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Abstract 

In this paper, we discuss the propagation of water wave over varying 
bottom using AB equation as governing equation. The AB equation is 
an improvement of the KdV equation and can be interpreted as higher 
KdV equation for wave above finite depth and under certain 
approximation it becomes the KdV equation [3]. We solve the 
equation using asymptotic method with bichromatic wave as a signal 
input, then we apply the varying bottom to the operators of AB 
equation that contain exact dispersion relation. We observe the 
propagation of the wave that produced over a slope bottom and find 
the position of maximal amplitude and amplification of the wave. 
Comparison the result with the AB equation for flat bottom to study 
the different characteristic of each other will be studied. 

1. Introduction 

The wave propagation is an interesting problem that we discuss today, 
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especially in determining the position of maximal amplitude of the wave and 
its amplification. By using asymptotic method, the position maximal 
amplitude of the wave and its amplification was discussed for AB equation 
over flat bottom by Mashuri et al. [5]. The AB equation that used in the 
literature is improvement of the KdV type equation and can be interpreted as 
a higher KdV type for wave above finite depth and under certain 
approximation it becomes the KdV equation [2, 3] and [5]. In this paper, we 
use the AB equation to study bichromatic wave propagation but for varying 
bottom and compare the results with the constant bottom, especially in 
determining the position of maximal amplitude of the wave and its 
amplification using maximal temporal amplitude (MTA). The paper is 
organized as follows. In Section 2, we will discuss mathematical model 
equation that used in the paper. Here, the AB equation that proposed by 
Groesen and Andonowati [3] is modified for varying bottom. The dispersion 
relation of the AB equation is replaced for varying bottom. It means that the 
dispersion relation is depended on space. The review of the solution of AB 
equation using asymptotic method is discussed in Section 3. In Section 4, we 
discuss the propagation of the wave based on the asymptotic solution. In the 
section also we discuss the maximal temporal amplitude and the amplitude 
amplification factor of the wave. Conclusion will be given in Section 5. 

2. Mathematical Model Equation 

In the simplest second order wave equation, the elevation of surface 
water wave on the constant depth 0h  is given by ( )tx,η  with the propagation 

of wave is described by the equation ,22
0

2 η∂=η∂ xt c  where .00 ghc =  The 

unidirectional of the equation is given by .0 η∂−=η∂ xt c  Above varying 

bottom ( ),xh  the wave equation becomes ( ) ,222 η∂=η∂ xt xc  where ( ) =xc  

( ),xgh  while in the linear water wave equation with the exact dispersion 

relation ( )0, hkΩ=ω  for the flat bottom ,0h  the unidirectional wave is 

described by ( ) ., 0 ηΩ−=η∂ hkt  Above varying bottom ( ),xh  the exact 

dispersion relation becomes ( )( )., xhkΩ=ω  
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In this section, we use AB-equation that proposed by Groesen and 
Andonowati [3]. The equation describes the unidirectional water wave on the 
flat bottom 0h  and is given by 

 ( ) ( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ η+ηη+η−ηη+η−=η∂ 22

4
1

2
1

4
1

2
1 BBBAAAAgt  (1) 

with η represents elevation of wave, 
g
CA x∂=  and 1−= CgB  represent 

pseudo-differential operator with the symbol ( ) ( ) ,ˆ
k
kkC Ω

=  ( ) =Ω k  

( ) ,tanh
0

0
0 kh

khkc  00 ghc =  and g represents acceleration of gravitation. 

In the paper of [3] and [5], the exact dispersion relation of the AB 
equation (1) is given by ( )., 0hkΩ=ω  The dispersion relation is for the 

wave over the flat bottom. For the varying bottom ( ),xh  it becomes 

 ( )( ) ( ) ( )( )
( ) ( )( ).tanhtanh, xkhgkxkh

xkhkxghxhk ==Ω  (2) 

3. Asymptotic Solution of the Mathematical Model 

The third order asymptotic solution of the wave equation for flat bottom 
case was discussed in [4] where the asymptotic solution founded for the 
mKdV equation and in [5] where the solution also obtained for AB equation. 
The solution is given by 

 ( ) ( ) ( ) ( ) ( )33221
fwfw η−η+η−η+η=η  (3) 

with ( )iη  is the solution of order i. ( )i
fwη  is free wave of order i. The free 

waves are taken here if we want to prescribe the bichromatic wave as a signal 
input, it means that the bound waves should be compensated by 2nd- and 
3rd- order free waves. As in [5], the bichromatic wave is chosen for the first 

order of the solution ( )1η  and written by 
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 ( ) ccaeae ii .1 ++=η −+ θθ  (4) 

with txk ±±± ω−=θ  and c.c means conjugate complex. The dispersion 

relation of the solution is given by ( )( ),, xhk±± Ω=ω  while the second and 

third order solutions are, respectively, 

 ( ) ( ) ( ) cceaeaeaea iiii .2423
2

22
2

21
2 ++++=η −+−+−+ θ−θθ+θθθ  (5) 

and 
( ) ( ) ( )+−−+−+ θ+θθ+θθθ +++=η 2

34
2

33
3

32
3

31
3 iiii eaeaeaea  

( ) ( ) cceaea ii .2
36

2
35 +++ +−−+ θ−θθ−θ  (6) 

with their coefficients for constant depth 0h  are given in Mashuri et al. [5]. 

For the varying bottom, the constant depth is replaced by the varying depth 
( ),xh  and the second order coefficient of the solution will become 

( ( ) ) ( ( ) ) −−++ ω−

α
=

ω−

α
=

ikAg
a

ikAg
a

22
,

22 0
2

220
1

21  

( ( ) ( ) ) ( )
,00

3
23

−+−+ ω+ω−+

α
=

ikkAg
a  

( ( ) ( ) ) ( )−+−+ ω−ω−−

α
=

ikkAg
a 00

4
24  

with 

( ( ) ) ( ( ) ) ( ( ) ) ( ( ) )⎢⎣
⎡ +−−=α ++++

0200022
1 22

124
1 kAkAkAkAag  

( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) ,222
124

1 000002
⎥⎦
⎤++ +++++ kAkBkBkAkB  

( ( ) ) ( ( ) ) ( ( ) ) ( ( ) )⎢⎣
⎡ +−−=α −−−−

0200022
2 22

124
1 kAkAkAkAag  

( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) ,222
124

1 000002
⎥⎦
⎤++ −−−−− kAkBkBkAkB  
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( ( ) ) ( ( ) ) ( ( ) ( ) ) ( ( ( ) )⎢⎣
⎡ ++−−=α +−+−+

000002
3 2

1
2
1 kAkkAkAkAag  

( ( ) )) ( ( ) ( ) ) ( ( ) ) ( ( ) ) ( ( ) ( ) )00000020
2
1

−+−+−+− ++++ kkAkBkBkkAkA  

( ( ( ) ) ( ( ) )) ( ( ) ( ) ) ( ( ) ( ) ) ,2
1 000000

⎥⎦
⎤++++ −+−+−+ kkAkkBkBkB  

( ( ) ) ( ( ) ) ( ( ) ( ) ) ( ( ( ) )⎢⎣
⎡ +−−=α +−+−+

000002
4 2

1
2
1 kAkkAkAkAag  

( ( ) )) ( ( ) ( ) ) ( ( ) ) ( ( ) ) ( ( ) ( ) )00000020
2
1

−+−+−+− −+−− kkAkBkBkkAkA  

( ( ( ) ) ( ( ) )) ( ( ) ( ) ) ( ( ) ( ) ) ,2
1 000000

⎥⎦
⎤−−++ −+−+−+ kkAkkBkBkB  

while for the third order solution, the coefficients of the solution will become 

( ( ) ) ( ( ) )
,

33
,

33 0
2

320
1

31
−−++ +ω−

β
=

+ω−

β
=

kAgi
a

kAgi
a  

( ) ( ( ) ( ) )
,

22 00
3

33
−+−+ ++ω+ω−

β
=

kkAgi
a  

( ) ( ( ) ( ) )
,

22 00
4

34
+−+− ++ω+ω−

β
=

kkAgi
a  

( ) ( ( ) ( ) )
,

22 00
5

35
−+−+ −+ω−ω−

β
=

kkAgi
a  

( ) ( ( ) ( ) )00
6

36
22 +−+− −+ω−ω−

β
=

kkAgi
a  

with 

( ( ) ) ( ( ) ) ( ( ( ) ) ( ( ) )) ( ( ) )⎢⎣
⎡ ++−−=β +++++

000
21

00
211 322

122
1 kAkAkAaakAkAaag  

( ( ) ) ( ( ) ) ( ( ( ) ) ( ( ) )) ( ( ) )⎥⎦
⎤+++ +++++

000
21

00
21 322

122
1 kBkBkBaakBkBaa  

( ( ) ) ,3 30 +θ
+⋅ iekA  
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( ( ) ) ( ( ) ) ( ( ( ) ) ( ( ) )) ( ( ) )⎢⎣
⎡ ++−−=β −−−−−

000
22

00
222 322

122
1 kAkAkAaakAkAaag  

( ( ) ) ( ( ) ) ( ( ( ) ) ( ( ) )) ( ( ) )⎥⎦
⎤+++ −−−−−

000
22

00
22 322

122
1 kBkBkBaakBkBaa  

( ( ) ) ,3 30 −θ
−⋅ iekA  

( ( ) ) ( ( ) ( ) ) ( ( ) ) ( ( ) )⎢⎣
⎡ −+−−=β +−−++

00
21

000
233 22

1
2
1 kAkAaakkAkAaag  

( ( ( ) ) ( ( ) ( ) )) ( ( ( ) ) ( ( ) ))⎟
⎠
⎞⎜

⎝
⎛ +++++ +−−++

00
21

000
23 22

1
2
1 kAkAaakkAkAaa  

( ( ) ( ) ) ( ( ) ) ( ( ) ( ) )000
23

00
2
12 −++−+ +++⋅ kkBkBaakkA  

( ( ) ) ( ( ) ) ( ( ( ) ) ( ( ) ( ) ))⎜
⎝
⎛ +++− −+++−

000
23

00
21 2

122
1 kkBkBaakBkBaa  

( ( ( ) ) ( ( ) )) ( ( ) ( ) )⎥⎦
⎤+⎟

⎠
⎞++ −++−

0000
21 222

1 kkBkBkBaa  

( ( ) ( ) ) ( ),2 200 −+ θ+θ
−+ +⋅ iekkA  

( ( ) ) ( ( ) ( ) ) ( ( ) ) ( ( ) )⎢⎣
⎡ −+−−=β −+−+−

00
22

000
234 22

1
2
1 kAkAaakkAkAaag  

( ( ( ) ) ( ( ) ( ) )) ( ( ( ) ) ( ( ) ))⎟
⎠
⎞⎜

⎝
⎛ +++++ −+−+−

00
22

000
23 22

1
2
1 kAkAaakkAkAaa  

( ( ) ( ) ) ( ( ) ) ( ( ) ( ) )000
23

00
2
12 −+−+− +++⋅ kkBkBaakkA  

( ( ) ) ( ( ) ) ( ( ( ) ) ( ( ) ( ) ))⎜
⎝
⎛ +++− −+−−+

000
23

00
22 2

122
1 kkBkBaakBkBaa  

( ( ( ) ) ( ( ) )) ( ( ) ( ) )⎥⎦
⎤+⎟

⎠
⎞++ +−−+

0000
22 222

1 kkBkBkBaa  

( ( ) ( ) ) ( ) ,2 200 +− θ+θ
+− +⋅ iekkA  
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( ( ) ) ( ( ) ( ) ) ( ( ) ) ( ( ) )⎢⎣
⎡ +−−−=β +−−++

00
21

000
245 22

1
2
1 kAkAaakkAkAaag  

( ( ( ) ) ( ( ) ( ) )) ( ( ( ) ) ( ( ) ))⎟
⎠
⎞⎜

⎝
⎛ −+−++ −+−++

00
21

000
24 22

1
2
1 kAkAaakkAkAaa  

( ( ) ( ) ) ( ( ) ) ( ( ) ( ) )000
24

00
2
12 −++−+ −+−⋅ kkBkBaakkA  

( ( ) ) ( ( ) ) ( ( ( ) ) ( ( ) ( ) ))⎜
⎝
⎛ −+++ −+++−

000
24

00
21 2

122
1 kkBkBaakBkBaa  

( ( ( ) ) ( ( ) )) ( ( ) ( ) )⎥⎦
⎤−⎟

⎠
⎞−+ −+−+

0000
21 222

1 kkBkBkBaa  

( ( ) ( ) ) ( ) ,2 200 −+ θ−θ
−+ −⋅ iekkA  

( ( ) ) ( ( ) ( ) ) ( ( ) ) ( ( ) )⎢⎣
⎡ +−−=β −+−+−

00
22

000
246 22

1
2
1 kAkAaakkAkAaag  

( ( ( ) ) ( ( ) ( ) )) ( ( ( ) ) ( ( ) ))⎟
⎠
⎞⎜

⎝
⎛ −+−−+ +−−+−

00
22

000
24 22

1
2
1 kAkAaakkAkAaa  

( ( ) ( ) ) ( ( ) ) ( ( ) ( ) )000
24

00
2
12 −+−+− −+−⋅ kkBkBaakkA  

( ( ) ) ( ( ) ) ( ( ( ) ) ( ( ) ( ) ))⎜
⎝
⎛ ++++ −+−−+

000
24

00
22 2

122
1 kkBkBaakBkBaa  

( ( ( ) ) ( ( ) )) ( ( ) ( ) )⎥⎦
⎤−⎟

⎠
⎞++ +−−+

0000
22 222

1 kkBkBkBaa  

( ( ) ( ) ) ( ) ,2 200 +− θ+θ
+− −⋅ iekkA  

( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ( ) )⎢⎣
⎡ −−−=β −+−++

000
24

00
217 2

122
1 kkAkAaakAkAaag  

( ( ) ) ( ( ) ( ) ) ( ( ( ) ) ( ( ) ))⎜
⎝
⎛ −+++ ++−+−

00
21

000
23 22

1
2
1 kAkAaakkAkAaa  

( ( ( ) ( ) ) ( ( ) ))000
242

1
−−+ +−+ kAkkAaa  
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( ( ( ) ( ) ) ( ( ) )) ( ( ) )0000
232

1
+−−+ ⎟

⎠
⎞−++ kAkAkkAaa  

( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ( ) )000
24

00
21 2

122
1

−+−++ −++ kkBkBaakBkBaa  

( ( ) ) ( ( ) ( ) ) ( ( ( ) ) ( ( ) ))⎜
⎝
⎛ ++++ ++−+−

00
21

000
23 22

1
2
1 kBkBaakkBkBaa  

( ( ( ) ( ) ) ( ( ) ))000
242

1
−−+ +−+ kBkkBaa  

( ( ( ) ( ) ) ( ( ) )) ( ( ) ) ( ( ) ) ,2
1 00000

23 +θ
++−−+ ⎥⎦

⎤⎟
⎠
⎞+++ iekAkBkBkkBaa  

( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ( ) )⎢⎣
⎡ −+−=β −++−−

000
24

00
228 2

122
1 kkAkAaakAkAaag  

( ( ) ) ( ( ) ( ) )000
232

1
−++ ++ kkAkAaa  

( ( ( ) ) ( ( ) )) ( ( ( ) ( ) )⎜
⎝
⎛ −−+−+ −+−−

00
24

00
22 2

122
1 kkAaakAkAaa  

( ( ) )) ( ( ( ) ( ) ) ( ( ) )) ( ( ) )0000
23

0
2
1

++−++ ⎟
⎠
⎞−+++ kAkAkkAaakA  

( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ( ) )000
24

00
22 2

122
1

−++−− −++ kkBkBaakBkBaa  

( ( ) ) ( ( ) ( ) ) ( ( ( ) ) ( ( ) ))⎜
⎝
⎛ ++++ −−−++

00
22

000
23 22

1
2
1 kBkBaakkBkBaa  

( ( ( ) ( ) ) ( ( ) ))000
242

1
+−+ +−+ kBkkBaa  

( ( ( ) ( ) ) ( ( ) )) ( ( ) ) ( ( ) ) .2
1 00000

23 −θ
−++−+ ⎥⎦

⎤⎟
⎠
⎞+++ iekAkBkBkkBaa  

4. Propagation of Bichromatic Wave over the Sloping Bottom 

In this section, we discuss the propagation of the bichromatic wave over 
sloping bottom which is given in the following figure: 
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Figure 1. The sloping bottom condition of the wave tank with 5m depth for 
region I (0-100m) and 0.5m for region III (150-200m). 

The propagation of the bichromatic wave in region I at the position =x  
90m for 5m depth is given in Figure 2. The amplitude of the case is 0,193m 
and higher than the signal input which has amplitude 0,16m. For this case we 

take frequency hz1436.32 =
ω+ω

=ω −+  and hz.1.5752 =
ω−ω

=ν −+  

 

Figure 2. Signal at position 90m from source. 

The contribution of 2nd and 3rd order solutions is given in Figure 3. 
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Figure 3. The contribution of the first, second, and third order solutions of 
the wave. 

Comparison between bichromatic wave that obtained for the constant 
depth (5m) and sloping bottom is given in Figure 4. The left side of the 
figure is for flat bottom and the right side for varying bottom at position 0m, 
70m, 110m, and 160m source. The high of wave that obtained in the 
constant depth is lower than the varying depth with ratio is 1 : 10. 
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Figure 4. Signals at position 0m, 70m, 110m, 160m for constant depth (left) 
and varying depth (right). 

5. Maximal Temporal Amplitude 

Maximal temporal amplitude (MTA) is a maximal wave elevation in 
each position of the tank as long as propagation time. MTA is proposed by 
Andonowati and Groesen [1] when they determined the maximal amplitude 
position for optic waves. In [4] and [5], the authors also use the formula for 
determining the maximal amplitude position and its amplification for wave 
propagation over flat bottom. The maximal temporal amplitude is defined as 
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follows: 
 ( )

[ ]
( ),,max

,0
txxM

Tt
η=

∈
 (7) 

where ( )tx,η  represents wave elevation and [ ]T,0  is time of propagation. 

Maximal temporal amplitude (MTA) for the case that discussed in 
Section 4 with the constant depth 5m is given in Figure 5, while for the 
varying bottom, the MTA is given in Figure 6. 

 
Figure 5. Maximal temporal amplitude for flat bottom (5m depth) with 
(blue) and without (green) the second order solution. 

 
Figure 6. Maximal temporal amplitude for varying bottom with (blue) and 
without (green) the second order solution. 
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In the AB equation with flat bottom, the position of maximal amplitude 
of wave is happened at m112=x  with amplification 1,47, while for the 

varying bottom the maximal amplitude is happened at position m,154=x  

with amplification 10,3. The effect of depth water is very significant for the 
case especially for the position and high of the wave. The comparison 
between MTA of flat bottom and the varying bottom is given in Figure 7. 
From the figure we can see that the maximal amplitude is happened at the 
lower depth. 

 

Figure 7. Comparison between MTA for flat bottom (red) and varying 
bottom (blue). 

6. Conclusion 

In this paper, we discussed the propagation of the bichromatic wave over 
varying bottom using AB equation as a governing equation. The paper shows 
that the maximal amplitude of the wave and its amplification are depended so 
much by depth of the tank. For the case that we take here, the maximal 
amplitude of the wave is happened in the lower bottom and more than 10 
times compared with the constant depth. 
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