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Abstract

Parameter estimation for the spatial autoregressive (SAR) model by using maximum
likelihood (MLE) method involve log determinant of spatial weight matrix where its
dimension is large. Therefore, to solve log determinant of this matrix often used
approximation. The paper studied performances of Taylor series and Chebyshev
polynomial methods in parameter estimation of SAR model. In this paper, we also studied
performance of two types of spatial matrices, W-AMOEBA and W-contiguity, to choose
the best of spatial weighted matrix in SAR model. Evaluation of approximation methods
to solve log determinant and to choose the best performance model, we used data
simulation and root mean square error (RMSE) criteria. The data simulation is
generated by Monte Carlo simulation methods. Furthermore, the best model (the best
performances of approximation method and spatial weight matrix) is implemented to
model human development index (HDI) and its factors in Central Java Province. The
HDI factors are population, gross enrolment rate, district minimum wage, the number of
poor people and poverty line. The results showed that RMSE of models used to
Chebyshev polynomial is smaller than Taylor series. Therefore, Chebyshev polynomial
approximation is more accurate than Taylor series approximation. Furthermore, the
Chebyshev polynomial is used to analysis the human development index (HDI) and its
factors by using SAR model. The result showed that the gross enrollment rate, district
minimum wage, and poverty line then the HDI have positive impact. It means that
increasing of theirs factors can improve HDI.
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1. Introduction

In recent years, spatial regression model have been developed to take spatial
dependence. The models that involve statistical dependence are often more realistic [7],
[8]. A fundamental concern of spatial analysts is to find patterns in spatial data that lead
to the identification of spatial autocorrelation or association [16]. Taking spatial
dependences into account when dealing with spatial data is very important, and
neglecting them can cause problems. For example, ignoring spatial lag structures causes
ordinary least squares (OLS) estimators to become bias and inconsistent. The spatial
weights matrix is one of the most convenient ways to summarize spatial relationship in
the data. Spatial weights matrix is a nonnegative matrix that specifies the neighborhood
set for each observation. Here, the data are collected from different spatial locations.
Spatial weights characterize cross-section dependence in useful ways their measurement
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has an important effect on the estimation of a spatial dependence model [1], [9], [15].
The prediction result becomes accurate if we found a representative spatial weight matrix
and parameter estimation method. There are many to create spatial weight matrix [10].
However the most commonly use spatial weight matrix is a binary matrix based on
geographic distance and contiguity. Furthermore, the spatial weight matrix is also found
on Aldstadt and Getis [1], namely a multidirectional optimum ecotope-based algorithm
(AMOEBA). Here, clements of AMOEBA matrix depend on both neighborhood among
spatial units and variable [1], [13], [14]. Moreover, Aldstadt and Getis [2] used local
Getis statistic to create the matrix. Jajang et al [13],[14] shown that the in spatial
dynamic model performance of AMOEBA matrix is better than Contiguity matrix
(W.Contiguity).

In the spatial model, we also found endogenous problem in the model. Therefore,
classic method such as ordinary least square (OLS) is not relevant to solve it problem.
The OLS estimator will be biased as well as inconsistent for the parameters of the spatial
model [2]. The inappropriateness of the least squares estimator for models that
incorporate spatial dependence has focused attention on the maximum likelihood (MLE),
generalized method of moment (GMM), and Two-Stage Least Square (TSLS) methods
approach as alternative [11], [12]. In this paper, we use maximum likelihood method to
estimate the parameters of SAR model.

Parameter estimation of spatial autoregressive model (SAR) use maximum likelihood
method involve log determinant of large matrix, so it is computationally expensive.
Therefore, approximation method to find solution in this problem is needed. Two
approximation methods, Taylor series and Chebyshev polynomial approximation, are
often used to solve this problem.

Based on the description above, this study aims to determine the best performances of
two approximation method and two spatial weighted matrix in modeling HDI and its
factor in Central Java Province.

2. Material and Method

In this section, the materials and methods used are described as follows.

2.1. Material

In this paper, we use simulation data and real data. The simulation data is
generated by using Monte Carlo simulation method. In this simulation, we only use
one predictor variable, spatial weight matrix, and take values of intercept is 1 and
slope is 2. In addition, the real data used in SAR model is human development
index (HDI and its factors in Central Java Province 2017. The HDI factors are
population, gross enrolment rate, district minimum wage, the number of poor
people and poverty line.

2.2 Method

In this section, we discuss the methods used for modeling HDI data in central
Java Province. Discussions include MLE estimation in SAR model, approximation

ISSN: 2005-4238 IJAST
Copyright © 2020 SERSC 3297



International Journal of Advanced Science and Technology
Vol. 29, No. 6, (2020), pp. 3296 — 3309

method to calculate logarithm of determinant spatial weight matrix, and
implementation the model to real data.

3. Statistical models

This section discusses the related material that will be used in the parameter
estimation of SAR model and its implementation to HDI data.

3.1 Maximum likelihood estimation

Spatial lag dependence or spatial autoregressive model in a regression model is
similar to the inclusion of serially autoregressive term for dependent variable in a time-
series context. Spatial autoregressive model (SAR) is specified as [2] ,[3]

y=pWy+Xp+e¢ (D

where y is the n x 1 of the response variable, X is the n x k matrix of the non-stochastic

explanatory variables, W is the n X n non-stochastic weights matrix, @ is a spatial
autoregressive parameter, f is a parameter vector, and € is an n x 1 vector of
innovations. To estimate parameters of the model use maximum likelihood method, we
assume vector of innovations are normally distributed.

Maximum likelihood estimation (MLE) of the SAR models described involves
maximizing the log likelihood function with respect to the parameters. The MLE selects
the set of values of the model parameters that maximizes the likelihood function. The
MLE for estimate SAR parameters was first outlined by Ord [12]. The model (1)
represent as equilibrium, so (I — pW) is assumed invertible. To avoid calculating the
determinant of the (I — 2W} matrix, Ward and Kristiani [21] proposed that In|I — pW| =
Y In(1 — pw;), where w;, i=1,2,....,n are eigenvalues of the matrix W.

The equilibrium vector y is given by y = (I — pW)™1(Xp + £). We assumed that
errors are normally distributed, e~N(0,102). For this errors are normally distributed, we
can be expressed by

1 e
fle) = Wexp [— m]- (2)

Based on the equation in (1) and invertible condition of matrix (I — pW), then the
equation in (1) can be rewritten by

y=U-pW) HXB + ). 3)

Furthermore, the probability density function (pdf) in equation in (2) can be
transformed into Y to obtain likelihood function of Y. From the equation (1) we
have e = (I — pW)y — X, and from here we ca use Jacobi transformation method to
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find pdf of ¥. The Jacobi transformation in this here is = |3—;| = |I — pW|. Based on
this Jacobi, we can get pdf'y as follows [4,6]

Fo) = —
(2m)2gn

exp [_ U —pW) - XB)' (U — pW) — Xﬁ)] J— Wl (@)

2072

Here, the maximum likelihood Estimation method (MLE) is the method maximizes
likelihood function. The likelihood function in this as follow

L(p,0?,B) = ! exp [_ U —pW) = XB)' (YU — pW) — XB)

@nien 257 | ©

The expression in (5) is actually quite a pain to differentiate, so it is almost always
simplified by taking the natural logarithm of the expression. This is absolutely fine
because the natural logarithm is a monotonically increasing function. This is important
because it ensures that the maximum value of the log of the probability occurs at the
same point as the original probability function. Therefore, we can work with the simpler
log-likelihood instead of the original likelihood. The logarithm of likelihood function of
(5) can be rewrite as

_ T —pW) - XB)' (y(I — pW) — XB)
202 '

In(L(p, 0% B;y)) = Inll — pW| —%ln(Zn) —%ln o? (6)

There are the following requirements, the existence of the log likelihood function for
the parameter values under consideration, continuous differentiability of the log
likelihood, boundness of various partial derivatives; the existence, non-singularity of
covariance matrices; and the finiteness of various quadratic forms. Here, there are
conditions to ensure that these assumptios are hold. These conditions are all diagonal
clements of W are zero, the matrices (I — pW) is nonsingular for 0 < |w;| <1,
i=1,2,...,n.  The innovations are independent identically distribution, E(g;) =
0,E(g?%) = 0%>0, and E(|e]**" < oo, for some 7.

We can see that in the equation (3) involve determinant of large matrix, so analytical
solution to solve this problem is not easy. Therefore, to avoid analytical solution
In|]l — pW| , we then use methods Chebyshev polynomial and Taylor series
approximation and then compare their accuracy to choose the best performance.

3.2 Chebyshev’s Polynomial and Taylor series approximation

Chebyshev polynomials are a sequence of orthogonal polynomials which are related
to de Moivre's formula and which can be defined recursively. The Chebyshev
polynomial approach uses the symmetric equivalent of the neighborhood matrix W. The
eigenvalues of symmetric matrix W are the same of those of the neighborhood. The
Chebyshev solution tries to approximate the log determinant of (I — pW) involving a
symmetric neighborhood matrix W which is the relationship of the Chebyshev
polynomial to the log determinant of (I — pW) matrix. Approximation of |I — pW| :
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q+1

— — 1
|t = pW| = > g(pder (T2 (W)) = 51(0), )

Jj=1

where, Ty = diag(n), T, = W, T, = 2W — T, , Tk+1(W) = ZTR(W) — Tk_l(W), and

k—= i—1) (k-2 —
ci(p) = ﬁZZZi In <1 — pcos <%>> cos <n(1)—(2))> . Substitution ln|1 - pW|

q+1

in (7) to the equation in (6), we obtain

in(L(p, o B; ) = %1%, ¢ (p)tr (7}'—1(”7)) —Za(p) —5In@m) —Jino? -
U-pW)-XB)' (yU—pW)-XB) ' (8)

202

The Taylor’s series method is an approximation method for a function that is
represented by a series of powers. There are two conditions must be fulfilled, (1) it must
have (n+1)™ derivative at a point exists and (2) the n' derivative for n to infinite (n—o0) ,
then residual value close to zero [21]. In the approximation by Taylors’s series of log
determinant of (I — pW) matrix use the powers of the neighborhood matrix (). The
matrix W is a stochastic matrix which have main diagonal is 0, nonsingular matrix having
a spectral radius of less than 1, (I — pW) < 1. Furthermore, the matrix (I — pW) can
be written by exp(In(I — pW)), and | — pW| = |exp(ln(l —pW))|. Because of
lI — pW| = |exp(In(I — pW))|, then In|I — pW| = tr(In({ — pW) ), and finally, we

o pleraw’ - o
have In|l — pW| = Y12, PR Therefore, the log likelihood function in (6) can be

expressed by

. Ktrwk
In(L(p, 0% B ¥)) = Tizo o2 = SIn(2m) — SIno? —
(yU-pW)-XB)' (y(I-pW)-XPB) 9)

202

3.3 Golden search section algorithm
The golden section search is one of algorithm that use to search optimum a function.
(1). Given initial interval [a;, b;] and precision e. Set ¢=0.618.

Calculate xll = bl - 0168(b1 - al) a.nd le = aq + 0168(b1 - al), Set 1:1,
(). If f(x2") > f (21D,

ity = 4
— L
bi-l;l =Xz
x21+1 — xll
i+1 —
X1 = bi1 _.0-168(bi+1 — Q1)
1 L L
if f(x2") < fCah),
— 0
Ai+1 = X1
bi-l;l = b; )
x11+1 — le

X, = a4 + 0.168(b;41 — aj41)
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3) if |bjy1 — ajz1| < € stop, otherwise, set i=i+1, and go to (2)

3.4 W-AMOEBA matrix

Following Aldstadt and Getis [1] ,[2], the spatial structure can be considered in two
part framework, namely separated spatially and associated data non spatially [1], [2].
Furthermore, the spatial units are clustered using local spatial statistic. Moreover,
Aldstadt and Getis used local Getis statistics for clustering spatial units. Local Getis
statistics less than d, G;(d) (hereinafter, abbreviated G;) is denoted by [1], [2], [11], [12],
[19],[20]

G="5—" i=j, (10)

where w;; = 1 when the spatial unit ; is within the distance d from unit 7, and w;;=0 for

others. Expectation and variation of G; are, respectively, E(G;) = JVT‘ Var(G;) =

19

L(n—-1-wy) [s@1? _ .. X > x? o
O [20]7, where (1) = =2 and s = =22 — (%(D)? [8] [9). Based on

Expectation and variation, the standardized of local Getis statistic is given by

* P E .
G =G~ EG) (11)
Var(G,)
AMOEBA is an algorithm that can be used to create spatial weighted matrix. In this
algorithm, each spatial units are clustered by local Getis statistic. The outlines of the
AMOEBA procedure of Aldstadt and Getis [2] are as follows:

(1). compute G; (0) is the value for spatial unit i itself). A G; (0) value greater than zero
is indicated that the value at location i is larger than mean of all units,
correspondingly, a value less than zero indicates that the value at location i is
smaller than the mean of all units.

(2). compute G;(1) G;(1) is the value for each region that contains i and all
combinations of its contiguous neighbors. At each succeeding step, contiguous units
that are not in the ecotope, they are eliminated from further consideration. Likewise,
units include in the ecotope remain in the ecotope, and

(3). These process continue for £ number of links,k=2.3,... kmax Where kmax is determined
by the absolute the G;'. Here, kmax is chosen if some addition contiguous units into
ecotope cannot improve the absolute G; (0).

If kmax s obtained, then we create AMOEBA matrix as follows :

(a) If kjpgx > 1, then
{Plz < G} (kpax)] — P|z < G} (K;)]}
wij =9 {P[z < G} (kmax)] — P[z < G; (0)]}
0 , others

,0 <kj < Knmax

(b) If kjpax = 1, then
_ {1, forkj=1
Y| 0, others
(c) If kygx = 0, then
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w;j =0, for all k;

4. Numerical simulation and implementation to HDI data

In this section discusses methods used in performance of approximation methods in
SAR model and its implementation. First, we generated data to compare approximation
methods between Taylor series and Chebyshev polynomial by using Monte Carlo
simulation. Here, we use one predictor variable, spatial weight matrix, and take
parameters intercept is 1 and slope is 2 for variation p and n. Second, we use the best
aproximation method to estimate parameter of SAR model on HDI data.

4.1. Monte Carlo Simulation

Based on the information, response variable is obtained. The procedure to obtain pair
predictor and response variables are below:

(1). W= {wij} is given as spatial weights matrix

(2). Here, the parameters §o =1, f; = 2,p =0.1,0.2,0.3,0.4,0.5

(3). Generate predictor variable X and error, X~U(20,60) and e~N(0,1)

(4). Determine y , y = (I — pW)™1(XB + ¢)

(5). Estimate parameter ( Sy, f1, p) by using MLE method. One is use of
Chebyshev polynomial approximation and another I use using Taylor’s series
approximation.

(6). Estimate RMSE for both models and compare their RMSE’s.

For each lag coefficient and sample size, the step (1) — (6) are repeated 100 times and
we then compute RMSEs. The process is repeated for different lag coefficient (p) and
sample size (n). In this, we use sample size n = 20, 40, .., 250, and p =
0.1,0.2,0.3,0.4,0.5. Hereinafter, we use Chebyshev RMSE’s term to describe RMSE
of the model and Chebyshev polynomial approximation. Similarly, we use Taylors
RMSE’s term to describe RMSE of the model and Taylor series approximation. The
Chebyshev and Taylor RMSE’s of simulation results are presented in Table 1.

Table 1. Chebyshev and Taylor RMSE’s for different n and p

n=20 n=40 n=60 n=80
Rho Chebyshev Taylor Chebyshev Taylor Chebyshev Taylor Chebyshev Taylor
0.1 0.8348 0.7408 0.7775 0.8032 1.0047 0.8840 1.0744 0.9040
0.2 1.3281 0.8170 0.8469 0.9785 1.0152 0.9822 1.0192 0.9975
0.3 0.7494 0.8429 0.8565 0.9243 1.1077 1.0001 1.0134 0.9151
0.4 0.7670 1.0631 1.0033 0.9904 1.0212 0.9666 1.0495 0.9984
0.5 0.7119 0.9749 1.1161 0.8148 1.0364 1.0498 0.9467 1.0347
n=100 n=150 n=200 n=250
Rho Chebyshev Taylor Chebyshev Taylor Chebyshev Taylor Chebyshev Taylor
0.1 0.9216 0.9541 1.0273 0.9799 1.0711 0.9469 0.9873 0.9631
0.2 0.9832 1.0449 1.0493 1.0455 0.9910 1.0422 1.0497 1.0209
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0.3 1.0223 1.0575 0.9874 0.9261 0.9395 1.0291 0.9717 0.9674
04 1.0261 0.9758 0.9659 0.9630 0.9422 1.0182 1.0047 0.9280
0.5 1.0025 1.0411 1.0033 0.9284 1.0343 0.9963 0.9929 0.9697

The Chebyshev and Taylor RMSE’s were fluctuated for variation n. Furthermore,
based on Table 1, we can see that differences between Chebyshev RMSE’s and Taylor
RMSE’s are small. From this simulation results, we can’t conclude the best solution.
Therefore, for next analysis we use Chebyshev polynomial and Taylor series
approximation to approximate In |I — pW|in MLE.

4.2. Description statistics of HDI and its factors

The data used in this study were taken from BPS statistics (central Bureau of Statistic)
of Central Java province. Central Java Province consists of 35 districts. HDI for a
collection of geographic areas are commonly display on maps. The Map of Central Java
Province is presented in Figure 1. In this study, we use the human development index
(HDI) as response variable, population, number of poor people, gross enrollment rate,
district minimum wage and poverty line as predictors variables (Table 2). Summary
statistics for these variables are shown in Table 3.

Figure 1 Map of Central Java Province

Table 2. HDI data in Central Java province data 2017

District Populati Gross District Poor Povert
ID 1Stre HDI opu enrolme | minimu | peopl overty Neighbors
Name on line
nt rate mwage |e
1 Cilacap 68.9 1711627 | 87.28 1693690 | 13.94 | 307041 | 2,5,29
2 Banyumas 70.75 | 1665025 | 85.43 1461400 | 17.05 | 357748 é’;’94’5’27’2
3 Purbalingga 67.72 | 916427 | 72.83 1522500 | 18.8 313343 | 2,4,26,27
4 Banjarnegara | 65.86 | 912917 | 66.77 1370000 | 17.21 | 264387 2’3’5’7’25’2
Kebumen 68.29 | 1192007 | 104.89 1433900 | 19.6 325819 | 1,2,4,6,7
6 Purworejo 71.31 | 714574 102.81 1445000 | 13.81 | 325871 | 5,7,8
7 Wonosobo 66.89 | 784207 | 52.98 1457100 | 20.32 | 308553 3’3’56’8’23’2
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8 | Magelang 68.39 | 1268396 | 75.56 | 1570000 | 12.42 | 281237 567’9’22’23’
9 | Boyolali 7264 | 974579 | 77.45 | 1519290 | 11.96 | 293405 | 3101113,
Y : : : 14,15,22,31
10 | Klaten 7425 | 1167401 | 100.58 | 1528500 | 14.15 | 376305 | 9.11
11 | Sukohao | 75.56 | 878374 | 96.11 | 1513000 | 8.75 | 337037 2’110’12’13’
12 | Wonogiri 68.66 | 954706 | 86.58 | 1401000 | 12.9 | 284710 | 11.13
13 | Karanganyar | 7522 | 871596 | 83.11 | 1560000 | 12.28 | 340538 Z’ll 112,14,
14 | Sragen 724 | 885122 | 10649 | 1422590 | 14.02 | 292544 | 9.13.15,
15 | Grobogan 68.87 | 1365207 | 81.28 | 1435000 | 1327 | 345379 ?’91‘2"113’218’
16 | Blora 67.52 | 858865 | 84.82 | 1438100 | 13.04 | 291114 | 15.17.18,
17 | Rembang 68.95 | 628922 | 72.05 | 1408000 | 18.35 | 354440 | 16.18,
18 | pati 70.12 | 1246691 | 91.14 | 1420500 | 1138 | 393817 125616’17’19
19 | Kudus 73.84 | 851478 | 9335 | 1740000 | 759 | 373204 | 15:18:2021
20 | Jepara 7079 | 1223198 | 87.05 | 1600000 | 8.12 | 355607 | 18.19.21
21 | Demak 7041 | 1140675 | 91.7 1900000 | 13.41 | 371525 1353’19’20’22
8.9.15212
22 | Semarang 732 | 1027489 7821 [ 1745000 | 778 | 317935 | 3ot
23 | Temangeung | 68.34 | 759128 | 70.09 | 1431500 | 11.46 | 277707 | 7.8.22.24
24 | Kendal 70.62 | 957024 | 87.1 1774800 | 11.1 | 335497 ;’322’23 25,
25 | Batang 6735 | 756079 | 73.93 | 1603000 | 10.8 | 249292 3’7’24’26’3
26 | Pekalongan | 68.4 | 886197 | 5513 | 1583700 | 12.61 | 354435 3’4’25’27’3
27 | Pemalang 65.04 | 1296281 | 71.38 | 1460000 | 17.37 | 331584 | 2.3.26.28
28 | Tegal 6644 | 1433515 | 7544 | 1487000 | 9.9 | 319758 | 2.2927.35
29 | Brebes 64.86 | 1796004 | 76,51 | 1418100 | 19.14 | 382125 | 2.1.2835
30 | Magelangcity | 77.84 | 121474 | 10724 | 1453000 | 8.75 | 450908 | 8
31 | Surakartacity | 80.85 | 516102 | 103.55 | 1534990 | 10.65 | 448062 | 9.11,13
32 | Salatigacity | 81.68 | 188928 | 109.61 | 1596850 | 5.07 | 359944 | 22,
33 | Semarangcity | 82.01 | 1757686 | 107.82 | 2125000 | 4.62 | 402297 | 21.22.24
34 fietl;al"“g"‘“ 73.77 | 301870 | 92.04 1623750 | 7.47 | 390555 | 25,26
35 | Tegal city 73.95 | 248094 | 87.08 | 1499500 | 8.11 | 418845 | 29.28
Table 3. Summary statistics for response (HDI) and predictor variables
variables | N Mean StDev Min Ql Median Q3 Max
HDI 35 | 71.19 448 6486 | 68.29 7041 | 7384 | 82.01
Population | 35 | 978796 | 421350 | 121474 | 759128 | 916427 | 1246691 | 1796004
district 35 | 85.58 1454 | 52098 | 7544 86.58 | 96.11 109.61
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minimum
wage

district

minimum 35 | 1547905 | 157827 | 1370000 | 1435000 | 1513000 | 1600000 | 2125000

wage

The
number of
Poor
People

Poverty
line

4.3. Implementation model for the HDI data

For implementation the model to HDI data, we use the SAR model, MLE method, and
Chebyshev polynomial approximation with refer to simulation results. In addition, we
also use AMOEBA matrix as spatial weighted matrix in SAR model. In above
simulation, this matrix isn’t involve because it is created by algorithm, so it’s time
consuming. However, from our previous research [6], the performance of this matrix is
better than contiguity matrix.

Quantile map of HDI data in Central Java province are shown in Figure 2. Figure 2
show that dark blue color describe the district which is lowest HDI (64.9), turquoise color
describe the district which is second lowest HDI (64.9-66.4), and the dark brown color is
describe the district which is highest HDI.

Percentile: IPM17

B -1e00) 640649
I 1% - 10% ¢ [649:
[ 10% - 50% (14) [E6.
] soes - 90% (15) [70.
[ oo -99% (3) (778
B - 000 (a2 2]

[ ¥ dwr

Figure 2. Quantile map of HDI data in Central Java Province

From Figure 2, we can see that not all of adjacent districts have similar HDI value.
Therefore, this information is a clue to create spatial weight matrix such as W-AMOEBA
matrix, because the W-AMOEBA matrix can accommodate both spatial and nonspatial
component in the spatial modeling. Furthermore, for modeling HDI and it factors, we
use two spatial , W-Contiguity and W-AMOEBA matrices. In addition, to find logarithm
determinant of matrix I-pW, we use Chebyshev polynomial approximation as the best
performance as previous analysis (in section 3.1).
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Before the W-AMOEBA is created, we explore about significance of HDI in Central
Java province. Figure 3 shown that there are three cluster, high, medium and low
clusters. The high cluster describes districts which have highest HDI value around them.
Meanwhile, the low cluster describes districts which have lowest HDI value around them.

The ANOVA Table of SAR models with W-contiguity and W-AMOEBA are
presented in Table 3 and Table 4, respectively. Based on Table 3 and Table 4, we can
see that all of predictor variables are significant, so we can say that they are important
factors to explain HDI. The coefficients of population and poor people are negative.
This means that to improve HDI the population and poor people must be reduced. The
coefficients of district minimum wage, district minimum wage and Poverty line are
positive impacts. This means that if their factors (district minimum wage, district
minimum wage and poverty line) are increase, then HDI are also increase.

e

Figure 3. Significance of Clustering HDI use local Getis statistic

Table 3. ANOVA of SAR Model with W.contiguity

Coefficients: (asymptotic standard
errors)
Estimate Std. Error z-value  Pr(>|z))
Intercept 2.8002e+01 1.0140e+01 2.7614  0.0057547
Population -2.7181e-06 9.0475e-07 -3.0042  0.0026625

gross enrollment rate. 1.0511e-01 2.6621e-02 3.9484  7.868e-05
District minimum wage  5.5992¢-06 2.6923e-06  2.0797  0.0375500

Poor people -2.3157¢-01 1.1488e-01 -2.0157 0.0438268
Poverty line 2.5350e-05 7.5799e-06  3.3444  0.0008247
Rho: 0.31856, LR test value: 5.7208, p-value: 0.016765

RMSE : 1.8521

AIC: 159.36, (AIC for Im: 163.08)
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Table 4. ANOVA of SAR Model with W.AMOEBA

Coefficients: (asymptotic standard errors)
Estimate Std. Error  z value Pr(>[z))

(Intercept) 7.6212¢-01 8.3596e+00 0.0912 0.9273597
Population -2.3122e-06 7.8855e-07 -2.9322 0.0033654
gross enrollment rate 7.8151e-02 2.3704e-02  3.2970 0.0009771
District minimum wage 6.1336e-06 2.3495e-06  2.6105 0.0090401
Poor people -1.6678e-01 9.7846e-02 -1.7045 0.0882884
Poverty line 1.6648e-05 6.6573e-06 2.5008 0.0123927
Rho: 0.75119, LR test value: 13.354, p-value: 0.0002578

RMSE: 1.6251
AIC: 151.72, (AIC for Im: 163.08)

Evaluating of the performance of SAR model with W-contiguity and W-AMOEBA,
then we use criteria RMSE from that models. From the Table 3 and Table 4, we can see
that RMSE’s of SAR model with W-AMOEBA is smaller than RMSE’s of SAR model
with W-Contiguity. Therefore, we can say that accuracy of SAR model with W-
AMOEBA is better than of SAR model with W-Contiguity.

5. Conclusion

The difference in accuracy between Chebyshev polynomial and Taylor series
approximations are not significant the same. However, Based on the all simulation for
variation lag coefficient and sample size, Chebyshev polynomial slightly better.
Therefore, we used Chebyschev polynomial approximation to solve log determinant
matrix (I-oW) in the SAR model for modeling HDI data in Central Java Province.

Mapping plot of HDI values in Central Java Province shown that not all among
adjacent districts are similar. Based on this condition, to analysis HDI and their factors
in Central Java Province, we used two spatial matrix in the SAR models, W.contiguity
and W-AMOEBA matrix. To evaluate the performances of W-contiguity and W-
AMOEBA in SAR model, we used Chebyschev polynomial as approximation method in
MLE. The RMSE of SAR Model with W.Contiguity and W.AMOEBA are 1.8521 and
1.6251, respectively. Here, we conclude that the best model is SAR model with W-
AMOEBA.

Implementation of the selected model showed that to improve or increase HDI in
Central Java Province, the population and poor people and increasing must be decreased,
meanwhile of gross enrollment rate, district minimum wage and Poverty line of poor
people must be increased.
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