bidang 2 by Nomer 14 Bid 2

Submission date: 29-Mar-2023 11:41PM (UTC+0700)

Submission ID: 2050094554

File name: 14._Dopan_N.pdf (413.22K)

Word count: 2924

Character count: 17208

Pengolahan Limbah Cair Batik menggunakan Fotokatalis TiO₂-Dopan-N dengan Bantuan Sinar Matahari

Kapti Riyani, Tien Setyaningtyas dan Dian Windy Dwiasih

Program Studi Kimia, Fakultas Sains dan Teknik,
Universitas Jenderal Soedirman

Jl. Dr. Soeparno Karangwangkal Purwokerto 53123
E-mail: kapti.riyani@gmail.com

Abstrak

Studi penggunaan fotokatalis TiQ4 dopan-N untuk pengolahan limbah cair batik telah dilakukan dengan tujuan untuk mengurangi nilai BOD dan COD pada limbah cair batik menggunakan sinar matahari seba4 i sumber energi. Sebagai sumber nitrogen untuk pembuatan fotokatalis TiO2-dopan-N adalah urea. Limbah cair batik berasal dari salah satu industri batik di Sokaraja, Banyumas, Jawa Tengah. Penelitian ini dimulai dengan pembuatan fotokatalis TiO2-N, dengan perbandingan molar TiO2:urea adalah 95:5 dan 90:10. Selanjutnya TiO2 standar; TiO2-dopan-N (95:5); dan N-dopan TiO2 (90:10) dikarakterisasi menggunakan XRD dan DRS. Hasil penelitian menunjukkan puncak kristal TiO2 anatase standar, TiO2-dopan-N (95:5) dan TiO2-dopan-N (90:10) berturut-turut pada $2\theta = 25,5794^{\circ}$, $2\theta = 25,5398^{\circ}$ dan $2\theta = 25,7286^{\circ}$. Energi celah pita TiO2 anatase standar, TiO2-dopan-N (95:5), dan TiO2-dopan-N (90:10) berturut-turut adalah 3,342 eV, 3,337 eV dan 3,268 eV. Uji aktivitas fotokatalis dilakukan menggunakan sinar matahari sebagai sumber energinya dengan lama penyinaran 5 jam. Penambahan Urea pada fotokatalis TiO2 akan meningkatkan aktivitas fotokatalis, perbandingan molar TiO2: Urea optimum pada perbandingan 90:10, dengan persen penurunan BOD dan COD berturut-turut sebesar 48,4 % dan 72,73 %.

Kata Kunci: fotokatalis, TiO2, TiO2-dopan-N, limbah cair batik, BOD, COD

Abstract

Studies using N-doped TiO₂ photocatalysts for batik wastewater treatment has been undertaken 3 ith the aim to reduce the BOD and COD in batik wastewater using sunlight as an energy source. As a source of nitrogen for the fabrication of N-doped TiO₂ photocatalysts is urea. Batik Wastewater from one of batik industry in Sokaraja, Banyumas, Central Java. The study began with the fabrication of N-doped TiO₂ photocatalysts, with a molar ratio of TiO₂: urea is 95:5 and 90:10. TiO₂, N-doped TiO₂ (95:5), and N-doped TiO₂ (90:10) were characterized using XRD and DRS. The results showed a peak of anatase crystal of standard TiO₂, N-doped TiO₂ (95:5) and N-doped TiO₂ (90:10) were 20 = 25.5794°, 20 = 25.5398° and 20 = 25.7286°, respectively. Band gap energy of anatase TiO₂ standard, N-doped TiO₂ (95:5), and N-doped TiO₂ (90:10) were 3.342 eV, 3.337 eV and 3.268 eV, respectively. Activity of Photocatalyst assay performed using sunlight as a source of energy with irradiation time 5 hours. Addition of Urea on TiO₂ photocatalysts will increase the activity of the photocatalyst, optimal molar ratio of TiO₂: urea at 90:10, with the percent reduction in BOD and COD were 48.4% and 72.73%, respectively.

Keywords: photocatalysts, TiO2, N-doped TiO2, batik wastewater, BOD, COD

1. PENDAHULUAN

Fotokatalisis heterogen menggunakan titanium dioksida merupakan metode yang efisien untuk mendegradasi secara lengkap senyawa organik dalam fase cair dan gas.

Pencemar yang mengandung karbon, hidrogen, nitrogen, sulfur dan atom halogen akan terdegradasi menjadi CO₂, H₂O, anion NO₃, SO₄², dan halida (Hoffmann, 1995). Metode fotokatalitik TiO₂ berhasil digunakan dalam

ISSN: 1978 - 8193

beberapa aplikasi komersial, termasuk pemurnian air, unit pembersih udara, pelapis antimikroba dan kaca self-cleaning. Jumlah paten yang berkaitan dengan degradasi berbahaya senyawaan organik yang teknik menggunakan fotokatalitik terus meningkat. Namun, kebanyakan dari mereka masih menggunakan sumber sinar dari lampu UV karena energi celah pita dari TiO2 cukup besar (3,2 eV) sehingga bila menggunakan sinar matahari kurang efisien karena hanva menggunakan ± 5 % dari spektrum sinar matahari (fraksi UV cahaya matahari). Penggunaan lampu UV saat ini menimbulkan masalah yang serius karena konsumsi energi yang tinggi sehingga meningkatkan biaya operasi sistem fotokatalitik TiO2. Modifikasi terhadap fotokatalis TiO₂ yang menggunakan sinar tampak untuk aktivasinya menghilangkan keterbatasan penggunaan TiO₂ untuk mendegradasi polutan organik. Sehingga saat ini sedang dikembangkan fotokatalis titanium dioksida yang dapat secara efisien menggunakan sinar matahari atau cahaya dalam ruangan. (Anpo, 2000).

Pendekatan yang paling menjanjikan untuk penggunaan TiO₂ pada daerah sinar tampak adalah denga modifikasi struktur kimia dari fotokatalis TiO₂ sehingga terjadi pergeseran penyerapan spektrum sinar ke daerah sinar tampak. Modifikasi fotokatalis TiO₂ melibatkan penganta (doping) dari logam dan spesies bukan logam. Urea merupakan hidrokarbon dengan kandungan nitrogen yang tinggi, mudah didapat serta relatif murah sehingga cukup potensial digunakan sebagai sumber nitrogen untuk pembuatan TiO₂-dopan-N yang diharapkan aktif pada daerah sinar tampak dan efisien menggunakan sinar matahari sebagai sumber cahaya.

Perkembangan industri tekstil di daerah Jawa Tengah telah maju dengan pesat. Dampak negatif dari pembangunan industri tekstil tersebut terutama dari proses pencelupan dimana mengandung zat warna azo dimana mempunyai gugus kromofor —N=N- dalam struktur molekulnya. Senyawaan azo ini diketahui nonbiodegradable dalam kondisi aerobik dan akan tereduksi menjadi produk antara yang lebih berbahaya pada kondisi anaerobic. Pewarna azo

dapat menyebabkan kanker pada manusia. (Wardhana, 2004)

Senyawa azo yang digunakan pada pencelupan dan pewarnaan tekstil merupakan senyawa organik. Kadar senyawa organik yang ada dalam suatu perairan dapat diukur dengan parameter Chemical Oxygen Demand (COD) dan Biochemi Oxygen Demand (BOD. Berdasarkan Keputusan Menteri Negara Kependudukan dan lingkungan Hidup No. KEP -51/ MENLH/ 10/ 1995, besarnya BOD limbah cair industri tekstil yang diijinkan adalah 50 -150 mg/l serta nilai COD yang diijinkan adalah 100 -300 mg/l. Nilai BOD limbah cair industri tekstil menurut Rambe (2008) sebesar 1099,22 mg/l, sedangkan nilai COD limbah cair tekstil menurut Malik (2003) sebesar 1310 mg/l. Dari data tersebut terlihat bahwa nilai BOD dan COD limbah tekstil sangat jauh diatas baku mutu limbah cair industri tekstil. Oleh karena itu, usaha untuk mengatasi masalah tersebut harus dilakukan sedini mungkin. Menghilangkan pewarna dari air akan memperbaiki kualitas air, sehingga diperlukan metode yang efektif untuk menghilangkan warna dari limbah cair tekstil. Satu dari metode untuk pengolahan limbah cair industri tekstil adalah dengan degradasi secara fotokatalisis dalam larutan dengan penyinaran menggunakan sinar tampak, dimana mengandung fotokatalis yang sesuai terutama TiO₂, dimana TiO₂ mudah didapat, harga relatif murah, tidak berbahaya, dan stabil secara kimia.

Tujuan dari penelitian yang dilakukan adalah (1). Membuat TiO₂-dopan-N dengan cara impregnasi basah dari TiO₂ jenis anatase dengan Urea sebagai sumber nitrogen. (2). Karakterisasi fotokatalis yang telah dibuat yang meliputi kristalinitas dan energi celah pita. (3). Menguji aktifitas katalis yang dibuat dengan aplikasi langsung untuk pengolahan limbah cair batik menggunakan sinar matahari sebagai sumber energinya dengan lama penyinaran 5 jam.

2. METODE PENELITIAN

Bahan dan Alat

Bahan yang digunakan dalam penelitian ini yaitu TiO₂ Merck, urea Merck, aquades, K₂Cr₂O₇ Merck, HgSO₄ Merck, MnSO₄ Merck, H₂SO₄ Merck, MgSO₄ Merck, FeCl₃ Merck, Buffer Phosphat, Amilum Merck,

Feroamoniumsulfat Merck, Na₂S₂O₃ Merck, CaCl₂ Merck, alkali azida Merck. K₂Cr₂O₇ Merck Indikator feroin.

Alat yang digunakan dalam penelitian ini yaitu sonikator, beker gelas, beker gelas, labu ukur, pipet ukur, filler, batang pengaduk, kertas saring, pH indikator universal, botol Winkler, oven, furnace, cawan porselen, spektrofotometer UV-Vis DRS, X-Ray Diffraction (XRD).

Pengambilan dan preparasi sampel limbah cair 4

Limbah cair batik di ambil dari industri batik di 10 okaraja Kulon, Banyumas, Jawa Tengah. Limbah cair ini di masukkan ke dalam jerigen. Limbah cair disaring dengan kertas saring untuk menghilangkan padatan (seperti malam) yang dapat mengganggu analisis. Filtrat yang dihasilkan ditampung dalam beker gelas 1000 mL.

Sintesis fotokatalis TiO2-dopan-N

TiO₂-dopan-N dibuat dengan perbandingan molar TiO₂: urea yaitu 95:5 dan 90:10. Masing-masing 22,8 g TiO₂ dan 0,90 g urea (95:5); 21,6 g TiO₂ dan 1,80 g urea (90:10) disuspensikan dalam akua DM, pmudian suspensi diletakkan dalam sonikator selama 30 menit. Selanjutnya suspensi diuapkan dengan oven dan dikalsinasi pada suhu 500°C selama 2 jam kemudian dihaluskan hingga berbentuk serbuk. Fotokatalis TiO₂, TiO₂-dopan-N (95:5), TiO_2 -dopan-N (90:10) dikarakterisasi dengan XRD untuk menentukan kristalinitas. Celah pita masing-masing fotokatalis tersebut dengan menggunakan ditentukan spektrofotometer UV-Vis DRS.

Pengujian Fotokatalis TiO2-dopan-N untuk pengolahan limbah cair tekstil

Fotokatalis TiO₂ tanpa urea digunakan sebagai kontrol. 200 mL air limbah yang telah disaring untuk menghilangkan endapan dimasukkan ke dalam beaker gelas. Kemudian 0.5 gram fotokatalis dimasukkan dalam medium. Selanjutnya terhadap media untuk fotokatalisis disetimbangkan selama 30 menit pada kondisi gelap, kemudian media disinari menggunakan sinar matahari. Sampel diambil setiap 1 jam sampai 5 jam penyinaran. Setiap sampel

dianalisis nilai BOD dan COD-nya. Setiap percobaan diulang 3x (triplo).

ISSN: 1978 - 8193

Penentuan BOD (Biochemical Oxygen Demand) (APHA, 1995)

Penentuan BOD dilakukan dengan menggunakan metode titrasi Winkler, dimana kadar BOD dapat dihitung dengan rumus :

$$BOD = DO_{(0)} - DO_{(5)}$$

Penentuan DO(0)

Dipipet 50 ml sampel ke dalam labu ukur 100 ml ditambahkan masing-masing 1 ml buffer fosfat, MgSO₄, CaCl₂ dan FeCl₃ dan diencerkan dengan air suling sampai tanda batas. Dipindahkan ke dalam beker 100 ml lalu aerasi selama 15 menit. Dimasukkan ke dalam botol Winkler dan tutup, tambahkan masing-masing 1 ml alkali azida dan MnSO₄ 10%, tutup lalu kocok dengan membolak-balik botol Winkler. Dibiarkan selama 10 menit lalu dipindahkan ke erlenmeyer. Ditambahkan 1 ml H₂SO₄ pekat, dikocok dan dititrasi dengan natrium thiosulfat 0,025 N hingga kuning pucat. Ditambahkan beberapa tetes amilum 0,5 %, kemudian titrasi dilanjutkan sampai warna biru tepat hilang.

Penentuan DO(5)

Sampel yang telah diaerasikan pada pengerjaan $DO_{(0)}$ dimasukkan kedalam botol Winkler dan ditutup rapat (dijaga jangan sampai timbul rongga udara) dan disimpan selama 5 hari. Kemudian dititrasi dengan cara yang sama pada penentuan $DO_{(0)}$. Kadar oksigen terlarut dapat dihitung dengan rumus :

Kadar O₂ (ppm) = (
$$\underline{ml \times N}$$
) pentiter x 8000
 $\underline{ml \text{ sampel} - 2}$

 $DO = kadar O_2 (mg.L^{-1}) x faktor pengenceran$

Penentuan COD (Chemical Oxygen Demand) (APHA, 1995)

Penentuan COD dilakukan dengan menggunakan titrasi redoks. Sebanyak 0,1 gram HgSO₄ masing-masing dimasukkan ke dalam 2 buah erlenmeyer, ditambah 2-3 buah batu didih dan ditambahkan 20 ml aquadest (blanko) dan 20 ml sampel. Blanko dan sampel kemudian ditambahkan masing-masing 10 ml K₂Cr₂O₇ 0,25

N dan 30 ml reagen asam sulfat-perak sulfat. Kedua erlenmeyer direfluks selama kurang lebih 2 jam dan setelah dingin, kondensor dibilas dengan aquades. Indikator feroin sebanyak 2-3 tetes ditambahkan sehingga larutan menjadi hijau-biru. Larutan selanjutnya dititrasi dengan ferro ammonium sulfat 0,1 N yang telah distandarisasi dengan K₂Cr₂O₇ 0,25 N sampai larutan menjadi coklat-merah.

Nilai COD (ppm) =
$$(A-B) \times N \times 8000$$

ml sampel

Keterangan: A = ml pentiter untuk blanko

B = ml pentiter untuk sampel

N = Normalitas Na₂S₂O₃

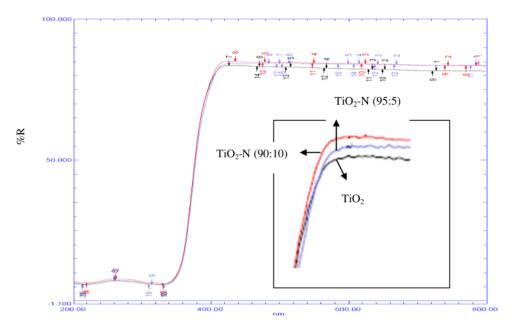
HASIL DAN PEMBAHASAN

Karakterisasi Fotokatalis

Hasil karakterisasi UV-Vis DRS dapat dilihat pada gambar 1, yang menunjukkan bahwa panjang gelombang untuk TiO2 murni sebesar 372,00 nm, TiO₂-dopan-N dengan perbandingan molar (95:5) sebesar 372,58 nm, TiO2-dopan-N (90:10) sebesar 380,32 nm yang ekivalen dengan energi celah pita sebesar 3,34 eV, 3,33 eV dan 3,26 eV. Selisih energi celah untuk spesies selitan N pada TiO₂ mencapai 0,73 eV di atas puncak pita valensi, sedangkan selisih energi celah pita untuk substitusi N pada TiO₂ mencapai 0,14 eV (Di Valentin, 2004). Pada penelitian ini terjadi penurunan energi celah pita yang sedikit, yaitu 0,08 eV 15 ingga kemungkinan besar yang terjadi adalah substitusi sebagian atom O pada TiO₂ oleh N dari urea. Semakin besar penambahan urea akan menurunkan energi celah pita hal ini terjadi karena semakin banyak atom nitrogen yang mensubstitusi sebagian atom O pada TiO₂.

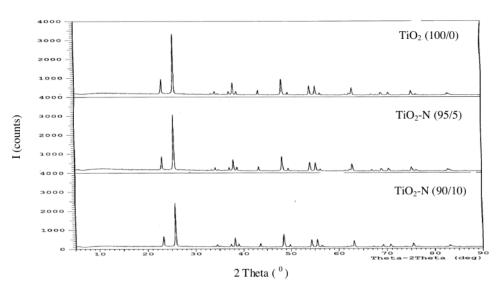
Hasil karakterisasi XRD dapat dilihat pada gambar 2. Dari gambar 2 terlihat bahwa dengan penambahan urea akan mengurangi intensitas dari peak TiO2 anatase standar. Peak

TiO₂ anatase, TiO₂-dopan-N (95:5) dan TiO₂dopan-N (90:10) berturut-turut terlihat pada $2\theta =$ $25,5794^{\circ}$, $2\theta = 25,5398^{\circ}$ dan $2\theta = 25,7286^{\circ}$. Penurunan intensitas peak dikarenakan adanya atom Nitrogen yang menggantikan atom oksigen dari TiO2 sehingga komposisi kristal TiO₂ tipe *anatase* semakin berkurang. Hal ini menunjukkan bahwa urea bisa digunakan sebagai sumber N untuk mensubstitusi sebagian atom O pada TiO₂.


Uji Aktivitas Fotokatalis

Limbah cair batik awal mengandung BOD dan COD sebesar 657 mg/L dan 950 mg/L. Pada uji daya adsorbsi fotokatalis dimana dilakukan dengan kondisi gelap tanpa cahaya selama 5 jam menunjukkan penurunan BOD dan COD sebesar 0 % untuk semua fotokatalis yang diuji, yaitu TiO₂ (100/0), TiO_2/N (95/5) dan TiO_2 (90/10). Hal ini menunjukkan bahwa fotokatalis yang digunakan daya adsorbsinya sangat kecil sehingga penurunan kadar BOD dan COD dengan adanya sinar matahari terjadi karena adanya aktivitas fotokatalisis dari fotokatalis yang digunakan.

Tabel 1. Pengaruh perbandingan molar TiO2: Urea terhadap aktivitas fotokatalis


Katalis	Persen penurunan selama 5 jam waktu penyinaran		
	BOD (%)	COD (%)	
TiO ₂ (100/0)	20,03	22,95	
TiO ₂ /N (95/5)	22,61	55,79	
TiO ₂ /N (90/10)	48,4	72,73	

Dari tabel 1. terlihat bahwa aktivitas fotokatalis TiO2-dopan-N meningkat dengan meningkatnya jumlah Urea yang digunakan. Perbandingan molar TiO₂: Urea optimum pada perbandingan 90:10 dengan persen penurunan konsentrasi

Panjang gelombang (nm)

Gambar 1. Hasil karakterisasi UV-Vis DRS

Gambar 2. Hasil karakterisasi XRD

BOD dan COD sebesar 48,4 % dan 72,73 %. Hal ini menunjukkan bahwa penambahan urea pada fotokatalis akan mengaktifkan fotokatalis TiO₂ pada penggunaan sinar matahari.

TiO₂ dapat Tengkatalisis reaksi reduksi dan oksidasi. Reaksi oksidasi dapat terjadi karena lubang positif yang terbentuk selama aktivasi fotokatalis akan

mengoksidasi ion hidroksi atau air pada permukaan katalis menghasilkan radikal hidroksil HO•. Radikal ini mengoksidasi senyawaan organik pada limbah cair tekstil. Mekanisme penurunan kadar BOD dan COD menggunakan fotokatalis TiO2 dan TiO2-N merupakan reaksi redoks dimana terjadi pelepasan dan penangkapan elektron yang diakibatkan oleh energi foton dari sinar matahari. Reaksi fotokatalisis dari TiO2 merupakan kombinasi reaksi dari fotooksidasi serta fotoreduksi yang diawali dengan adsorpsi subtrat ke permukaan semikonduktor. Fotooksidasi maupun fotoreduksi dapat terjadi forena TiO₂ merupakan semikonduktor dengan struktur elektronik yang khas yaitu memiliki pita valensi dan pita konduksi yang kosong sehingga ketika dikenai sinar matahari maka akan mengalami eksitasi e dari pita valensi ke pita konduksi (menghasilkan e⁻cb) yang menyebabkan adanya kekosongan atau hole (h^{+}_{vb}) pada pita valensi yang dapat berperan sebaga muatan positif. Selanjutnya hole akan bereaksi dengan H₂O yang terdapat dalam larutan membentuk radikal hidroksil (•OH), radikal didroksil ini merupakan oksidator kuat yang dapat mendegradasi senyawa organik menjadi CO2 dan air. Elektron pada permukaan semikonduktor dapat bereaksi dengan penangkap e- yang ada dalam larutan yaitu O2 membentuk radikal superoksida (•O₂) yang juga dapat mendegradasi senyawa organik dalam larutan (Hoffman et al, 1995).

Radikal (•OH) dan (•O₂-) akan terus menerus terbentuk selama sinar matahari masih mengenai fotokatalis dan akan mendegradasi senyawa organik menjadi CO₂ dan H2O. Efektivitas reaksi fotokatalitik tergantung pada kompetisi antara rekombinasi pembawa muatan dengan donasi elektron dari substrat ke hole (h^{\dagger}_{vb}) . Rekombinasi pembawa muatan dicegah dengan menyediakan penangkap e berupa O2 yang teradsorpsi dan menjadi anion radikal superoksida •O2 yang akan

mengoksidasi senyawa organik. Menurut Okamoto et.al. (1985) mekanisme fotokatalitik TiO₂ adalah sebagai berikut:

Reaksi katalisis TiO₂ untuk menurunkan BOD dan COD adalah sebagai berikut

$$TiO_2(e^- + h^+)$$
 + bahan organik \longrightarrow $CO_2 + H_2O$

Mekanisme tersebut diperkuat oleh Sonawane dan Dongare (2006), yang menggambarkan mekanisme fotokatalis TiO₂ dengan tahapan-tahapan sebagai berikut:

$$TiO_2 + hv \rightarrow TiO_2(e^- + h^+)$$

 $h^+ + OH_{ad} \rightarrow OH_{ad}$
 $h^+ + H_2O_{ad} \rightarrow OH_{ad} + H^+$
 $e^- + M^{n+} \rightarrow M$

Radikal hidroksil •OH yang dihasilkan memiliki peranan penting 6 dalam mengoksidasi senyawaan organik. Semakin tinggi pembentukan hidroksil radikal maka akan semakin besar pula kemampuan fotokatalis untuk mengoksidasi senyawaan organik.

4. KESIMPULAN DAN SARAN

Kesimpulan

Berdasarkan dari hasil penelitian maka dapat disimpulkan bahwa aktifitas TiO₂ pada penggunaan sinar matahari sebagai sumber energinya dapat ditingkatkan dengan memodifikasi katalis menggunakan urea sehingga dihasilkan katalis TiO₂-dopan-N.

Penambahan urea akan menurunkan energi celah pita dari TiO₂. Energi celah pita untuk TiO₂, TiO₂-dopan-N (95:5) dan TiO₂-dopan-N (90:10) sebesar 3,053 eV, 3,035 eV dan 3,023 eV. Semakin banyak urea yang ditambahkan juga akan menurunkan jumlah kristal TiO₂ anatase.

Perbandingan molar TiO₂/Urea akan mempengaruhi aktifitas fotokatalis. Aktifitas fotokatalis optimum pada pengaruh perbandingan molar TiO₂/Urea (90:10) dengan persen penurunan konsentrasi BOD dan COD pada limbah cair tekstil sebesar 48,4 % dan 72,73 %.

DAFTAR PUSTAKA

- Anpo, M., (2000), Utilization of TiO2 photocatalysts in green chemistry, *Pure Appl. Chem.*, 72, 1265-1270.
- APHA, 1995, Standar Mrthod for the Examination of Water and Wastewater, 18th Ed., American Public Healt Association. Washington D.C
- Di Valentin, C., Gianfranco Pacchioni, and Annabella Selloni., 2004., Origin of the different photoactivity of N-doped anatase and rutile TiO₂., Phys. Rev. B 70, 085116-085119
- Hoffman, M.R., Scot T. Martin, Wonyong Choi, dan Detlef W. Bahneman., 1995., Environmental Application of Semiconductor Photocatalysis., Chem. Rev. 95, 69-96
- Keputusan Menteri Negara Kependudukan dan lingkungan Hidup No. KEP - 51/ MENLH/ 10/ 1995
- Malik, A., 2003, Analisis Sistem Pengelolaan Industri Tekstil Dalam Upaya Meminimisasi Limbah Cair di Kota Medan., Tesis., Program Pascasarjana Universitas Sumatera Utara, Medan
- Okamoto K.I., Yamamoto Y., Tanaka H., Tanaka M. and Itaya A., (1985), Heterogeneous

photocatalytic decomposition of phenol over TiO_2 powder, *Bull. Chem. Soc. Jpn.*, **58**, 2015-2022.

ISSN: 1978 - 8193

- Rambe, A.M., 2009., Pemanfaatan Biji Kelor (Moringa Oleivera) Sebagai Koagulan Alternatif Dalam Proses Penjernihan Limbah Cair Industri Tekstil., Tesis., Program Pascasarjana Universitas Sumatera Utara., Medan
- Sonawane, R.S., and M.K. Dongare., 2006., Solgel Synthesis of Au/TiO₂ Thin Films for Photocatalytic Degradation of Phenol in Sunlight., Journal of Molecular Catalysis A: Chemical 243, 68-76
- 10. Wardhana, W.A., (2004) Dampak Pencemaran Lingkungan., Penerbit Andi Yogyakarta

ORIGINALITY REPORT

15% SIMILARITY INDEX

13%
INTERNET SOURCES

3%
PUBLICATIONS

3%

STUDENT PAPERS

PRIMARY SOURCES

etd.repository.ugm.ac.id

%

jurnal.fmipa.unila.ac.id

1 %

akademik.unsoed.ac.id

1 %

fdocuments.net
Internet Source

1%

Submitted to UIN Maulana Malik Ibrahim Malang

1 %

Student Paper

jfu.fmipa.unand.ac.id

1 %

Christmas Togas, Audy D. Wuntu, Harry S. J. Koleangan. "Fotodegradasi Zat Warna Metanil Yellow Menggunakan Fotokatalis TiO2-Karbon Aktif", Jurnal MIPA, 2014

%

Publication

8

dewienvironmental.blogspot.com
Internet Source

%

9	digilib.unhas.ac.id Internet Source	1%
10	journal.uii.ac.id Internet Source	1%
11	elviamawarni.wordpress.com Internet Source	1%
12	jurnal.um-palembang.ac.id Internet Source	1 %
13	repositori.uin-alauddin.ac.id Internet Source	1%
14	sancemaruje.wordpress.com Internet Source	1 %
15	Devi Indriani, Helga Dwi Fahyuan, Ngatijo Ngatijo. "UJI UV-VIS LAPISAN TiO2/N2 UNTUK MENENTUKAN BAND GAP ENERGY", JOURNAL ONLINE OF PHYSICS, 2018	1 %
16	historicapower.blogspot.com Internet Source	1%
17	Submitted to National Kaohsiung University of Applied Science Student Paper	1%
18	Submitted to Universitas Jenderal Soedirman Student Paper	1%

Exclude quotes Off Exclude matches < 1%

Exclude bibliography On