# The surface modification of Ag3PO4 using anionic platinum complexes for enhanced visible-light photocatalytic activity

Submission date: 27-Mar-2022 11:33AM (UTC+0700) Submission ID: 1793761474 File name: Materials\_Letters-The\_Surface.pdf (776.61K) Word count: 2204 Character count: 11102



## The surface modification of Ag<sub>3</sub>PO<sub>4</sub> using anionic platinum complexes for enhanced visible-light photocatalytic activity



Uyi Sulaeman <sup>a,\*</sup>, Richo Dwi Permadi <sup>a</sup>, Dian Riana Ningsih <sup>a</sup>, Hartiwi Diastuti <sup>a</sup>, Anung Riapanitra <sup>a,b</sup>, <mark>Shu Yin <sup>b</sup></mark>

<sup>a</sup>Department of Chemistry, Jenderal Soedirman University, Purwokerto 53123, Indonesia

<sup>b</sup> Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan

#### ARTICLE INFO

8 Article history: Received 10 August 2019 Received in revised form 18 October 2019 Accepted 20 October 2019 Available online 21 October 2019

#### Keywords:

Anionic platinum complexes Defect Photocatalyst Silver phosphate Silver vacancy

#### ABSTRACT

The surface modification of  $Ag_3PO_4$  using anionic platinum complexes was successfully prepared. The starting materials of chloroplatinic chloride hydrate, silver nitrate, and sodium dihydrogen phosphate dodecahydrate were used in the experiments. The  $Ag_3PO_4$  (AP) and defect- $Ag_3PO_4$  (DAP) were firstly synthesized using the coprecipitation method. These samples were suspended in chloroplatinic chloride solution under sonication to obtain the doping of anionic platinum complexes in  $Ag_3PO_4$  (AP/Pt) and defect- $Ag_3PO_4$  (DAP/Pt). Anionic platinum complexes successfully substituted the phosphate site of  $Ag_3PO_4$  and significantly improved the photocatalytic activity. 10

2019 Elsevier B.V. All rights reserved.

#### 1. Introduction

Utilizing platinum as a dopant has been widely used to improve the catalytic activity of photocatalyst. Many types of platinum can be incorporated into photocatalyst. The most common type is the metallic Pt nanoparticles, as utilized for TiO<sub>2</sub> photocatalyst modifications [1,2]. Other types are platinum ion, complex-ion, and cluster ion. The Pt ions doping into the lattice of TiO<sub>2</sub> is supported by the similar ionic radii of Pt<sup>4+</sup> and Ti<sup>4+</sup> [3]. The combination of Pt<sup>2+</sup> ion and metallic Pt can also be applied to enhance catalytic activity of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> [4]. The Pt<sup>2+</sup> in  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> increases the isolation efficiency of the photo-induced carriers that improve the lifespan of hole carriers, whereas the metallic Pt in  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> brought to the generation of Schottky barriers. TiO<sub>2</sub> surface modification using the clusters ion of [Pt<sub>3</sub>(CO)<sub>6</sub>]<sup>2</sup><sub>6</sub> also improves the catalytic activity [5]. Platinum clusters act as charge scavenger that inhibits charge recombination and also act as a sensitizer.

Herein, the anionic platinum complexes doping in  $Ag_3PO_4$  was successfully synthesized. Anionic platinum complexes successfully substitute the phosphate ion of  $Ag_3PO_4$  under sonication. The substitution effectively occurs on the silver vacancy of  $Ag_3PO_4$ . Up to now, there is no report of incorporating the  $Ag_3PO_4$  by platinum complexes, and the result is very significant for the improvement

### Corresponding author. *E-mail address:* sulaeman@unsoed.ac.id (U. Sulaeman).

https://doi.org/10.1016/j.matlet.2019.126848 0167-577X/© 2019 Elsevier B.V. All rights reserved. of  $Ag_3PO_4$ -based photocatalyst. The rate of catalytic increased up to 5.8 times higher compared to the pure  $Ag_3PO_4$ . The RhB can be degraded to 99.36% for only 6 min under the blue LED irradiation of 3 W.

#### 2. Experimental

The Ag<sub>3</sub>PO<sub>4</sub> and defect-Ag<sub>3</sub>PO<sub>4</sub> were prepared using the co-precipitation method based on the previous results [6]. To prepare the defect-Ag<sub>3</sub>PO<sub>4</sub>, the starting material of AgNO<sub>3</sub> (0.85 g) and Na2HPO4·12H2O (1.79 g) were dissolved in 200 mL of ethanol-water (50% ethanol) and 50 mL of water, respectively. The Na<sub>2</sub>HPO<sub>4</sub> aqueous solution was slowly added to AgN 🚹 ethanol-aqueous solution. The precipitates in this reaction were filtered and washed with distilled water and subsequently dried in an oven at 60 °C for 4 h. The Ag<sub>3</sub>PO<sub>4</sub> (defect-free sample) as a control was prepared similar to the defect-Ag<sub>3</sub>PO<sub>4</sub> preparation but using only 200 mL of water to dissolve the starting material of AgNO3, without addition of ethanol. To incorporate the anionic platinum complexes, the Ag<sub>3</sub>PO<sub>4</sub> and defect-Ag<sub>3</sub>PO<sub>4</sub> (0.5 g) was suspended in 10 mL of water under sonication. An amount of MmL of Pt solution was added to the suspension. The mixtures were sonicated for 5 min and mixed under magnetic stirrer for 30 min. The solution of chloroplatinic acid (H2PtCl6·6H2O) in water were designed at a concentration of 1.33 mg/mL. The obtained precipitates were filtered and washed with water three times and dried in an oven at 60 °C for 4 h. The samples of Ag\_3PO\_4, defect-Ag\_3PO\_4, Ag\_3PO\_4/PtCl\_6^- and defect-Ag\_3PO\_4/PtCl\_6^- were named as AP, DAP, AP/Pt, and DAP/ Pt, respectively.

The structure and bandgap energy were investigated using the XRD (Bruker AXS D2 PHASER) and DRS (Shimadzu, UV-2450), respectively. Tlippinding energy and atomic composition were analyzed using XPS (Perkin Elmer PHI 5600).

To investigate the catalytic activities, 0.1 g of catalysts was contacted to RhB solution (100 mL, 10 mg/L) and equipprated in a dark room [7]. The photocatalytic test was carried out under the visible light irradiation (Blue LED, 3 Watt). During the photocatalytic reaction, the RhB concentration was measured by the spectrophotometer (Shimadzu 1800).

#### 3. Results and discussion

Fig. 1 shows the XRD pattern of  $Ag_3PO_4$  (AP), defect- $Ag_3PO_4$  (DAP),  $Ag_3PO_4/$  PtCl<sup>2</sup><sub>6</sub> (AP/Pt) and defect- $Ag_3PO_4/$ PtCl<sup>2</sup><sub>6</sub> (DAP/Pt). All of the samples exhibited a structure of body-centered-cubic (JCPDS No.06-0505) [8]. A little shift and doublet of the XRD pattern might be due to the effect of PtCl<sup>2</sup><sub>6</sub> incorporation.

The absorption of samples is presented in Fig. 2, and the bandgap energies were determined by the following formula (1):

$$(Ah\nu)^2 = h\nu - E_g \tag{1}$$

where A, h, v, and  $E_g$  were absorbance, Planck constant, light frequency and bandgap energy [9]. The calculations derived from the DRS data are 412 vn in Fig. S1 (Supplementary Material), the bandgap energy of 2.40 eV, 2.41 eV, 2.44 eV, and 2.44 eV were gained for AP, DAP, AP/Pt and DAP/Pt, respectively. The slight blue shift occurred in AP/Pt, and DAP/Pt might be caused by a chemically bonding of anionic platinum complexes on the surface of Ag<sub>3</sub>PO<sub>4</sub>.

Based on XPS analysis, the spectra of Pt in AP/Pt and DAP/Pt were observed (Fig. 3). The content of 2.94% and 3.41% of Pt existed in AP/Pt and DAP/Pt, respectively. The higher content of Pt in DAP/Pt might be induced by the silver vacancy sites (7) DAP. The binding energies (BEs) of 73.18 eV and 75.12 eV were assigned to Pt(II)<sub>4f(7/2</sub>) and Pt(IV)<sub>4f(7/2</sub>) of A (7), respectively whereas the BEs of 73.06 eV and 74.99 eV were assigned to Pt(II)<sub>4f(7/2</sub>) and Pt(IV)<sub>4f(7/2</sub>) of DAP/Pt, respectively [10]. The decreased BE of DAP/Pt might be the effect of defect changes from the silver deficiency to the phosphor deficiency. The concentration of Pt(IV) was higher than those in both AP/PT and DAP/Pt. There was no metallic Pt state found in Ag<sub>3</sub>PO<sub>4</sub>. The state of Pt(II) might be originated from the

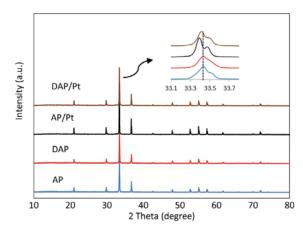
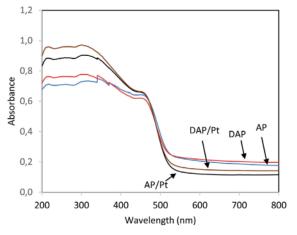
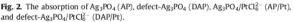





Fig. 1. The XRD pattern of  $Ag_3PO_4$  (AP), defect- $Ag_3PO_4$  (DAP),  $Ag_3PO_4/PtCl_6^{2-}$  (AP/Pt), and defect- $Ag_3PO_4/PtCl_6^{2-}$  (DAP/Pt).

reduction of Pt(IV) that might be reduced by an electron from the hydraxyl group [11].

The atomic ratios of Ag/P and P/O in the sample AP, DAP, AP/Pt, and DAP/Pt were calculated from the XPS data. The Ag/P atomic ratio of DAP (2.49) was lower than that of AP (2.80), implying that the DAP contained silver vacancy defect sites. After anionic platinum complexes doping, the Ag/P atomic ratio in AP/Pt was slightly increased (2.81), on the opposite, it was significantly increased in DAP/Pt (2.97). This result indicated that the elimination of phosphate ion might occur. This phenomenon was also convinced by the decrease of phosphor concentration after Pt complexes ion doping. The phosphor contents were 10.9%, 11.5%, 9.0%, and 8.1% in AP, DAP, AP/Pt, and DAP/Pt, respectively. The decreased phosphor in AP/Pt and DAP/Pt might be caused by substituting platinum complexes ion. The lowest content of phosphor in DAP/Pt implying that the silver vacancy was no longer existed in DAP and changed into a phosphor deficiency. The P/O atomic ratios of 0.26, 0.26, 0.22 and 0.20 were observed in AP, DAP, AP/Pt, and





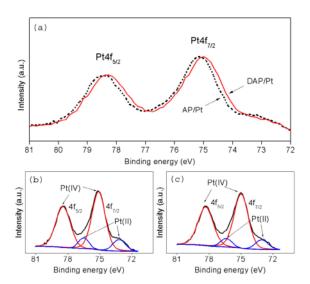



Fig. 3. The XPS profile of Pt4f in AP/Pt and DAP/Pt (a) and the deconvolution of Ap/ Pt (b) and DAP/Pt (c).

2

U. Sulaeman et al. / Materials Letters 259 (2020) 126848

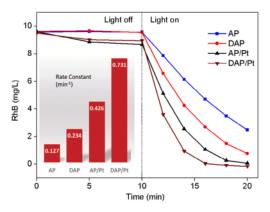



Fig. 4. Photocatalytic activity of Ag<sub>3</sub>PO<sub>4</sub> (AP), defect-Ag<sub>3</sub>PO<sub>4</sub> (DAP), Ag<sub>3</sub>PO<sub>4</sub>/PtCl<sub>6</sub><sup>2</sup> (AP/Pt), and defect-Ag<sub>3</sub>PO<sub>4</sub>/ PtCl<sub>6</sub><sup>2-</sup> (DAP/Pt).

DAP/Pt, respectively. The lowest P/O atomic ratio of DAP/Pt proved phosphor deficiency.

Fig. 4 shows the photocatalytic activity under blue light irradiation. The percentage of RhB removal efficiency ( n in %) was calculated by the following equation (2).

$$\eta = \left(\frac{C_0 - C}{C_0} x 100\right)\% \tag{2}$$

where C<sub>0</sub> and C are the concentration at the starting time and after some time t of photocatalytic reaction, respectively [12]. The degradation percentage of 50.80%, 71.93%, 88.77%, and 99.38% has been achieved after 6 min irradiation for the samples of AP, DAP, AP/Pt, and DAP/Pt, respectively. The rates of photocatalytic reaction were also calculated 23ing the pseudo-first-orders kinetic [12], the results showed the rate constant of 0.127 min<sup>-1</sup>, 0.234 min<sup>-1</sup>, 0.426 min<sup>-1</sup>, and 0.731 min<sup>-1</sup> for AP, DAP, AP/Pt, and DAP/Pt, respectively. The sample of DAP/Pt possessed the highes stalytic activity. The catalytic rate enhanced significantly up to 5.8 times higher compared to the pure Ag<sub>3</sub>PO<sub>4</sub>, and RhB completely degraded after 6 min. This result was even higher compared to other works utilized the CNT to modify Ag<sub>3</sub>PO<sub>4</sub>, in which RhB dye was degraded after 12 min [9].

The silver vacancy in DAP had a significant effect on photocatalytic activity. It could trap the photogenerated electron-hole and prolongs the lifespan of photoexcited electron-hole pairs. The samples of AP and DAP treated under PtCl<sup>2-</sup> solution resulted in AP/Pt and DAP/Pt samples, respectively. These samples exhibited higher catalytic activity with DAP/Pt showed the highest activity compared to AP and DAP, suggesting that the silver vacancy may enhance the incorporation of Pt complexes and changed it into a phosphor deficient.

The Pt complexes could be the main factor in the improvement of catalytic activity by capturing the photogenerated electron and inhibiting the electron-hole recombination. The enhanced activity

was due to efficient electron transfer between the Ag<sub>3</sub>PO<sub>4</sub> conduction band and the chemically bonding of Pt(IV) species, which brought to efficient charge separation, similar to that of PtCl4modified TiO<sub>2</sub> [13].

#### 4. Conclusion

Anionic platinum complexes successfully substitute the phosphate ion of Ag<sub>3</sub>PO<sub>4</sub>. The anionic platinum complexes incorporation in Ag<sub>3</sub>PO<sub>4</sub> significantly improved the catalytic activity of Ag<sub>3</sub>PC The excellent photocatalytic activity was ascribed to efficient electron transfer between the Ag<sub>3</sub>PO<sub>4</sub> conduction band and the chemically bonding of platinum complexes brought to efficient charge separation.

#### Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

#### Acknowledgements

This research was supported by the Ministry of Research, Technology and Higher Education of the Republic of Indoppsia in the Scheme of Basic Research, 176/SP2H/LT/DRPM/2019. It was also partly supp<mark>g</mark>ted by the JSPS KAKENHI Grant Number JP16H06439 and the Cooperative Research Program of "Network Joint Research Center for Materials and Devices"

#### Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.matlet.2019.126848.

#### References

- [1] X. Pan, X. Chen, Z. Yi, A.C.S. Appl, Mater. Interfaces 8 (2016) 10104-10108.
- E. Antolini, Appl. Catal. B Environ. 237 (2018) 491-503.
   M. Tasbihi, K. Kočí, Mi. Edelmannová, I. Troppová, M. Reli, R. Schomäcker, J. Photochem, Photobiol. A Chem. 366 (2018) 72-80.
- H. Liu, K. Tian, J. Ning, Y. Zhong, Z. Zhang, Y. Hu, ACS Catal. 9 (2019) 1211–1219.
   E. Kowalska, H. Remita, C. Colbeau-Justin, J. Hupka, J. Belloni, J. Phys. Chem. C 112 (2008) 1124-1131.
- [6] U. Sulaeman, D. Hermawana, R. Andreas, A.Z. Abdullah, S. Yin, Appl. Surf. Sci. 428 (2018) 1029-1035.
- [7] U. Sulaeman, S. Suhendar, H. Diastuti, A. Riapanitra, S. Yin, Solid. State Sci. 86 (2018) 1-5.
- J. Deng, L. Liu, T. Niu, X. Sun, Appl. Surf. Sci. 403 (2017) 531-539.
- [9] H. Xu, C. Wang, Y. Song, J. Zhu, Y. Xu, J. Yan, Y. Song, H. Li, Chem. Eng. J. 241 (2014) 35-42.
- A. Romanchenko, M. Likhatski, Y. Mikhlin, Minerals 8 (2018) 578.
  B. Zhang, B. Shen, M. Guo, Y. Liu, Aust. J. Chem. 71 (12) (2018) 931–938.
  P. Kumbhakar, A. Pramanik, S. Biswas, A.K. Kole, R. Sarkar, P. Kumbhakar, J. [12]
- Hazard. Mater. 360 (2018) 193–203. [13] W. Zhao, C. Chen, W. Ma, J. Zhao, D. Wang, H. Hidaka, N. Serpone, Chem. Eur. J. 9 (2003) 3292-3299.

## The surface modification of Ag3PO4 using anionic platinum complexes for enhanced visible-light photocatalytic activity

ORIGINALITY REPORT

| 1<br>SIMIL | 5%<br>ARITY INDEX 11%                                                                                                                       | 12%<br>PUBLICATIONS                                    | 7%<br>STUDENT PA   | PERS       |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------|------------|
| PRIMAR     | Y SOURCES                                                                                                                                   |                                                        |                    |            |
| 1          | Uyi Sulaeman, Suhend<br>Diastuti, Anung Riapar<br>Ag3PO4 for highly enh<br>using hydroxyapatite a<br>phosphate ion", Solid S<br>Publication | hitra, Shu Yin. "E<br>anced photocat<br>as a source of | Design of<br>alyst | 3%         |
| 2          | Submitted to Universit                                                                                                                      | as Jenderal Soe                                        | dirman             | 2%         |
| 3          | Submitted to Universit                                                                                                                      | y of South Flori                                       | da                 | 2%         |
| 4          | I Futihah, A Riapanitra,<br>The pH dependence of<br>visible light photocatal<br>of Physics: Conference<br>Publication                       | f Ag PO synthes<br>ytic activities ",                  | is on              | 1%         |
| 5          | Uyi Sulaeman, Dadan<br>Andreas, Ahmad Zuha<br>"Native defects in silve<br>their effects on photoc                                           | iri Abdullah, Shu<br>er orthophospha                   | u Yin.<br>ate and  | <b>1</b> % |

### visible light irradiation", Applied Surface Science, 2018

Publication

| 6  | repositorio.ipen.br<br>Internet Source                                                                                                                                                                                                                                                                                       | 1%  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 7  | Hou, Chun-Chao, Ting-Ting Li, Shuang Cao,<br>Yong Chen, and Wen-Fu Fu. "Incorporation of<br>a [Ru(dcbpy)(bpy)2]2+ photosensitizer and a<br>Pt(dcbpy)Cl2 catalyst into metal–organic<br>frameworks for photocatalytic hydrogen<br>evolution from aqueous solution", Journal of<br>Materials Chemistry A, 2015.<br>Publication | 1 % |
| 8  | www.akademiabaru.com                                                                                                                                                                                                                                                                                                         | 1%  |
| 9  | Han, F "Tailored titanium dioxide<br>photocatalysts for the degradation of organic<br>dyes in wastewater treatment: A review",<br>Applied Catalysis A, General, 20090515<br>Publication                                                                                                                                      | 1%  |
| 10 | Submitted to Nguyen Tat Thanh University<br>Student Paper                                                                                                                                                                                                                                                                    | 1%  |
| 11 | mafiadoc.com<br>Internet Source                                                                                                                                                                                                                                                                                              | 1%  |
| 12 | matsci.fisika.ui.ac.id                                                                                                                                                                                                                                                                                                       | 1%  |
|    |                                                                                                                                                                                                                                                                                                                              |     |



Exclude quotes Off Exclude bibliography On

Exclude matches < 1%