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Abstract 

KP-type equation is known as a wave equation with two spatial 
dimensions. The equation was derived in 1970 by Kadomtsev-
Petviashvili. In this paper, we discuss the monochromatic wave 
propagation in KP-type equation that contains exact dispersion relation 
and nonlinearity in the x-direction. AB equation is taken as the 
nonlinear wave equation contained in that KP-type. The equation is 
revised version of the KdV equation for wave about finite depth and   
in certain approximation it becomes the KdV equation. The third order 
asymptotic method is applied for solving the KP-type equation by 
choosing monochromatic wave as a signal input. Comparison between 
the dispersion relation of KPAB and the other KP type is discussed to 
analyze the suitability of wave number of the KP. We also simulate 
the monochromatic wave propagation using the solution of the KP. 
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1. Introduction 

KP-type equation was derived in 1997 by Kadomtsev-Petviashvili as a 
generalization of Korteweg de Vries equation (KdV). The difference between 
KP and KdV equation is in the spatial dimension [7]. KP equation has         
two spatial dimensions, so sometimes we call for KP type equation to be a 
multidirectional wave equation. In this paper, we discuss the monochromatic 
wave propagation in KP-type equation that contains exact dispersion relation 
and nonlinearity in the x-direction. 

AB equation is a new type of KdV equation. The equation has been 
presented in 2007. The model is an improvement of the KdV equation and 
can be interpreted as a higher order KdV equation for waves above a finite 
depth and under certain approximation it becomes the KdV equation [1, 2]. 
The model has exact dispersion properties and the nonlinear terms of the 
model is also improved to include the effects of short wave interactions. The 
model is given by 
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where η represents elevation of the wave, 
g
CA x∂=  and 1−= CgB  are 

pseudo-differential operators with Fourier’s symbol ( ) ( ) ,ˆ
k
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khkc  ,00 ghc =  g and 0h  are acceleration gravitation and 

water depth, respectively. 

First, we begin with derivation of KP type equation from the simplest 
second order wave equation: 
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with ,0 ghc =  where the dispersion relation is 
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which assigns the frequency of wave ω with wave numbers of a harmonic 
wave in the directions x and y. The unidirectional wave with only direction x 
is given by 

.22
0

2 η∂=η∂ xt c  (4) 

Equation (4) can be rewritten as 

( ) ( ) ,000 =η∂+∂∂−∂ xtxt cc  (5) 

equation (5) represents wave equation that propagates towards the left and 
right directions. The right direction of the wave propagation in (5) is written 
by  

.00 =η∂+η∂ xt c  (6) 

The dispersion relation of (6) is ,0 xkc=ω  while the multidirectional wave 

that propagates only to the direction x has ,xy kk <<  therefore its dispersion 

relation is given by: 
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Equation (7) can be written in differential equation form as 

( ).21
0 η∂∂+η∂−=η∂ −

yxxt c  (8) 

We rewrite the equation (8) in more appealing way as 

[ ] .02
20

0 =η∂+η∂+η∂∂ yxtx
cc  (9) 

Equation (9), which in the literature is often called the standard of KP 
equation that includes the wave equation in x direction only as the simple 
wave equation .00 =η∂+η∂ xt c  
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In the same way, if we take the dispersion relation and the nonlinear 
wave equation of x direction as the classical KdV 
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6
1 3 =η∂η+η∂+η∂+η∂ xxxt  (10) 

we obtain the standard KP equation as follows: 
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While, if the nonlinear wave equation is taken as AB equation 
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we obtain the standard KP equation as 
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We then denote the KP equation in (12) by KPAB. The derivation of KPAB 
can also be seen in [3].  

In this paper, we use equation (12) as a model of two spatial dimensions 
water wave and using the asymptotic method solve the equation and also 
study the wave propagation. The paper is organized as follows: In Section 2, 
we discuss the comparison of dispersion relation of KPAB and KP with    

KdV, to see the relation between wave numbers xk  and yk  for each of       

the equations. The asymptotic method is used to solve the KPAB and 
monochromatic wave as a signal input is discussed in Section 3. In Section 4, 
we discuss the simulation of KPAB together with the contribution of each term 
in KP solution. Conclusion is provided in Section 5. 
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2. Dispersion Relation of KP-type Equation 

In this section, we discuss the dispersion relation of KP type with KdV 
equation that is given in (11) and KPAB equation as in (12). For KP type with 
KdV, the dispersion relation is obtained by taking the linear part of the 
equation 
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We can rewrite the above equation as 
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By choosing a monochromatic wave ( ) ,.ccae tykxki yx +=η
ω−+

 we get 
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The dispersion relation is obtained from (15) as 
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In the same way for KPAB, its dispersion relation is obtained as follows: 
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The relation between wave numbers xk  and yk  for KP-type with KdV and 

KPAB equation for various ω is given in Figure 1, where 14.3=ω  (red), 
5.2=ω  (green), 2.1=ω  (yellow), 7.0=ω  (blue). 

 

(a)                                                             (b) 

Figure 1. The relation between wave numbers xk  and yk  for KPAB (a) and 

KP type with KdV (b). 

Figure 1 shows that wave numbers xk  and yk  in KPAB satisfies 

xy kk <<  for various ω as well as required in KP type equation [7], but for 

KP with KdV, the wave numbers xk  and yk  are satisfied only for .5≥ω  

3. Third Order Asymptotic Calculation of KP Equation 

In this section, we discuss a solution of KP type equation using the      
third order asymptotic method. Mashuri et al. used the method for solving 
nonlinear water wave equation while studying the propagation of surface 
water wave based on modified KdV-type equation [4] and deriving 
Nonlinear Schrödinger equation (NLSAB) in [5]. Also, the method is used for 
studying the bi-chromatics wave propagation over varying bottom [6]. We 
rewrite the KPAB as 
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First, we take the solution of the equation as power series in ε until the third 
order: 

( ) ( ) ( ).33221 ηε+ηε+εη=η  (17) 

By substituting (15) into (12), and collecting the polynomial terms in ε, 2ε  

and ,3ε  we get three partial differential equations as follows: 
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In the first order equation (18), the solution can be chosen monochromatic 
wave with amplitude a, frequency ω and wave numbers along x and y 
directions as xk  and yk , respectively. We have 

( ) ,.1 ccaei +=η θ  (21) 

with tykxk yx ω−+=θ  and c.c representing the complex conjugate. 
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Substituting (21) into (18), we obtain 
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The relation between frequency and wave numbers in (22) is called the exact 
dispersion relation of KP. 

By using asymptotic method for the wave equation, a resonance term 
appears in the third order term of the solution as a consequence of the 
nonlinearity. The resonance term is produced from interaction between the 
first and second order solutions. The resonant contribution has to be made to 
vanish in order to satisfy valid condition for asymptotic solution. To achieve 
this, we use Lindstedt-Poincare’s method [8] by correcting the wave numbers 
and doing expansion of wave numbers. The method was also used by 
Mashuri et al. [4, 6] for the same reason. The wave number is given in the 
power series as follows: 
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Therefore, the first order solution (18) is given by 
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where 
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Substituting the first order solution into the second order equation (19) and 

using Taylor’s expansion of A and C about ( ),0
xk  we obtain 
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with 1RHS  as the interaction between the first order solution and the second 

order solution 
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From (26), we get ( ( ) ( ) ) ( )0,0, 11 =yx kk  and the second order solution is 

chosen to be of the form 
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Substituting ( )2η  into the second order equation (26), we obtain the 

coefficient of the second order solution as 
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The third order solution can be found by substituting the first and the second 
order solution into equation (20) in the form: 
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Since ( ( ) ( ) ) ( ),0,0, 11 == yx kkk  we get the wave number corrections ( )2
xk  and 

( )2
yk  which satisfy 
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Therefore, the wave number of the solution can be written as 
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The third order equation then becomes 
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The third order contribution to the solution is taken as 
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Substituting (30) into (29), we find the coefficient of the third order solution 
as 
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The solution of the KPAB is given by 

( ) ( ) ( ),321 η+η+η=η  

where ( ) ( ) ( )321 ,, ηηη  are given in (24), (27) and (30), respectively. 

4. Monochromatic Evolution 

In this section, we simulate the KPAB with monochromatic wave that 
discussed before as a signal input. For the simulation, the parameters of           

the wave are taken to be m;05.0=a  5m;=h  ;sm8.9 2=g  ( ) m;30 =xk  

( ) ( ) .m0m;1 20 == yy kk  
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Figure 2. Wave profile at 0=t  (left) and 10=t  (right) with monochromatic 
as signal input. 

The wave profiles and the contribution of each solution at 0=t  are 
given below. 

 
                               (a)                                                            (b) 

 
                                 (c)                                                             (d) 

Figure 3. The profile of wave at 0=t  (a) with the first (b), second (c) and 
third (d) order contribution of the solution of KP. 
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While the wave profiles from each side are shown in Figure 4. Figure      
4(a) shows wave profile at ,10=t  (b) and (c) show wave profile in x-side 
and y-side, respectively, and the last figure (d) shows the direction of wave 
propagation. 

 

                              (a)                                                              (b) 

 

                                     (c)                                                  (d) 

Figure 4. Wave profile at 0=t  (a), looked from x side (b) and y side (c), the 
direction of wave propagation (d). 

5. Conclusion and Remark 

In this paper, we studied the monochromatic wave propagation using 
KP-type equation as wave model. By using in the same way when we derive 
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KP for the simplest wave equation, KPAB can be derived including the AB 
equation as a wave equation in the x-direction. By using the dispersion 
relation, KPAB is more satisfactory for the requirement of the wave number of 
KP- equation compared with KdV. Two wave numbers correction that we got 
from the third order solution depend on each other. Also, we simulated the 
monochromatic wave propagation for certain parameters of wave numbers 
and amplitude. The second and third order solutions give contribution of the 
first order solution depending on the parameters that we choose. But for 
monochromatic wave, the parameters do not make so significant effect to the 
first order solution. 
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