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Abstract
Betaphycus, Eucheuma and Kappaphycus (Gigartinales, Florideophyceae) are the most commercially important genera of the
family Solieriaceae that produce carrageenan. Here, three complete plastid genomes of Betaphycus gelatinus, Eucheuma
denticulatum and Kappaphycus striatus were fully sequenced using next-generation sequencing technology. Genome organiza-
tions and gene contents of the three plastid genomes were highly alike. They all had circular mapping organizations and the sizes
were 178,394 bp (B. gelatinus), 177,003 bp (E. denticulatum), and 176,763 bp (K. striatus). They encoded almost the same set of
plastid genes (238–240), including 202 to 204 protein-encoding genes, 30 transfer RNA genes (tRNAs), 3 ribosomal RNA genes
(rRNAs), 2 misc_RNAs (ffs, rnpB), and 1 transfer-messenger RNA gene (tmRNA). One group II intron interrupting the trnMe
gene was identified in each of these three plastid genomes. Other three plastid genomes from species of the order Gigartinales
including Kappaphycus alvarezii, Chondrus crispus and Mastocarpus papillatus have been reported. The plastid genome
organization at the level of the order Gigartinales was highly conserved. Co-linear analysis among the six plastid genomes of
the Gigartinales showed the considerable sequence synteny with the exception of one remarkable gene rearrangement. The
approximately 12.5-kb gene fragment from gene psaM to ycf21 in plastid genomes of the four species of the Solieriaceae was
completely reversed compared to that of M. papillatus and C. crispus. It might be used as the potential phylogenetic markers
uniting the species of the Solieriaceae. In addition, phylogenetic analysis based on 138 shared protein-encoding genes from 53
Florideophyceae plastid genomes indicated all species were clearly divided into five clades corresponding to their subclasses.
The results suggested there was a non-monophyletic relationship of the order Gigartinales. Four species of the family Solieriaceae
formed one clade and E. denticulatum was basal relative to the other three species. The novel plastid genomes expand the
available plastid pool for red algae which would facilitate the phylogenetic study in algae.
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Introduction

Species of the family Solieriaceae belonging to the order
Gigartinales are mostly distributed in the warm-temperate
and tropical waters throughout the world (http://www.
algaebase.org/, Guiry and Guiry 2020). They provide
important raw materials to extract carrageenan (Pereira et al.
2015), which has been widely used in food and chemical
industries. In the Solieriaceae, Betaphycus, Eucheuma and
Kappaphycus mainly producing ß-carrageenan, ι-carrageen-
an, and κ-carrageenan, respectively (Pereira et al. 2015), are
the most important economic genera (Li et al. 2018). They
have drawn much attention in recent years and many studies
on culture techniques (Adnan and Porse 1987; de Góes and
Reis 2011), genetic diversity (Liu et al. 2009; Zhang et al.
2011; Lim et al. 2014), and phylogenetic analysis (Fredericq
et al. 1999; Dumilag et al. 2014; Li et al. 2018) have been
carried out.

Species fromBetaphycus, Eucheuma andKappaphycus are
short of diagnostic morphological features due to their high
phenotypic plasticity in response to different environments
and culture times (Doty and Norris 1985). Therefore, all these
three genera are facing similar taxonomical challenges.
Recently, DNA sequences from nucleus (ITS and 28S
rRNA), plastid (rbcL and rbc S), and mitochondrion (cox1,
cox2–3 spacer) have been utilized for the phylogenetic sys-
tematics of Betaphycus, Eucheuma and Kappaphycus
(Fredericq et al. 1999; Conklin et al. 2009; Liu et al. 2012;
Tan et al. 2013; Dumilag et al. 2014; Sun et al. 2014; Lim et al.
2017). However, the previous works have been based on lim-
ited sequences which might not fully explore the evolutionary
relationship of the family Solieriaceae. Compared to a fraction
of genes, complete genomes contained adequate phylogenetic
information and could be used to resolve complex phyloge-
netic relationships (Zhou et al. 2012; Janouškovec et al. 2013;
Ma et al. 2014). Therefore, comprehensive surveys at the level
of the complete genome are needed.

To our knowledge, organellar DNAs are characterized by
uniparental inheritance and compact genome structure com-
pared to the nuclear genomes, thus they become the efficient
molecular tools for evolutionary studies. Plastids carrying ge-
netic information are semi-autonomous photosynthetic organ-
elles. Plastids of red algae are descendants of a primary endo-
symbiotic relationship in which a cyanobacterium was
engulfed by a heterotrophic eukaryote (Reyes-Prieto et al.
2007). Therefore, plastid genomes could provide valuable se-
quence information to trace the origin and evolution of pho-
tosynthesis in eukaryotes. Additionally, the smaller genome
size and higher copy number per cell than nuclear genomes
have made the plastid genomes easier for sequencing. Based
on these characters, plastid genomes have been recognized as
an effective approach to clarifying phylogenetic relationships
(Gao et al. 2010). Red algal plastid genomes are particularly

interesting due to the large gene content, compact organiza-
tion, and comparatively slow evolution. This suggests that
they might represent the ancestral state of primary plastids
(Janouškovec et al. 2013). Several recent surveys have used
plastid genomes to carry out the reconstructions and analysis
of phylogenetic relationships for red algae (Wang et al. 2013a;
Liu et al. 2018, 2019; Zhang et al. 2018).

As the next-generation sequencing technologies become
less expensive and more efficient (Heather and Chain 2016),
more and more sequencing projects of complete plastid ge-
nomes have been set up. Currently, nearly 300 plastid ge-
nomes are available among the algae and they are listed in
Table S1. However, only three of them were from species of
the order Gigartinales including one each from three families
Solieriaceae (Kappaphycus alvarezii), Gigartinaceae
(Chondrus crispus) and Phyllophoraceae (Mastocarpus
papillatus) (Collén et al. 2013; Sissinia et al. 2016; Liu et al.
2019). Here, we first characterized the complete plastid ge-
nomes of Betaphycus gelatinus, Eucheuma denticulatum and
Kappaphycus striatus and expanded the available plastid pool
of red algae. We obtained information about gene content,
genome structure, and organization of these plastid genomes,
and compared them with other available plastid genomes of
Gigartinales species. Further, we used this plastid genome
data for reconstruction of phylogenetic relationships and tax-
onomic study about Florideophyceae species with emphasis
on the relationships of the family Solieriaceae within the order
Gigartinales. The plastid genome information provided a
promising resource to conduct the molecular investigations
and study the phylogenetics of red algae.

Materials and methods

Sample collection and DNA extraction

Fresh thalli of Betaphycus gelatinus (specimen number:
2016050103, Fig. S1a) and Eucheuma denticulatum (speci-
men number: 2016070040, Fig. S1b) were collected from
Lingshui County, Hainan Province, China (18° 26′ 8″ N,
110° 4′ 1″ E) and thalli of Kappaphycus striatus (specimen
number: 2016100062, Fig. S1c) were collected from Takalar,
Indonesia (5° 23′ 46″ S, 119° 27′ 6″ E). Thalli were cultivated
at 24–26 °C in sterilized filtered seawater under fluorescent
light (80–110 μmol photons m−2 s−1; 12 h light/dark cycles).
Thalli were washed in autoclaved seawater and dried with
paper towels before use. These specimens were all stored in
the Culture Collection of Seaweed at Ocean University of
China.

Genomic DNA was extracted from approximately 2 g of
fresh tissue using the improved cetyltrimethylammonium bro-
mide (CTAB) method (Sun et al. 2011). β-Mercaptoethanol
was used to inhibit the oxidation of phenols in the samples and
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two concentrations of CTAB (2% and 10%) were added to
remove polysaccharides. The quality and quantity of DNA
were detected using NanoDrop ND1000 spectrophotometer
(Thermo Fisher Scientific, USA).

High-throughput sequencing and assembly

Three short-insert libraries were constructed using approxi-
mately 5 μg of purified DNA for each species following the
instructions of manufacturer (Illumina Inc., USA).
Approximately 9 Gb of paired-end sequence data was ran-
domly extracted from the total sequencing output, as input
into SOAPdenovo (Luo et al. 2012) with default assembly
parameters to assemble the plastid genomes. Two plastid ge-
nomes from Chondrus crispus (GenBank accession number:
NC_020795) andKappaphycus alvarezii (GenBank accession
number: KU892652) were used as the reference sequences to
determine the proportion of plastid-related contigs.
Subsequently, all plastid-related contigs were aligned and or-
dered into a circular structure using CodonCode Aligner
(CodonCode Corporation, USA) (Liu et al. 2019).

Annotation and comparative genome analysis

The protein-encoding genes, rRNA genes, introns, and
tmRNA gene of the three species were annotated based on
those of C. crispus and K. alvarezii using Geneious R10
(Biomatters Ltd., New Zealand; available from http://www.
geneious.com/). The tRNA genes were predicted using
tRNAscan-SE version 1.21 (http://lowelab.ucsc.edu/
tRNAscan-SE/) (Schattner et al. 2005). The physical maps
of these three plastid genomes were obtained using
Organellar Genome DRAW (OGDRAW) version 1.3.1
(https://chlorobox.mpimp-golm.mpg.de/OGDraw.html)
(Greiner et al. 2019). Sequence alignment and base composi-
tion were conducted using MEGA 6.0 (Tamura et al. 2013).

The plastid genomes of six reported species from the order
Gigartinales were aligned using progressive Mauve genome
aligner at the default settings with Geneious software (Kearse
et al. 2012). Comparison of the plastid genomes among six
species from the order Gigartinales and Riquetophycus sp.
from the order Peyssonneliales was made using Mauve in
order to better clarify the evolutionary relationship of four
species from the family Solieriaceae within the order
Gigartinales.

Phylogenetic analysis

Phylogenetic analysis of Florideophyceae was conducted
using 138 shared plastid protein-encoding genes from 50 plas-
tid genomes available at the GenBank database and three
plastid genomes obtained in this work. Cyanidioschyzon
merolae (GenBank accession number: NC_004799) served

as the outgroup. Each protein sequence was aligned individu-
ally using MEGA 6.0 and then the entire concatenated align-
ment was generated manually using BioEdit (Hall 1999). The
concatenated protein alignments with conserved regions were
generated and poorly conserved regions were removed using
the Gblocks server (http://phylogeny.lirmm.fr/phylo_cgi/one_
task.cgi?task_type=gblocks) (Castresana 2000), then the
alignment was reduced from the original 33,839 positions to
26,849. To reconstruct the phylogenetic tree, the best-fit mod-
el for maximum-likelihood (ML) was selected using ProtTest
3.4.2 (Darriba et al. 2011). ML analysis was conducted using
RAxML (Stamatakis 2006) with 1000 replications under the
CpREV + G + I + F model. The Bayesian inference (BI) was
performed based onMrBayes version 3.1.2 (Huelsenbeck and
Ronquist 2001) using CpREV model. The phylogenetic anal-
ysis was performed using two independent runs with four
Markov Chains, which ran for 1,000,000 generations until
the average standard deviation of split frequencies was below
0.01. Output trees were sampled every 100 generations. In
addition, the first 25% of samples was removed as burn-in.
The remaining trees were used to build a 50% majority rule
consensus tree accompanied with posterior probability values.
FigTree version 1.3.1 (http://tree.bio.ed.ac.uk/) was used to
display and edit the phylogenetic tree (Rambaut 2009).

To further elaborate the phylogenetic relationship of
Betaphycus, Eucheuma and Kappaphycus, seven plastid
genes (atpB, infB, psbA, psbB, rbcL, rps7, rps12) combined
with six mitochondrial genes (atp6, cob, cox1, nad1, nad4,
nad5) were employed to reconstruct phylogenetic trees by
ML and BI methods. Riquetophycus sp. was used as the
outgroup.

Results

Genome features

The plastid genomes of B. gelatinus, E. denticulatum and
K. striatus were assembled as a single circular molecule with
the length of 178,394 bp, 177,003 bp, and 176,763 bp, respec-
tively. The average GC contents of the plastid genomes were
28.93% (B. gelatinus), 29.61% (E. denticulatum), and 29.35%
(K. striatus), which are similar to those previously reported
Gigartinales species. In general, Florideophyceae species have
large plastid genomes ranged from 91 to 194 kb in size and
lower GC contents of about 29.00%.

All of the three complete plastid genomes were submitted
to GenBank under the following accession numbers:
MN240356 (B. gelatinus), MN240357 (E. denticulatum) and
MN240358 (K. striatus). General features of the six reported
complete plastid genomes from the order Gigartinales includ-
ing four species from Solieriaceae (B. gelatinus ,
E. denticulatum, K. striatus and K. alvarezii), one species
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from Gigartinaceae (C. crispus) and one species from
Phyllophoraceae (M. papillatus) are summarized in Table 1.

The three plastid genomes were predicted to encode a total
of 238–240 genes including 202–204 protein-encoding genes,
30 tRNA genes, 3 rRNA genes, 2 misc_RNAs (ffs, rnpB), and
1 tmRNA gene (ssrA), which are in the same range as those of
reported Gigartinales species (Table 1). The only difference in
gene content among the three genomes was the absence of two
protein-encoding genes (pbsA, ycf57) in K. striatus, and
which are present in B. gelatinus and E. denticulatum.
Genes were encoded on both the heavy and light strands and
each strand in two opposite directions had approximately the
same encoding proportion (Fig. 1). All tRNA genes ranged
from 71 to 89 bp in size, and one group II intron interrupting
the trnMe gene was identified in all the three plastid genomes.
For these three plastid genomes, all of the rRNA genes
retained a single copy, which was in accordance with the ma-
jority of Florideophyceae species. Compared with previously

published plastid genomes of the Gigartinales species, there
was a high conservation in gene content and genome organi-
zation. Only the plastid genome of M. papillatus showed a
smaller gene content (234 genes), tmRNA, misc_RNA, or
intron was not identified.

The coding sequence regions in the plastid genomes of
B. gelatinus, E. denticulatum and K. striatus ranged from
153,570 bp to 154,927 bp, accounting for 87.96%,
87.41%, and 86.88% of the corresponding plastid genome.
The total spacer sizes in B. gelatinus, E. denticulatum, and
K. striatus plastid genomes were 19,497 bp, 20,284 bp,
and 21,226 bp which were smaller than C. crispus
(24,270 bp) and M. papillatus (32,023 bp). Together with
K. alvarezii, the four plastid genomes from the family
Solieriaceae had more compact organization. Moreover,
the general organization of K. striatus plastid genome
was approximately the same as that of congeneric
K. alvarezii by overall comparison. Insertions or deletions

Table 1 General features of the complete plastid genomes available in the order Gigartinales

B. gelatinus* E. denticulatum* K. striatus* K. alvarezii# C. crispus# M. papillatus#

Solieriaceae Gigartinaceae Phyllophoraceae

Accession number MN240356 MN240357 MN240358 KU892652 NC_020795 NC_031167

Genome size (bp) 178,394 177,003 176,763 178,205 180,086 184,382

Overall G + C content (%) 28.93 29.61 29.35 29.56 28.73 29.05

Predicted coding sequence (%) 87.96 87.41 86.88 86.19 85.44 82.63

Pairs of gene overlaps 11 11 10 10 7 8

Total spacer size (bp) 19,497 20,284 21,226 22,644 24,270 32,023

Predicted total gene content 240 240 238 238 240 234

rRNA/tRNA/CDS content 3/30/204 3/30/204 3/30/202 3/30/202 3/30/204 3/29/202

Intron number 1 1 1 1 1 0

tmRNA 1 1 1 1 1 0

misc_RNA 2 2 2 2 2 0

Start codons: ATG 193 191 189 189 190 200

Start codons: GTG 8
(chlI, infC,
petN, psbC,
rbcS, rpl3,
rps8, ycf63)

10
(atpD, chlI,
infC, petN,
psbC, rbcS,
rpl24, rps8,
ycf91, ycf63)

10
(chlI, infC,
petN, psbC,
rbcS, rpl3,
rpl24, rps8,
ycf63, ycf64)

10
(chlI, infC,
petN, psbC,
rbcS, rpl3,
rpl24, rps8,
ycf63, ycf64)

9
(chlI, infC,
psbC, rbcS,
rpl3, rps8,
trpG, ycf37,
ycf63)

1
(infC)

Start codons: TTG 3
(ycf27, ycf57,
ycf20)

3
(ycf27, orf712,
trxA)

3
(ycf27, trxA,
ycf20)

3
(ycf27, trxA,
ycf20)

5
(Orf64, ycf27,
ycf20, trxA,
ycf65)

0

Start codons: ATA 0 0 0 0 0 1(ycf86)

Stop codons: TAA 152 140 142 142 158 150

Stop codons: TAG 36 44 39 39 33 33

Stop codons: TGA 16 20 21 21 13 19

Reference This work This work This work Liu et al. 2019 Janousˇkovec et al. 2013 Sissinia et al. 2016

*Obtained in this work
# To ensure the comparisons with accuracy and consistency, the plastid genome sequences of K. alvarezii, C. crispus and M. papillatus have been re-
annotated and reanalyzed with the same method as those in the plastid genomes of B. gelatinus, E. denticulatum and K. striatus
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Fig. 1 Gene maps of plastid genomes of B. gelatinus (a), E. denticulatum (b), and K. striatus (c). Genes on the outside of the maps are transcribed in a
clockwise direction, whereas those on the inside of the maps are transcribed counterclockwise
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were rare, except for the existence of 1426 nucleotides, one
intergenic region which was located between rrs and ycf27
in the plastid genome of K. alvarezii. The total intergenic
region size of K. striatus was 21,226 bp whereas that of
K. alvarezii was 22,644 bp. The lengths of these two plas-
tid genomes varied mainly due to the difference of the
intergenic region.

Six reported plastid genomes of the order Gigartinales
were compact. Ten pairs of gene overlaps were found in
plastid genome of K. striatus with overlap length of 1–
26 bp (carA-ycf53, ccs1-trpG, ycf60-rps6, psbD-psbC,
orf146-groEL, trnH-ycf29, rpl24-rpl14, rpl23-rpl4, atpF-
atpD, and psaL-trnT), which were the same as those of
K. alvarezii. These ten overlaps were conserved in the
plastid genomes of the four Solieriaceae species. Besides
the ten conservative overlaps, plastid genome of
B. gelatinus had one additional overlap (pbsA-rpl35) and
E. denticulatum with another one (rpl21-rpl27). There
were seven overlaps in plastid genome of C. crispus and
eight in M. papillatus. Four overlaps of trnH-ycf29, rpl24-
rpl14, rpl23-rpl4, and atpF-atpD were conserved in all
reported plastid genomes of the order Gigartinales.
Notably, the overlapping regions of rpl23-rpl4 were also
observed in some plastid genomes of brown algae and di-
atom indicating the high conservation.

Protein-encoding genes

In terms of predicted protein-encoding gene content,
B. gelatinus, E. denticulatum, and K. striatus encoded 202–
204 plastid genes which were very similar with the available
plastid genomes of the Gigartinales. Several ancient genes such
as glnB, chlB, chlL, and chlNwere absent in plastid genomes of
four species from the Solieriaceae. In total, 198 protein-
encoding genes were shared by the six plastid genomes of the
Gigartinales that represented the majority of the plastid gene
content (97.06% of all plastid genes of B. gelatinus,
E. denticulatum, C. crispus, and 98.02% of K. striatus,
K. alvarezii, andM. papillatus). Venn diagram comparing gene
contents revealed the shared and/or unique genes in plastid
genomes of the Gigartinales (Fig. 2). The plastid genomes of
B. gelatinus and E. denticulatum contained six additional genes
(orf145/146, hisS, acsF, pbsA, ycf57, and dfr), whereas two
species of Kappaphycus did not have genes pbsA and ycf57.
Gene orf148was specific to plastid genome ofC. crispuswhich
did not have gene dfr. The plastid genome ofM. papillatus did
not have genes orf145/146/157, hiss, acsF, pbsA, and dfrwhile
had three specific genes (syh, ycf59, and ycf26).

Nearly all the protein-encoding genes used ATG as the start
codon in plastid genomes of B. gelatinus (193, 94.61%),
E. denticulatum (191, 93.63%), and K. striatus (189,

Fig. 1 (continued)
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93.56%). In addition to ATG, TTG and GTG were also used
as start codons. TTG was used as the start codon for genes
ycf27, ycf57, and ycf20 in plastid genome of B. gelatinus, for
genes ycf27, orf712, and trxA inE. denticulatum and for genes
ycf20, ycf27, and trxA inK. striatus. About 8–10 plastid genes

including atpD, chlI, infC, petN, psbC, rbcS, rpl3, rpl24, and
rps8, etc., used GTG as the start codon (Table 1).

All three typical stop codons (TAA, TAG, and TGA) were
identified with an obvious preference to TAA amounting for
74.51% in plastid genome of B. gelatinus, 68.63% in

Fig. 3 Whole-genome multiple alignments of six plastid genomes from the order Gigartinales using Mauve software

Fig. 2 Venn diagram of protein-
encoding gene content of plastid
genomes from six reported spe-
cies of the order Gigartinales
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E. denticulatum and 70.29% in K. striatus. They were similar
to those of K. alvarezii, C. crispus and M. papillatus.

Comparative analysis

Detailed characteristics of gene order based on co-linear anal-
ysis for six complete plastid genomes of the order Gigartinales
are shown in Fig. 3. The results showed that six plastid ge-
nomes were highly conserved and there was considerable se-
quence synteny among all the reported species except one

remarkable gene rearrangement. The approximately 12.5-kb
gene fragment from gene psaM to ycf21 in plastid genomes of
four Solieriaceae species (B. gelatinus, E. denticulatum,
K. striatus and K. alvarezii) was completely reversed to that
of other two Gigartinales species (M. papillatus and
C. crispus). Co-linear results of the plastid genomes among
six species from the order Gigartinales and Riquetophycus sp.
from the order Peyssonneliales showed that gene order from
gene psaM to ycf21 of Riquetophycus sp. was completely
opposite to those of four species of the Solieriaceae, while

Fig. 4 Phylogenetic tree (ML and BI) of 53 species from
Florideophyceae based on 138 shared plastid protein-encoding genes.
The support values for each node are shown from maximum-likelihood

bootstrap and Bayesian posterior probabilities. Asterisks indicate newly
sequenced B. gelatinus, E. denticulatum, and K. striatus in this work
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consistent with those of M. papillatus and C. crispus.
Additionally, another reversed fragment with the length of
about 18.5 kb from gene ycf46 to trnNwas identified in plastid
genomes of the order Gigartinales compared toRiquetophycus
sp. (Fig. S2).

Phylogenetic analysis

Phylogenetic analysis was performed based on 138 shared
protein-encoding genes from 53 available plastid genomes of
Florideophyceae using both ML and BI methods in order to
elucidate the global phylogeny. The ML and BI phylogenetic
results both showed that all species were clearly divided into five
groups corresponding to their subclasses: Rhodymeniophycidae,
Ahnfeltiophycidae, Corallinophycidae, Nemaliophycidae and
Hildenbrandiophycidae (Fig. 4). Six species of the order
Gigartinales were separated into two clades. Four species of the
Solieriaceae and Riquetophycus sp. from the order
Peyssonneliales formed one clade, while C. crispus
(Gigartinaceae) and M. papillatus (Phyllophoraceae) formed an-
other clade. The phylogenetic trees inferred by ML and BI
methods were concordant except for the clade about four
Solieriaceae species and Riquetophycus sp. with low bootstrap
support (22) but high posterior probability value (1.0). The phy-
logenetic relationship of the family Solieriaceae within the order
Gigartinales was reconstructed. Four species of the Solieriaceae,
B. gelatinus, E. denticulatum,K. striatus andK. alvarezii, formed
one sub-clade. Within this sub-clade, K. striatus and
K. alvarezii had a closer relationship with B. gelatinus
than E. denticulatum. The overall topologies from these
four species of the family Solieriaceae based on seven
plastid genes and six mitochondrial genes were consis-
tent with the above results (Fig. S3).

Discussion

In this study, the complete plastid genomes of B. gelatinus,
E. denticulatum andK. striatus from the family Solieriaceaewere
characterized which expanded the available plastid pool of red
algae.

Most of the genes found in plastid genomes from the red
lineage have been identified in this work. Among the plastid
genomes of red algae, species of the Solieriaceae maintained
less ancient gene content. Genes glnB, chlB, chlL, and chlN
were absent in the family Solieriaceae while were present in
the family Bangiaceae (Wang et al. 2013a). The absence of
these ancient genes revealed that species of the Solieriaceae
were more advanced multicellular red algae. Additionally, we
found plastids of red algae had the larger coding capacity
compared with reported plastid genomes of brown algae
(Wang et al. 2013b; Zhang et al. 2015; Liu and Pang 2016).
According to a report about plastid genomes of algae, the large

protein-encoding gene content might play a crucial role in
stabilizing the photosynthetic mechanism to resist high stress
associated with adaption to intertidal environments (Ji et al.
2010). Additionally, plastid genomes from most species of
Florideophyceae including B. gelatinus, E. denticulatum,
and K. striatus retained a single copy of the rDNA operons.
In contrast, most of the early-diverged classes in the red algae
contain two copies of operons. Previous reports demonstrated
that duplicated rDNA operons or inverted repeats containing
rDNAs were widely distributed in primary and secondary
plastids as well as in cyanobacterial genomes (Wang et al.
2013b; Lee et al. 2016; Liu and Pang 2016). This suggests
there was the loss of one copy in plastid genomes of the most
Florideophyceae species in the evolution.

The gene content in plastid genomes among six species of
the Gigartinales was similar. The six plastid genomes have a
common core set of 198 protein-encoding genes which repre-
sents the majority of the plastid gene content. Here, missing or
unique genes are mainly related to genes orf and ycf such as
orf145/146/157, orf148, and ycf57, ycf59, and ycf26. The
functions of these genes are to encode the conserved hypo-
thetical proteins; therefore, the effect of their deletion in the
plastid genomes was difficult to access. However, we noticed
that gene pbsA was absent in the plastid genomes of
K. striatus,K. alvarezii andM. papillatus, while it was present
in most marine red algal species (Cho et al. 2018). Gene pbsA
was known for encoding heme oxygenase contributing to the
iron controlling system. It has two additional copies (HMOX1
and HMOX2) that have been reported in the nuclear genomes
of some red algae. It is well known that genes could be trans-
ferred to the nucleus through endosymbiotic gene transfer
(Graf et al. 2017). Although gene loss is a common event
throughout plastid genome evolution, previous research
showed that functional requirement as demonstrated in pbsA
might have prevented gene loss during the long evolutionary
history of red algal plastid genomes (Cho et al. 2018). In
Chlamydomonas reinhardtii from Chlorophyta, two nuclear-
encoded heme oxygenases have been named as HMOX1 and
HMOX2 and there is no gene pbsA in its plastid genome
(Duanmu et al. 2013). Therefore, we deduce that red algae
lacking gene pbsA in the plastid genome might have its ho-
mologs in the nucleus. However, we were unable to locate the
homology sequences to gene pbsA in the nuclear genomes of
K. striatus, K. alvarezii andM. papillatus because there are no
corresponding nuclear genomes available.

Among all the available plastid genomes from the
Gigartinales species, the majority of protein-encoding plastid
genes used ATG as the start codon, and a few genes used GTG
and TTG as the start codons. In particular, gene ycf86 used
ATA as the start codon in the plastid genome ofM. papillatus.
Apart from the standard start codon ATG, GTG was another
commonly used start codon, which was mainly present in
bacteria. Analysis of organellar genomes revealed that several
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plastid genes and mitochondrial genes used GTG as the start
codon in both red algae and brown algae (Corguille et al.
2009; Wang et al. 2013a, 2013b; Zhang et al. 2013; Li et al.
2018; Liu et al. 2019). In four species of the Solieriaceae, the
start codon GTG was mainly utilized in the specific plastid
genes, showing a conserved evolutionary process of these
genes. TTG, which was known as unusual start codon in
eubacteria and archaea, was located in frame upstream from
the originally proposed ATG start codon (Golderer et al.
1995). Heretofore, TTG as the start codon has been found in
some plastid genes in the red lineage, while it has not been
identified in brown algal plastid genomes which are
descended from the red algae plastid. This provides the evi-
dence that red algae are more primitive than brown algae.

Co-linear analysis indicated six reported plastid genomes from
the order Gigartinales were conserved in genome structure and
organization, except the specific gene rearrangement of an 12.5-
kb gene fragment from psaM to ycf21. This rearranged fragment
was identified for the first time in the plastid genome of
K. alvarezii from the family Solieriaceae (Liu et al. 2019). The
three new plastid genomes of the family Solieriaceae had the
same gene inversion comparedwith other two species of the order
Gigartinales, which implied that this phenomenon might be
unique to the Solieriaceae. Several inversion events have been
recognized as effective phylogenetic markers, such as a 30-kb
inversion found in all living vascular plants (Raubeson and
Jansen 1992) and two short inversions putatively shared by all
ferns (Roper et al. 2007;Gao et al. 2009).Wemight propose 12.5-
kb inversion to be potential phylogenetic markers uniting the
Solieriaceae species. In plastid genomes of Florideophyceae, an-
other four gene inversions among three orders (Gracilariales,
Gigartinales and Peyssonneliales) have been reported (Liu et al.
2019), indicating the rearrangements could occur at the order level
in red algae. Furthermore, our findings showed that gene inver-
sions of plastid genomes could also occur at the family level. In
general, we assume gene rearrangements such as reordering of
genetic elements mainly were caused by repeated inversion.
However, no inverted sequences were detected at the junction
area between the rearranged fragments and their contiguous re-
gions and no shared feature was determined. There is an alterna-
tive point that illegitimate recombinations are thought to be the
major cause of gene rearrangements (Boudreau and Turmel
1995). The mechanism of gene rearrangement deserves to be
researched in depth.

The phylogenetic relationship revealed by this study is similar
with previous reports (Yang et al. 2015; Lee et al. 2016; Liu et al.
2019). However, the phylogenetic analysis within the family
Solieriaceae is inconsistent with previous observation from mi-
tochondrial genome. Within the Solieriaceae clade,
E. denticulatum was basal relative to other three species in this
study, whereas B. gelatinus was basal species based on
concatenated mitochondrial genes (Li et al. 2018). We recon-
structed phylogenetic trees based on both plastid and

mitochondrial genes in order to further verify the phylogenetic
relationship of Betaphycus, Eucheuma and Kappaphycus. The
overall topologies (ML and BI) were consistent with the trees
constructed using the plastid genomes. It was supposed that plas-
tid genomes could provide more evolutionary information com-
pared with mitochondrial genomes (Xu et al. 2018).

Here, one interesting finding of phylogenetic analysis was
the relationship between four species of the family
Solieriaceae and other two Gigartinales species (C. crispus
and M. papillatus). Based on mitochondrial genomes,
C. crispus and M. papillatus were clustered with four
Solieriaceae species firstly in the ML tree (bootstrap support =
48), but they were firstly clustered with Riquetophycus sp. in
the BI tree (posterior probabilities = 0.57) (Li et al. 2018). In
this study, four Solieriaceae species and Riquetophycus sp.
clustered together firstly with low bootstrap support (22) in
the ML tree but with high posterior probability values (1.0) in
the BI three. Therefore, it was difficult to state these phyloge-
netic relationships precisely due to the low bootstrap and pos-
terior probability values. The uncertain phylogenetic results
may be due to limited taxon sampling and insufficient geno-
mic data available. Combined with the results of co-linear
analysis, we deduced the family Solieriaceae in the order
Gigartinales had relatively significant differentiation. All of
them might imply there was a non-monophyletic relationship
of the order Gigartinales. In any case, we could not fully
resolve the phylogenetic relationships among the family
Solieriaceae based on the existing molecular data. Therefore,
further investigations, not only on molecular phylogeny of
more taxa but also on the cytology, should be conducted to
refine the above research.
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