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Abstract

In this paper, we discuss the propagation of water wave over varying
bottom using AB equation as governing C{gtion, The AB equation is
an improvement of the KdV equation and can be interpreted as higher
KdV equation for wave above finite depth and under certain
approximation it becomes the KdV equation [3]. We solve the
equation using asymptotic method with bichromatic wave as a signal
input, then we apply the varying bottom to the operators of AB
equation that contain exact dispersion relation. We observe the
propagation of the wave that produced over a slope bottom and find
the position of maximal amplitude and amplification of the wave.
Comparison the result with the AB equation for flat bottom to study
the different characteristic of each other will be studied.

1. Introduction

The wave propagation is an interesting problem that we discuss today,
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especially in determining the position of maximal amplitude of the wave and
its amplification. By using asymptotic method, the position maximal
amplitude of the wave and its amplification was discussed for AB equation
over flat bottom by Mashuri et al. [5S]. The AB equat'an that used in the
literature is improvement of the KdV type equation and can be interpreted as
a higher KdV type for wave above finite depth and under certain
approximation it becomes the KdV equation [2, 3] and [5]. In this paper, we
use the AB equation to study bichromatic wave propagation but for varying
bottom and compare the results with the constant bottom, especially in
determining the position of maximal amplitude of the e and its
amplification using maximal temporal amplitude (MTA). The paper is
organized as follows. In Section 2, we wi@iiscuss mathematical model
equation that used in the paper. Here, the equation that proposed by
Groesen and Andonowati [3] is modified for varying bottom. The dispersion
relation of the AB equation is replaced for varying bottom. It means that the
dispersion relation is depended on space. The ggyiew of the solution of AB
equation using asymptotic method is discussed in Section 3. In Section 4, we
discuss the propagation ﬁhe wave based on the asymptotic solution. In the
section also we discuss the maximal temporal amplitude and the amplitude

amplification factor of the wave. Conclusion will be given in Section 5.

2. Mathematical Model Equation

In the simplest second order wave equation, the elevation of surface
water wave on the constant depth /g is given by n(x, t) with the propagation
of wave is described by the equation 6,271 = c{}@j’;n, where ¢y = \/% The
unidirectional of the equation is given by &,n = —cyd,n. Above varying
bottom A(x), the wave equation becomes 6,271 = x)za_gn, where ¢(x) =
Jgk—(x), while in the linear water wave equation with the exact dispersion
relation ® = Q(k, i) for theﬁt bottom /, the unidirectional wave is

cribed by dm = -Q(k, hy)n. Above varying bottom A(x), the exact

dispersion relation becomes @ = Q(k, A(x)).
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In this section, we use AB-equation that proposed by Groesen and
Andonowati [3]. The equation describes the unidirectional water wave on the

flat bottom /; and is given by

o= Lo oot Lo K]

o.C

Ox

Ve

with 1 represents elevation of wave, 4 = and B = JEC_I represent

pseudo-differential operator with the symbol C(k) = %, Qk) =
tanh (k/ . o
cok %, cg =+ ghy and g represents acceleration of gravitation.
0

In the PEF" of [3] and [5], the exact dispersion relation of the AB
equation (1) is given by ® = Q(k, k). The dispersion relation is for the

wave over the flat bottom. For the varying bottom A(x), it becomes
Qlk, h(x)) = Jgh(x)k tanh x)) =/ gk tanh(kh(x)). 2)

3. Asymptotic Solution of the Mathematical Model

The third order asymptotic solution of the wave equation for flat bottom
case was discussed in [4] where the asymptotic solution founded for the
mKdV equat'a and in [5] where the solution also obtained for AB equation.

The solution is given by

S @ @y @ 3)

with nm is the solution of order i. T]E,) is free wave of order i. The free

waves are taken here if we want to prescribe the bichromatic wave as a signal
input, it means that the bound waves should be compensated by 2nd- and

3rd- order free waves. As in [5], the bichromatic wave is chosen for the first

order of the solution n“) and written by
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T]“) =ae'® +ae® + ce (4)

with 0, = kyx — o4 and c.c means conjugate complex. The dispersion

relation of the solution is given by w, = Q(k,, 4(x)), while the second and

third order solutions are, respectively,

n? = a21€7%% + arpe®®- + a4y e‘w +0-) 4 a24ei(9‘_9—) +ce  (5)
and
e }=a3|e B 1 a3’ +agy ¢!(20++0_ }+a e‘( 0_+6,)
+ a3sei(29—_9—) + a369i(29—_9—) +c.c (6)

with their coefficients for constant depth A, are given in Mashuri et al. [5].

For the varying bottom, the constant depth is replaced by the varying depth

h(x), and the second order coefficient of the solution will become

o a _ o
Jg 42k - 2iw, 27 JgA2k9) ~ 2i

o3

Jeak? + k) —i(o, + 0_)’

ap) =

day =

4

arg =
# JgA(k? = k) — (o, - o

with

a1 = ~ga?| - § A2 ACKD) + 5 A 42 k)

1 1
oy = JE[ A7) 4K) + 5 Ak D) 4 2k ?)

# 3 B0 AK) ¢ 1 5 BERO) a2 |




On the Bichromatic Wave Propagation over Varying Bottom 841

| |
oy = -Jgaz[- EA(kEP})A(kEO})A(kP} + k) 4 5(A(;(g‘”)

4
" A(k.EO)))AQ(kP} + 69+ %B(ﬂo})B(ﬂo})A(ﬂo} + £9)
+ 2 (B + BEO) B + K0) A + k@)},
g = -JgazB AR 4% ) 46 — @) 4 %(A(k@)

(4)
~ A 2,0 - @) 4 %B(kgﬂ})g(k@)u(ﬂ“} - k)
¥ %(3(;;&0)) + B(©) B - k) 4, - k@)},

while for the third order solution, the coefficients of the solution will become

az = P , a3y = Py >
“3im, + /g A(3kLY) T 3o+ [gA3kY)
a3 = Py
~i(2m, + o)+ /g A2kl + £y
ass = By
~i20_ + o, )+ g A2k + 0y’
ass = Bs
-i(20, — o) +/gA2k - )
a3e = Ps
~i20- —o,)+ g A2k - k(%)
with

Bi = Vg [ 5 aay AU AQK) + 3 aay (AGKD) + 4CKL)) AGK)
24
5 aay B B+ aay (BR) + BK)) BGH) |

A3
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1 1
B2 = —\/EI:— EaazzA(kEO) )A(2k£0}) + Eaazz (A(kg}}) ar A(2k£0} ))A(3){’£0})
1 0y, 1 (0) (0) (0)
+56161223(1{’_ )B(2k_ )+5&&22(B(;{’_ )+ B(Z){’_ ))3(3){’_ )
- A3k
By = g [— 3 a3 ARD) AGKD + K O) — 2 aay, aK) KD
[ L gy (4®) + 460 5 £0)) 1 By (4K ) + 424 0))
5 4423 + + = 2“21((—+(+
A2k 4 k) 4 %aaﬂg(ﬂﬂ))g(ﬂﬂ} IO
- %aa;Z,B(kEO})B(ZkP}) ¥ [% aar(B(O) + B + £(0)y)
|
+ 5 aay (B + 3(2;«@))]3(2;«@ + kﬁﬂ})}
. A(zk_{'_ﬂ) +k£0})el(28__+9_},

ﬁ4 = —\/EI:— %aaBA(kEﬂ))A(kEP) ar kgﬂ}) - %aazzA(k_{'_ﬂ))A(zkgﬂ))

; [% aan; (AGD) + 4k + £O)) 4 ?aazz(A(ﬂP) )+ A(2k£0})))
- AK 4 10y 4 %aaBB(ﬂo})B(ﬂo} + k)
- %aazzg(k@)s(zk@) " [% aar3 (B + B + £(0)y)

3
T %aazz (B + 3(%@)))3(2;«@ T kﬁ”)}

. A(Zk@) + kio})ei(28_+ 0.),
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Bs =~z [— Zaar ARD) AR ~KO) + 2 aay aK?) 4KD)

+ [% aary (A + A ~ k) + 2 aay (424D) - A(k@))j
Ak ;) %aayrB(kErO})B(kP} — k)
; %aamB(kEO})B(ZkP}) ¥ [% aang(Bk®) + Bk — £y
|
+ 1 aay, (BA) - 3(&@)))3(2&0) - k&‘”)}

- Ak — k(0)i20:76-),

Bs = g B aany AP A = k) + 3 aayy AK) 4Ky

. [% s (CAED) ~ A ~ KO) Ly, (4O~ "P}))j

- AQ2K© — () 4 %aayrB(kEO})B(kP} - k)
; %aazgg(k@)s(zki“)) " [% aary(B©®) + B + £(0)y)

" %aagg (B(k) + 3(2k£ﬂ}))j3(2k£“} - kﬁ”)}

-A(2k£0) —k&o))e"(m—”’*),
B7 = -\EB aay AK) A(2k() - %aazm‘l(ﬂm)r‘l(ﬂ?} )
+ 2 aa ARO)AED + 1) 4 [% aay (A2 - ak®))

B %aayr (A - £ 1 4y
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o~ |

+ l adny (A(k

: 0) | 4 ©)_ A(k&o)))jA(kg‘”)

+

; %aazlg(kf})g(zki“}) ; %m243(k£°})3(k£0} - k)
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_
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| |
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; %aaBA(kEP})A(kEP} + k)

. [%aagg(fl@k@}) — AKO)) + T aary (A - K0)
+ AKO) + Ly (4O + 0)) - A(k{ﬁ})))A(k{O})
+ B 23 + - + +
25
, %aazzB(ﬂO})B@k@}) ; %aamg(ﬂ“))g(ﬂﬂ) — k)
, %aaBB(kErO})B(kEP} + K0y [% aary (B2k?)+ B )
+ 5 aary (B = K0) + B

+ 3 aayy (B + £9) + 3(&@)))3(&&0))}A(ﬂ“))e‘“a

4. Propagation of Bichromatic Wave over the Sloping Bottom

In this section, we discuss the propagation of the bichromatic wave over

sloping bottom which is given in the following figure:
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. Region Il Region Il
Sk Region | 0.5m

x=150m

x=0m x=100m

Figure 1. The sloping bottom condition of the wave tank with 5m depth for
region I (0-100m) and 0.5m for region III (150-200m).

The propagation of the bichromatic wave in region I at the position x =
90 m for Sm depth is given in Figure 2. The amplitude of the case is 0,193 m
and higher than the signal input which has amplitude 0,16 m. For this case we

OO 31436hz and v = 20~ 1575he.

take frequency ® = 3 3

T— — —

T ) e

Figure 2. Signal at position 90m from source.

The contribution of 2nd and 3rd order solutions is given in Figure 3.
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Figure 3. The contribution of the first, second, and third order solutions of

the wave.

Comparison between bichromatic wave that obtained for the constant
depth (5m) and sloping bottom is given in Figure 4. The left side of the
figure is for flat bottom and the right side for varying bottom at position 0m,
70m, 110m, and 160m source. The high of wave that obtained in the

constant depth is lower than the varying depth with ratio is 1 : 10.




On the Bichromatic Wave Propagation over Varying Bottom 847

=0fm) =iy

30 a0 om 20 w0 M0 3w o | 0 w0 0 om0 3w o 20 w0 aw =0 30 M0 w0

804 a0

&
4
B b & B

0 o w mw w Mo 20 0 8w M0 a0 T

Clss e @ a8 @6 S0 90 Se0 530 40 380 B #ec ww aee @ 906 a6 38 396 B aeo

Figure 4. Signals at position 0m, 70m, 110m, 160 m for constant depth (left)
and varying depth (right).

5. Maximal Temporal Amplitude

Maximal temporal amplitude (MTA) is a maximal wave elevation in
each position of the tank as long as propagation time. MTA is proposed by
Andonowati and Groesen [1] when they determined the maximal amplitude
position for optic waves. In [4] and [5], the authors also use the formula for
determining the maximal amplitude position and its amplification for wave

propagation over flat bottom. The maximal temporal amplitude is defined as
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follows:
M(x) = ; gﬁ]n(x, 1), 7

where n(x, ) represents wave elevation and [0, T] is time of propagation.
1
Maximal temporal amplitude (MTA) for the case that discussed in

Section 4 with the constant depth Sm is given in Figure 5, while for the

varying bottom, the MTA is given in Figure 6.

025
0.2

= 0.15-

0.05

0
[} 20 40 60 B0 100 120 140 160 180 200

igure 5. Maximal temporal amplitude for flat bottom (5m depth) with

(blue) and without (green) the second order solution.

06

04

02| .

% 20 40 0 80 100 120 140 180 180 200
x

Figure 6. Maximal temporal amplitude for varying bottom with (blue) and

without (green) the second order solution.
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In the AB equation with flat bottom, the position of maximal amplitude
of wave is happened at x = 112m with amplification 1,47, while for the
varying bottom the maximal amplitude is happened at position x = 154m,
with amplification 10,3. The effect of depth water is very significant for the
case especially for the position and high of the wave. The comparison
between MTA of flat bottom and the varying bottom is given in Figure 7.
From the figure we can see that the maximal amplitude is happened at the

lower depth.

0 20 40 60 8 100 120 140 160 180 200
x

Figure 7. Comparison between MTA for flat bottom (red) and varying
bottom (blue).

6. Conclusion

In this paper, we discussed the propagation of the bichromatic wave over
varying bottom using AB equation as a governing equation. The paper shows
that the maximal amplitude of the wave and its amplification are depended so
much by depth of the tank. For the case that we take here, the maximal
amplitude of the wave is happened in the lower bottom and more than 10

times compared with the constant depth.
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