurs at the 
same point as the original probability function. Therefore, we can work with the simpler 
log-likelihood instead of the original likelihood.  The logarithm of likelihood function of 
(5) can be rewrite as 

𝑙𝑙𝑙𝑙�𝐿𝐿(𝜌𝜌,𝜎𝜎2,𝑋𝑋;𝑦𝑦)� = 𝑙𝑙𝑙𝑙|𝐼𝐼 − 𝜌𝜌𝜌𝜌| −
𝑙𝑙
2 ln(2𝜋𝜋) −

𝑙𝑙
2 ln𝜎𝜎2 −

(𝒚𝒚(𝑰𝑰 − 𝜌𝜌𝑾𝑾) −𝑿𝑿𝑿𝑿)′(𝒚𝒚(𝑰𝑰 − 𝜌𝜌𝑾𝑾) −𝑿𝑿𝑿𝑿)
2𝜎𝜎2  .     (6) 

There are the following requirements, the existence of the log likelihood function for 
the parameter values under consideration, continuous differentiability of the log 
likelihood, boundness of various partial derivatives; the existence, non-singularity of 
covariance matrices; and the finiteness of various quadratic forms.  Here, there are 
conditions to ensure that these assumptios are hold.   These conditions are all diagonal 
elements of W are zero, the matrices (𝐼𝐼 − 𝜌𝜌𝜌𝜌)   is nonsingular for 0 <  |𝜔𝜔𝑖𝑖| < 1 , 
i=1,2,…,n.  The innovations  are independent identically distribution, 𝐸𝐸(𝜀𝜀𝑖𝑖) =
0,𝐸𝐸(𝜀𝜀𝑖𝑖2) = 𝜎𝜎2>0, and 𝐸𝐸(|𝜀𝜀|4+𝜂𝜂 < ∞, for some 𝜂𝜂.  

We can see that in the equation (3) involve determinant of large matrix, so analytical 
solution to solve this problem is not easy.  Therefore, to avoid analytical solution  
𝑙𝑙𝑙𝑙|𝐼𝐼 − 𝜌𝜌𝑾𝑾|  , we then use methods Chebyshev polynomial  and Taylor series 
approximation and then compare their accuracy to choose the best performance. 

3.2  Chebyshev’s Polynomial and Taylor series approximation 

Chebyshev polynomials are a sequence of orthogonal polynomials which are related 
to de Moivre's formula and which can be defined recursively.  The Chebyshev 
polynomial approach uses the symmetric equivalent of the neighborhood matrix 𝑾𝑾. The 
eigenvalues of symmetric matrix W are the same of those of the neighborhood.  The 
Chebyshev solution tries to approximate the log determinant of (𝐼𝐼 − 𝜌𝜌𝜌𝜌) involving a 
symmetric neighborhood matrix W which is the relationship of the Chebyshev 
polynomial to the log determinant of  (𝐼𝐼 − 𝜌𝜌𝜌𝜌) matrix.  Approximation of �𝐼𝐼 − 𝜌𝜌𝑾𝑾�� : 

https://en.wikipedia.org/wiki/Monotonic_function
https://en.wikipedia.org/wiki/Polynomial_sequence
https://en.wikipedia.org/wiki/Orthogonal_polynomials
https://en.wikipedia.org/wiki/De_Moivre%27s_formula
https://en.wikipedia.org/wiki/Recursion
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𝑙𝑙𝑙𝑙�𝐼𝐼 − 𝜌𝜌𝑾𝑾�� = �𝑐𝑐𝑗𝑗(𝜌𝜌)𝑡𝑡𝑡𝑡 �𝑇𝑇𝑗𝑗−1�𝜌𝜌� ��
𝑞𝑞+1

𝑗𝑗=1

−
1
2
𝑐𝑐1(𝜌𝜌),                     (7) 

where, 𝑇𝑇0 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑙𝑙), 𝑇𝑇1 = 𝑾𝑾�, 𝑇𝑇2 = 2𝑾𝑾�− 𝑇𝑇0 , 𝑇𝑇𝑘𝑘+1�𝑾𝑾�� = 2𝑇𝑇𝑘𝑘�𝑾𝑾�� − 𝑇𝑇𝑘𝑘−1�𝑾𝑾��,   and  

𝑐𝑐𝑗𝑗(𝜌𝜌) = 2
𝑞𝑞+1

∑ 𝑙𝑙𝑙𝑙 �1− 𝜌𝜌 cos�
𝜋𝜋�𝑘𝑘−12�

𝑞𝑞+1
�� cos�

𝜋𝜋�𝑗𝑗−1)(𝑘𝑘−12)�

𝑞𝑞+1
�𝑞𝑞+1

𝑘𝑘=1  .  Substitution 𝑙𝑙𝑙𝑙�𝐼𝐼 − 𝜌𝜌𝑾𝑾�� 

in (7) to the equation in (6), we obtain 

𝑙𝑙𝑙𝑙�𝐿𝐿(𝜌𝜌,𝜎𝜎2,𝑿𝑿;𝒚𝒚)� = ∑ 𝑐𝑐𝑗𝑗(𝜌𝜌)𝑡𝑡𝑡𝑡 �𝑇𝑇𝑗𝑗−1�𝜌𝜌� ��
𝑞𝑞+1
𝑗𝑗=1 − 1

2
𝑐𝑐1(𝜌𝜌) − 𝑛𝑛

2
ln(2𝜋𝜋) − 𝑛𝑛

2
ln 𝜎𝜎2 −

(𝒚𝒚(𝑰𝑰−𝜌𝜌𝑾𝑾)−𝑿𝑿𝑿𝑿)′(𝒚𝒚(𝑰𝑰−𝜌𝜌𝑾𝑾)−𝑿𝑿𝑿𝑿)
2𝜎𝜎2

 .                            (8) 

 

The Taylor’s series method is an approximation method for a function that is 
represented by a series of powers.  There are two conditions must be fulfilled, (1) it must 
have (n+1)th derivative at a point exists and (2) the nth derivative for n to infinite (n→∞) , 
then residual value close to zero [21].   In the approximation by Taylors’s series of log 
determinant of (𝐼𝐼 − 𝜌𝜌𝜌𝜌) matrix use the powers of the neighborhood matrix (W).  The 
matrix W is a stochastic matrix which have main diagonal is 0, nonsingular matrix having 
a spectral radius of less than 1, 𝑡𝑡(𝐼𝐼 − 𝜌𝜌𝜌𝜌) < 1.  Furthermore, the matrix (𝐼𝐼 − 𝜌𝜌𝜌𝜌) can 
be written by exp�𝑙𝑙𝑙𝑙(𝐼𝐼 − 𝜌𝜌𝜌𝜌)� , and |𝐼𝐼 − 𝜌𝜌𝜌𝜌| = �exp�𝑙𝑙𝑙𝑙(𝐼𝐼 − 𝜌𝜌𝜌𝜌)�� .  Because of 
|𝐼𝐼 − 𝜌𝜌𝜌𝜌| = �exp�𝑙𝑙𝑙𝑙(𝐼𝐼 − 𝜌𝜌𝜌𝜌)��, then 𝑙𝑙𝑙𝑙|𝐼𝐼 − 𝜌𝜌𝜌𝜌| = 𝑡𝑡𝑡𝑡(ln(𝐼𝐼 − 𝜌𝜌𝜌𝜌) ), and finally, we 

have 𝑙𝑙𝑙𝑙|𝐼𝐼 − 𝜌𝜌𝑾𝑾| = ∑ 𝜌𝜌𝑘𝑘𝑡𝑡𝑡𝑡(𝑾𝑾𝑘𝑘)
𝑘𝑘

∞
𝑘𝑘=0 .  Therefore, the log likelihood function in (6) can be 

expressed by 

𝑙𝑙𝑙𝑙�𝐿𝐿(𝜌𝜌,𝜎𝜎2,𝑿𝑿;𝒚𝒚)� = ∑ 𝜌𝜌𝑘𝑘𝑡𝑡𝑡𝑡(𝑾𝑾𝑘𝑘)
𝑘𝑘

∞
𝑘𝑘=0 − 𝑛𝑛

2
ln(2𝜋𝜋)− 𝑛𝑛

2
ln𝜎𝜎2 −

(𝒚𝒚(𝑰𝑰−𝜌𝜌𝑾𝑾)−𝑿𝑿𝑿𝑿)′(𝒚𝒚(𝑰𝑰−𝜌𝜌𝑾𝑾)−𝑿𝑿𝑿𝑿)
2𝜎𝜎2

.        (9)   

3.3  Golden search section algorithm 

The golden section search  is one of algorithm that use to search optimum a function. 

(1). Given initial interval [𝑑𝑑1,𝑏𝑏1] and precision e. Set φ=0.618. 

      Calculate 𝑥𝑥11 = 𝑏𝑏1 − 0.168(𝑏𝑏1 − 𝑑𝑑1) and 𝑥𝑥21 = 𝑑𝑑1 + 0.168(𝑏𝑏1 − 𝑑𝑑1), Set i=1, 
(2). If 𝑓𝑓�𝑥𝑥2𝑖𝑖� > 𝑓𝑓(𝑥𝑥1𝑖𝑖),  

𝑑𝑑𝑖𝑖+1 = 𝑑𝑑𝑖𝑖  
𝑏𝑏𝑖𝑖+1 = 𝑥𝑥2𝑖𝑖  
𝑥𝑥2𝑖𝑖+1 = 𝑥𝑥1𝑖𝑖  
 𝑥𝑥1𝑖𝑖+1 = 𝑏𝑏𝑖𝑖+1 − 0.168(𝑏𝑏𝑖𝑖+1 − 𝑑𝑑𝑖𝑖+1) 

     if  𝑓𝑓�𝑥𝑥2𝑖𝑖� ≤ 𝑓𝑓(𝑥𝑥1𝑖𝑖),  
𝑑𝑑𝑖𝑖+1 = 𝑥𝑥1𝑖𝑖  
 𝑏𝑏𝑖𝑖+1 = 𝑏𝑏𝑖𝑖  
 𝑥𝑥1𝑖𝑖+1 = 𝑥𝑥2𝑖𝑖  
 𝑥𝑥2𝑖𝑖+1 = 𝑑𝑑𝑖𝑖+1 +   0.168(𝑏𝑏𝑖𝑖+1 − 𝑑𝑑𝑖𝑖+1)  
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(3) 𝑖𝑖𝑓𝑓 |𝑏𝑏𝑖𝑖+1 − 𝑑𝑑𝑖𝑖+1| < 𝜀𝜀  stop, otherwise, set i=i+1, and go to (2) 

 

3.4   W-AMOEBA matrix 

Following Aldstadt and Getis [1] ,[2], the spatial structure can be considered in two 
part framework, namely  separated spatially and associated data non spatially [1], [2]. 
Furthermore, the spatial units are clustered using local spatial statistic.  Moreover, 
Aldstadt and Getis used local Getis statistics for clustering spatial units.  Local Getis 
statistics less than d, 𝐺𝐺𝑖𝑖(𝑑𝑑) (hereinafter, abbreviated 𝐺𝐺𝑖𝑖) is denoted by [1], [2], [11], [12], 
[19] ,[20] 

𝐺𝐺𝑖𝑖 =
∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1 𝑥𝑥𝑖𝑖
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

, 𝑖𝑖 ≠ 𝑗𝑗 ,     (10) 

where 𝑤𝑤𝑖𝑖𝑗𝑗 = 1  when the spatial unit j is within the distance d from unit i, and 𝑤𝑤𝑖𝑖𝑗𝑗=0 for 
others.  Expectation and variation of 𝐺𝐺𝑖𝑖  are, respectively,  𝐸𝐸(𝐺𝐺𝑖𝑖) = 𝑤𝑤𝑖𝑖.

𝑛𝑛−1
,  𝑉𝑉𝑑𝑑𝑡𝑡(𝐺𝐺𝑖𝑖) =

𝑤𝑤𝑖𝑖.(𝑛𝑛−1−𝑤𝑤𝑖𝑖.)
(𝑛𝑛−1)(𝑛𝑛−2) . � 𝑠𝑠(𝑖𝑖)

�̅�𝑥(𝑖𝑖)
�
2
, where �̅�𝑥(𝑖𝑖) =

∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛−1
 and 𝑠𝑠(𝑖𝑖) =

∑ 𝑥𝑥𝑖𝑖
2𝑛𝑛

𝑖𝑖=1

𝑛𝑛−1
− (�̅�𝑥(𝑖𝑖))2 [8] ,[9].  Based on 

Expectation and variation, the standardized of local Getis statistic is given by 

)(
)(*

i

ii
i GVar

GEGG −
=         (11) 

AMOEBA is an algorithm that can be used to create spatial weighted matrix.  In this 
algorithm, each spatial units are clustered by local Getis statistic.  The outlines of the 
AMOEBA procedure of Aldstadt and Getis [2] are as follows: 

(1). compute 𝐺𝐺𝑖𝑖∗(0) is the value for spatial unit i itself). A 𝐺𝐺𝑖𝑖∗(0) value greater than zero 
is indicated that the value at location i is larger than mean of all units, 
correspondingly, a value less than zero indicates that the value at location i is 
smaller than the mean of all units. 

(2). compute 𝐺𝐺𝑖𝑖∗(1)  𝐺𝐺𝑖𝑖∗(1)  is the value for each region that contains i and all 
combinations of its contiguous neighbors. At each succeeding step, contiguous units 
that are not in the ecotope, they are eliminated from further consideration. Likewise, 
units include in the ecotope remain in the ecotope, and 

(3). These process continue for k number of links,k=2,3,…,kmax where kmax is determined 
by the absolute the 𝐺𝐺𝑖𝑖∗.  Here, kmax is chosen if some addition contiguous units into 
ecotope cannot improve the absolute 𝐺𝐺𝑖𝑖∗(0). 

If kmax is obtained, then we create AMOEBA matrix as follows : 

(a) If 𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥 > 1, then 

𝑤𝑤𝑖𝑖𝑗𝑗 = �
�𝑃𝑃[𝑧𝑧 ≤ 𝐺𝐺𝑖𝑖∗(𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥)]− 𝑃𝑃�𝑧𝑧 ≤ 𝐺𝐺𝑖𝑖∗�𝑘𝑘𝑗𝑗���
�𝑃𝑃�𝑧𝑧 ≤ 𝐺𝐺𝑖𝑖∗(𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥)� − 𝑃𝑃�𝑧𝑧 ≤ 𝐺𝐺𝑖𝑖∗(0)��

, 0 < 𝑘𝑘𝑗𝑗 ≤ 𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥

   0                                            ,   𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑡𝑡𝑠𝑠
 

(b) If kmax = 1, then  

𝑤𝑤𝑖𝑖𝑗𝑗 = �
1,𝑓𝑓𝑜𝑜𝑡𝑡 𝑘𝑘𝑗𝑗 = 1

0,   others
 

(c) If 𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥 = 0, then 
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𝑤𝑤𝑖𝑖𝑗𝑗 = 0 , 𝑓𝑓𝑜𝑜𝑡𝑡 𝑑𝑑𝑙𝑙𝑙𝑙 𝑘𝑘𝑗𝑗 
 

4. Numerical simulation and implementation to HDI data 

In this section discusses methods used in performance of approximation methods in 
SAR model and its implementation.  First, we generated data to compare approximation 
methods between Taylor series and Chebyshev polynomial by using Monte Carlo 
simulation.  Here, we use one predictor variable, spatial weight matrix, and take 
parameters intercept is 1 and slope is 2 for variation ρ and n.  Second, we use the best 
aproximation method to estimate parameter of SAR model on HDI data. 

4.1.  Monte Carlo Simulation 

Based on the information, response variable is obtained.  The procedure to obtain pair 
predictor and response variables are below: 

(1). W = {wij} is given as spatial weights matrix  
(2). Here, the parameters 𝑋𝑋0 = 1 ,  𝑋𝑋1 = 2, 𝜌𝜌 = 0.1, 0.2, 0.3, 0.4, 0.5  
(3). Generate predictor variable 𝑋𝑋 and error,  𝑋𝑋~𝑈𝑈(20,60) and 𝜀𝜀~𝑁𝑁(0,1) 
(4). Determine y , 𝑦𝑦 = (𝐼𝐼 − 𝜌𝜌𝜌𝜌)−1(𝑋𝑋𝑋𝑋 + 𝜀𝜀) 
(5). Estimate parameter ( 𝑋𝑋0  ,  𝑋𝑋1 , 𝜌𝜌 ) by using MLE method.  One is use of 

Chebyshev polynomial approximation and another I use using Taylor’s series 
approximation. 

(6). Estimate RMSE for both models and compare their RMSE’s. 
 

For each lag coefficient and sample size, the step (1) – (6) are repeated 100 times and 
we then compute RMSEs.  The process is repeated for different lag coefficient (ρ) and 
sample size (n).  In this, we use sample size n = 20, 40, ..., 250, and 𝜌𝜌 =
0.1, 0.2, 0.3, 0.4, 0.5 .  Hereinafter, we use Chebyshev RMSE’s term to describe RMSE 
of the model and Chebyshev polynomial approximation.  Similarly, we use Taylors 
RMSE’s term to describe RMSE of the model and Taylor series approximation.  The 
Chebyshev and Taylor RMSE’s of simulation results are presented in Table 1. 

 

Table 1. Chebyshev and Taylor RMSE’s for different n and ρ 
 n=20 n=40 n=60 n=80 
Rho Chebyshev Taylor Chebyshev Taylor Chebyshev Taylor Chebyshev Taylor 
0.1 0.8348 0.7408 0.7775 0.8032 1.0047 0.8840 1.0744 0.9040 
0.2 1.3281 0.8170 0.8469 0.9785 1.0152 0.9822 1.0192 0.9975 
0.3 0.7494 0.8429 0.8565 0.9243 1.1077 1.0001 1.0134 0.9151 
0.4 0.7670 1.0631 1.0033 0.9904 1.0212 0.9666 1.0495 0.9984 
0.5 0.7119 0.9749 1.1161 0.8148 1.0364 1.0498 0.9467 1.0347 

  
n=100 n=150 n=200 n=250 

Rho Chebyshev Taylor Chebyshev Taylor Chebyshev Taylor Chebyshev Taylor 
0.1 0.9216 0.9541 1.0273 0.9799 1.0711 0.9469 0.9873 0.9631 
0.2 0.9832 1.0449 1.0493 1.0455 0.9910 1.0422 1.0497 1.0209 
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0.3 1.0223 1.0575 0.9874 0.9261 0.9395 1.0291 0.9717 0.9674 
0.4 1.0261 0.9758 0.9659 0.9630 0.9422 1.0182 1.0047 0.9280 
0.5 1.0025 1.0411 1.0033 0.9284 1.0343 0.9963 0.9929 0.9697 

  

The Chebyshev and Taylor RMSE’s were fluctuated for variation n. Furthermore, 
based on Table 1, we can see that differences between Chebyshev RMSE’s and Taylor 
RMSE’s are small. From this simulation results, we can’t conclude the best solution.  
Therefore, for next analysis we use Chebyshev polynomial and Taylor series 
approximation to approximate ln |𝐼𝐼 − 𝜌𝜌𝜌𝜌|in MLE. 

4.2.  Description statistics of HDI and its factors 

The data used in this study were taken from BPS statistics (central Bureau of Statistic) 
of Central Java province. Central Java Province consists of 35 districts.  HDI for a 
collection of geographic areas are commonly display on maps.  The Map of Central Java 
Province is presented in Figure 1.  In this study, we use the human development index 
(HDI) as response variable, population, number of poor people, gross enrollment rate, 
district minimum wage and poverty line as predictors variables (Table 2).  Summary 
statistics for these variables are shown in Table 3. 

 

Figure 1  Map of Central Java Province 

Table 2. HDI data in Central Java province data 2017 

ID District  
Name HDI Populati

on 

Gross 
enrolme
nt rate 

District 
minimu
m wage 

Poor  
peopl
e 

Poverty 
line Neighbors 

1  Cilacap 68.9 1711627 87.28 1693690 13.94 307041 2,5,29 

2  Banyumas 70.75 1665025 85.43 1461400 17.05 357748 1,3,4,5,27,2
8,29 

3  Purbalingga 67.72 916427 72.83 1522500 18.8 313343 2,4,26,27 

4  Banjarnegara 65.86 912917 66.77 1370000 17.21 264387 2,3,5,7,25,2
6 

5  Kebumen 68.29 1192007 104.89 1433900 19.6 325819 1,2,4,6,7 
6  Purworejo 71.31 714574 102.81 1445000 13.81 325871 5,7,8 

7  Wonosobo 66.89 784207 52.98 1457100 20.32 308553 4,5,6,8,23,2
4,25 
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8  Magelang 68.39 1268396 75.56 1570000 12.42 281237 6,7,9,22,23,
30 

9  Boyolali 72.64 974579 77.45 1519290 11.96 293405 8,10,11,13,
14,15,22,31 

10  Klaten 74.25 1167401 100.58 1528500 14.15 376305 9,11 

11  Sukoharjo 75.56 878374 96.11 1513000 8.75 337037 9,10,12,13,
31 

12  Wonogiri 68.66 954706 86.58 1401000 12.9 284710 11,13 

13  Karanganyar 75.22 871596 83.11 1560000 12.28 340538 9,11,12,14,
31 

14  Sragen 72.4 885122 106.49 1422590 14.02 292544 9,13,15, 

15  Grobogan 68.87 1365207 81.28 1435000 13.27 345379 9,14,16,18,
19,21,22 

16  Blora 67.52 858865 84.82 1438100 13.04 291114 15,17,18, 
17  Rembang 68.95 628922 72.05 1408000 18.35 354440 16,18, 

18  Pati 70.12 1246691 91.14 1420500 11.38 393817 15,16,17,19
,20, 

19  Kudus 73.84 851478 93.35 1740900 7.59 373224 15,18,20,21
, 

20  Jepara 70.79 1223198 87.05 1600000 8.12 355607 18,19,21 

21  Demak 70.41 1140675 91.7 1900000 13.41 371525 15,19,20,22
,33 

22  Semarang 73.2 1027489 78.21 1745000 7.78 317935 8,9,15,21,2
3,24,32,33 

23  Temanggung 68.34 759128 70.09 1431500 11.46 277707 7,8,22,24 

24  Kendal 70.62 957024 87.1 1774800 11.1 335497 7,22,23,25,
33 

25  Batang 67.35 756079 73.93 1603000 10.8 249292 4,7,24,26,3
4 

26  Pekalongan 68.4 886197 55.13 1583700 12.61 354435 3,4,25,27,3
4 

27  Pemalang 65.04 1296281 71.38 1460000 17.37 331584 2,3,26,28 
28  Tegal 66.44 1433515 75.44 1487000 9.9 319758 2,29,27,35 
29  Brebes 64.86 1796004 76.51 1418100 19.14 382125 2,1,28,35 
30 Magelang city 77.84 121474 107.24 1453000 8.75 450908 8 
31 Surakarta city 80.85 516102 103.55 1534990 10.65 448062 9,11,13 
32 Salatiga city 81.68 188928 109.61 1596850 5.07 359944 22, 
33 Semarang city 82.01 1757686 107.82 2125000 4.62 402297 21,22,24 

34 Pekalongan 
city 73.77 301870 92.04 1623750 7.47 390555 25,26 

35 Tegal city 73.95 248094 87.08 1499500 8.11 418845 29,28 
 

Table 3. Summary statistics for response (HDI) and predictor variables 

variables N Mean StDev Min Q1 Median Q3 Max 
HDI 35 71.19  4.48  64.86  68.29  70.41  73.84  82.01  
Population 35 978796 421350 121474 759128 916427 1246691 1796004 
district 35 85.58  14.54  52.98  75.44  86.58  96.11  109.61  
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minimum 
wage 
district 
minimum 
wage 

35 1547905 157827 1370000 1435000 1513000 1600000 2125000 

The 
number of 
Poor 
People 

35 12.49  4.13  4.62  8.75  12.42  14.15  20.32  

Poverty 
line 35 340931 48936 249292 307041 337037 373224 450908 

 

4.3. Implementation model for the HDI data 

For implementation the model to HDI data, we use the SAR model, MLE method, and 
Chebyshev polynomial approximation with refer to simulation results.  In addition, we 
also use AMOEBA matrix as spatial weighted matrix in SAR model.  In above 
simulation, this matrix isn’t involve because it is created by algorithm, so it’s time 
consuming.  However, from our previous research [6], the performance of this matrix is 
better than contiguity matrix. 

Quantile map of HDI data in Central Java province are shown in Figure 2. Figure 2 
show that dark blue color describe the district which is lowest HDI (64.9), turquoise color 
describe  the district which is second lowest HDI (64.9-66.4), and the dark brown color is 
describe the district which is highest HDI. 

 

 

Figure 2. Quantile map of HDI data in Central Java Province 

From Figure 2, we can see that not all of adjacent districts have similar HDI value.  
Therefore, this information is a clue to create spatial weight matrix such as W-AMOEBA 
matrix, because the W-AMOEBA matrix can accommodate both spatial and nonspatial 
component in the spatial modeling.  Furthermore, for modeling HDI and it factors, we 
use two spatial , W-Contiguity and W-AMOEBA matrices.  In addition, to find logarithm 
determinant of matrix I-ρW, we use Chebyshev polynomial approximation as the best 
performance as previous analysis (in section 3.1).  
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Before the W-AMOEBA is created, we explore about significance of HDI in Central 
Java province.  Figure 3 shown that there are three cluster, high, medium and low 
clusters.  The high cluster describes districts which have highest HDI value around them.  
Meanwhile, the low cluster describes districts which have lowest HDI value around them. 

The ANOVA Table of SAR models with W-contiguity and W-AMOEBA are 
presented in Table 3 and Table 4, respectively.  Based on Table 3 and Table 4, we can 
see that all of predictor variables are significant, so we can say that they are important 
factors to explain HDI.  The coefficients of population and poor people are negative.  
This means that to improve HDI the population and poor people must be reduced.  The 
coefficients of district minimum wage, district minimum wage and Poverty line are 
positive impacts.  This means that if their factors (district minimum wage, district 
minimum wage and poverty line) are increase, then HDI are also increase. 

 

Figure 3.  Significance of Clustering HDI use local Getis statistic 
 

Table 3. ANOVA of SAR Model with W.contiguity 

                                          Coefficients:                         (asymptotic standard 
errors) 
                                            Estimate            Std. Error        z-value       Pr(>|z|) 
Intercept                            2.8002e+01       1.0140e+01     2.7614       0.0057547 
Population                        -2.7181e-06        9.0475e-07    -3.0042       0.0026625 
gross enrollment rate.       1.0511e-01        2.6621e-02     3.9484       7.868e-05 
District minimum wage     5.5992e-06        2.6923e-06      2.0797       0.0375500 
Poor people                      -2.3157e-01        1.1488e-01     -2.0157       0.0438268 
Poverty line                       2.5350e-05        7.5799e-06      3.3444       0.0008247 
Rho: 0.31856, LR test value: 5.7208, p-value: 0.016765 
RMSE : 1.8521 
AIC: 159.36, (AIC for lm: 163.08) 
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Table 4. ANOVA of SAR Model with W.AMOEBA 
                                             Coefficients:            (asymptotic standard errors) 
                                                 Estimate             Std. Error      z value   Pr(>|z|) 
(Intercept)                              7.6212e-01         8.3596e+00     0.0912    0.9273597 
Population                            -2.3122e-06         7.8855e-07    -2.9322     0.0033654 
gross enrollment rate           7.8151e-02        2.3704e-02     3.2970     0.0009771 
District minimum wage        6.1336e-06        2.3495e-06     2.6105     0.0090401 
Poor people                         -1.6678e-01         9.7846e-02    -1.7045    0.0882884 
Poverty line                          1.6648e-05         6.6573e-06     2.5008     0.0123927 
Rho: 0.75119, LR test value: 13.354, p-value: 0.0002578 
RMSE: 1.6251 
AIC: 151.72, (AIC for lm: 163.08) 

 

Evaluating of the performance of SAR model with W-contiguity and W-AMOEBA, 
then we use criteria RMSE from that models.  From the Table 3 and Table 4, we can see 
that RMSE’s of SAR model with W-AMOEBA is smaller than RMSE’s of SAR model 
with W-Contiguity.  Therefore, we can say that accuracy of SAR model with W-
AMOEBA is better than of SAR model with W-Contiguity. 

 

5. Conclusion 
The difference in accuracy between Chebyshev polynomial and Taylor series 

approximations are not significant the same.  However, Based on the all simulation for 
variation lag coefficient and sample size, Chebyshev polynomial slightly better.  
Therefore, we used Chebyschev polynomial approximation to solve log determinant 
matrix (I-ρW) in the SAR model for modeling HDI data in Central Java Province. 

Mapping plot of HDI values in Central Java Province shown that not all among 
adjacent districts are similar.  Based on this condition, to analysis HDI and their factors 
in Central Java Province, we used two spatial matrix in the SAR models, W.contiguity 
and W-AMOEBA matrix.  To evaluate the performances of W-contiguity and W-
AMOEBA in SAR model, we used Chebyschev polynomial as approximation method in 
MLE.  The RMSE of SAR Model with W.Contiguity and W.AMOEBA are 1.8521 and 
1.6251, respectively.  Here, we conclude that the best model is SAR model with W-
AMOEBA. 

Implementation of the selected model showed that to improve or increase HDI in 
Central Java Province, the population and poor people and increasing must be decreased, 
meanwhile of gross enrollment rate, district minimum wage and Poverty line of poor 
people must be increased. 
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