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Abstract 

A bi-chromatic signal that is subject to the Benjamin-Feir instability will 
show large deformations while propagates away from its source. For 
applications in hydrodynamic laboratories to generate large waves to test 
ships in extreme conditions, it is desired to know the location and height 
of the maximal waves with respect to the properties at the wave maker. In 
this paper we will show two different ways how to calculate both the 
location as well as the maximal wave high. First we show the AB-
equation, an improved KdV-type of equation, can simulate numerically 
the experiments very accurately. Using a third-order expansion method for 
the AB solutions, we then show that the location of the largest 
deformation and the amplitude amplification due to nonlinear effects can 
well be calculated rather explicitly. This improves previous results using 
the third order approximation with a KdV equation, since the AB equation 
includes accurately second order non-linear terms that account also for the 
important third order nonlinear resonant wave interactions. 

1. Introduction 

At the current state much research related to accurately generating waves in 
hydrodynamic laboratories is being done. Studying wave propagation in well-
controlled hydrodynamic laboratories is an interesting subject for practical purposes 
as well as for understanding properties of wave propagation itself. The motivation of 
this paper arises from the requirement of hydrodynamic laboratories to generate 
‘extreme waves’ that do not break while running downward in the wave tank. Of 
particular interest is the accurate description of the non-linear wave deformations 
when traveling away from its generation point (the waveflap in laboratories). Large 
deformations were observed experimentally for bi-chromatic signals experiencing 
the Benjamin-Feir instability [6, 7]. Previous research showed that by using the 
improved KdV equation-the classical KdV but with exact linear dispersion-the 
position of the largest deformation can be predicted rather accurately with 3rd-order 
expansions. This model, however, fails to determine the correct amplitude 
amplification [5]. 

In this paper we will use a new KdV- type of equation, called the AB equation, 
to study the wave propagation. The equation is exact up to 2nd-order, i.e. it has exact 
linear dispersive properties and quadratic terms that include correct dispersion; see 
[3, 4]. This equation, unlike other KdV equations, can describe waves in infinitely 
deep water, but in this paper we only consider waves on finite depth. 
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We use this AB equation to simulate numerically the deformations and show 
that the results are remarkably good agreement with experiments. Besides that, 
analytical solutions will be constructed by using 3th-order asymptotic expansion. 
These approximations for AB will be compared to the approximates using the KdV 
equation as in [5]. To predict the position of maximal amplitude we use the concept 
of Maximal Temporal Amplitude (MTA), which measures the maximal height of the 
wave at all downstream positions. 

The content of the rest of the paper is as follows. In section 2 we briefly de-
scribe the model equations mentioned above. In section 3 we describe concisely the 
3th-order asymptotic method for the AB equation and compare the coefficients of 
the solution when using AB with those when using the KdV. In Section 4 we discuss 
the comparison between the bi-chromatic evolution of AB and KdV equation. 
Initially, the numerical simulation of AB is verified with experiment using MARIN 
data. Base on the numerical simulation, comparison between the bi-chromatic 
evolution using 3th-order asymptotic method for the AB and KdV and also MTA of 
AB and KdV will be presented. In Section 5 we give some concluding remarks. 

2. Mathematical Model Equations 

The wave equation used in [5] to determine the position of maximal amplitude 
and amplitude amplification factor is KdV-equation with exact linear dispersion but 
with classical nonlinearity. In physical variables it is given for the wave elevation η 
by 

( ) ;0
4
3 2

0 =η∂+η∂−Ω+η∂ xxt h
cii  (1) 

here Ω is the pseudo-differential operator with ( ) ( ) ,tanh kkhgkk =Ω  

,0 ghc =  g is the gravitational acceleration and h is the depth of the layer. The 

AB-equation as derived in [3] reads 

( ) ( ) ( ) ( ) ,
4
1

2
1

4
1

2
1 22





 η+ηη+η−ηη+η−=η∂ BBBAAAAgt  (2) 

where η represents the elevation and gCA x∂=  and 1−= CgB  are pseudo- 

differential operators with the symbol of C given by ( ) ( ) .ˆ kkkC Ω=  The AB 
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equation can be interpreted as a higher order KdV equation for wave above finite 
depth and in certain approximation it becomes the KdV equation, see [3]. 

3. Third Order Asymptotic Approximations 

In this section we present in some detail the results for the 3rd-order asymptotic 
solutions of the AB-equation, and we show for a few essential coefficients the 
difference in the coefficients when using the KdV equation. 

3.1. Third order AB approximations 

The solution of AB equation will be found by using a 3rd-order asymptotic 
method. For that aim the elevation η is expanded as power series; since we will 
restrict to 3rd-order, it is given by 

( ) ( ) ( ),33221 ηε+ηε+εη≈η  (3) 

where ( ),1η  ( ),2η  ( )3η  represent the 1st, 2nd- and 3rd-order solution. Inserting this 

expansion in the AB equation, will give the following three linear partial differential 
equations that determine successively the three order contributions: 

( ) ( ) 011 =η+η∂ Agt  (4) 
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( ) ( ) ( ( ) ( ) ( ) ( ) )
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( ( ) ( ) ) ( ( ) ( ) )2121 2
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1

ηη+ηη− BBAA  

( ( ) ( ) ( ) ( ) ) .
2
1 1221


ηη+ηη+ BBB  (6) 

In this paper, we choose for the solution of the first order equation (4) a bi-chromatic 
wave. This is defined as the sum of two monochromatic waves with the same 
amplitudes but different frequencies, ±ω  and wave numbers .±k  Then 
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( ) ,.1 ccaeae ii ++=η −+ θθ  (7) 

where a is the amplitude, txk ±±± ω−=θ  are the phases, 1−=i  is the complex 

unit and c.c means conjugate complex. The dispersion relation ( )±± Ω=ω k  is 

obtained by substituting this Ansatz to the first order equation. The 2nd-order 

contribution ( )2η  is obtained by solving (5). As a consequence of the quadratic 

nonlinearity, a resonance term will appear in the 3rd-order solution. This resonant 
contribution has to be made to vanish in order to satisfy the solvability condition for 
an asymptotically valid solution. To achieve this, we need to correct the wave 
number according to the Linstead Poincare method (6). Hence the wave number k is 
expanded in a power series like 

( ) ( ) ( ) .2210 +ε+ε+= ±±±± kkkk  

Using Taylor expansion of the symbols ,Â  B̂  and Ĉ  of the pseudo-differential 

operators A, B and C around ( )0
±k  to 2nd-order, we get ( ) ,01 =±k  and the 2nd-order 

equation (5) becomes 

( ) ( ) .1
22 RHSAgt =η+η∂  

Here 1RHS  is the interaction of the first order solution with itself given by 

( ) ( ) ..2423
2

22
2

211 cceeeeRHS iiii +α+α+α+α= −+−+−+ θ−θθ+θθθ  

The solution of the 2nd-order is chosen to be of the form 

( ) ( ) ( ) ..2423
2

22
2

21
2 cceaeaeaea iiii ++++=η −+−+−+ θ−θθ+θθθ  (8) 

Substituting ( )2η  into the 2nd-order equation, we find the coefficients of the 2nd-

order solution as given below 
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the expressions for 2421 ...,, αα  are given in the Annex. 
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The wave number correction ( )2
±k  is found from the 3rd-order equation when 

removing the resonance terms. These wave numbers result from the interaction of 
the 1st- and 2nd-order terms and are given by 

( )
( ( ) ( ( ) ) ( ( ) ))

( )
( ( ) ( ( ) ) ( ( ) ))

.ˆˆ;ˆˆ 000
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000
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−−−
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kCkCkia
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The 3rd-order equation then becomes 

( ) ( ) ,2
33 RHSAgt =η+η∂  

where 2RHS  is given by 

( ) ( )+−−+−+ θ+θθ+θθθ α+α+α+α= 2
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iiii eeeeRHS  

( ) ( ) ,.2
36

2
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and 3831 ...,, αα  are detailed in the Annex. The 3rd-order contribution to the 

solution is taken as 

( ) ( ) ( )+−−+−+ θ+θθ+θθθ α+α+α+α=η 2
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Substituted into the 3rd-order equation, we find the coefficients as given below: 
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The second and 3rd-order contributions are called bound waves because these 
are intimately connected to the 1st-order solution since they have same velocity. 
Particularly in the 3rd-order solution, the bound waves contain side-band waves and 
non side-band waves. The side-band waves have frequencies determined by the 
signal input given by −+ ω−ω2  and .2 +− ω−ω  The non side-band waves have 

larger frequencies. Cahyono in [2], has shown that the side-band waves of 3rd-order 
are of large influence since they can be of the same order as the 1st-order solution. 

This can be understood since the order of the side band waves is given by ;
2






κ
aa  

hence for sufficiently small ,κ  i.e., sufficiently large modulation length of the bi-

chromatic, κa  will be of order unity. The other 3rd-order terms are much smaller 

than the 2nd-order terms and will be neglected in the following. 

The bound waves of the 2nd- and 3rd-order solution will give a contribution to 
the signal at the wave maker. Hence, if we want to prescribe the bi-chromatic wave 
as input signal, the bound waves should be compensated by 2nd- and 3rd- order free 

waves, written as ( )2
fwη  and ( )3

fwη  respectively. These free waves have the same 

frequencies as the bound waves but satisfy the exact dispersion relation. 

Summarizing the result, we write the approximate solution of the AB equation 
from 3rd-order asymptotic method as 

( ) ( ) ( ) ( ) ( ).33221
fwbwfwbw η−η+η−η+η=η  

In Figure 1 we illustrate the nonlinear 2nd- and 3rd-order mode generation. 

 

Figure 1. Nonlinear mode generation in second and third order from the two basic 
wave numbers in the bi-chromatic wave. 

3.2. Comparison with KdV approximations 

Using the KdV-equation instead of the AB-equation, a similar 3rd-order 
approximation can be derived. The difference of the 3rd-order AB- and KdV-
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approximations can be illustrated by giving the differences in some of the main 
coefficients. Using obvious notation, we have in 2nd-order 

( ) ( ( ) ) ( )KdVAB aka 21
0

21 +β=  (10) 
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For 3rd-order, we get for instance 
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Graphically, the coefficients are plotted as function of wave number in Figures 
2 and 3. Although the asymptotic values for long waves coincide, as expected, the 
difference in these coefficients will lead to noticeable effects in the approximations 
as will be shown in the next section. 
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Figure 2. The coefficients of second order 21a  for AB (line) and KdV (point). 

4. Comparisons of Bi-chromatic Evolutions 

In this section we compare numerical simulations of the AB-equation with 
measurements of experiments in a wave tank of 200m long of MARIN 
hydrodynamic laboratory. The good agreement makes it possible to consider the AB-
simulations as producing the correct waves for which then the maximal position and 
amplitudes can be detected. Time signals at certain locations in the wave tank will be 
determined by the AB-simulations and by the 3rd-order approximations using the 
AB- and the KdV-equation. The numerically computed MTA will be compared with 
the MTA as calculated with the two 3rd-order approximations. In the final 
subsection we will give explicit expressions for the maximal position and amplitude 
amplification. 

 
Figure 3. The coefficients of third order 31a  of AB (line) and KdV (point). 
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4.1. Numerical simulations compared with experiments 

Numerical simulation with the AB-equation were reported in [4] using a high 
order pseudo-spectral implementation, using 1024*3 modes for calculations over 
more than 150 wave lengths, in a time period of 400s and over a spatial interval of 
800m length. Here we will show some results. As input at mx 10=  (downstream of 
the waveflap) is taken the signal from the bi-chromatic wave experiment at the 
laboratory. In Figure 4 we show the comparison between the numerical calculation 
and the MARIN data: at the left the measured time signals and at the right the 
corresponding signals calculated with the AB equation, for various locations. 
Observe the good agreement, illustrating that the AB-simulation captures well the 
substantial envelope deformations. 

4.2. Third order approximations 

In this subsection we discuss the evolution of bi-chromatic wave using the 3rd-
order asymptotic approximation for the AB- and KdV-equation. We will compare 
the results with each other and with numerical AB-simulations. We take as input 
signal at mx 0=  the expression 

( ) ( ) ( ),coscos4,0 ttat νω=η  (12) 

where a is the amplitude, and ( )++ ω+ω=ω 2
1  and ( )++ ω−ω=ν 2

1  are the 

carrier frequency and the modulation frequency respectively. 

The details of the approximation of the AB- and the KdV-equation for 
parameter of ,5.0 ma =  [ ]s11495.3=ω  and [ ]s11575.0=ν  at position of 

mx 40=  can be seen in Figures 5 and 6. The contributions of the 2nd-order terms 
are almost identical, but in 3rd-order the AB-contribution differs substantially from 
KdV, being roughly twice as large. This is a consequence of the difference of the 
nonlinear terms in the equations. The wave signals for the parameters at several 
positions are shown in Figure 7, with the 3rd-order KdV- and AB-approximation at 
the left and at the right respectively, and the numerical AB-calculation in the middle. 
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Figure 4. The bi-chromatic wave signal which is captured as time signals at 
positions ,60mx =  120m, 180m, at the left for the MARIN experiment and at the 
right as simulated with the AB-equation. 

Qualitatively it seems that the performance of the 3rd-order asymptotic 
approximation with AB resembles the numerical simulation closer than the 3rd-order 
KdV-approximation. However, for larger distances from the input position, the 
shape of the signal of both approximations deviates more from the actual evolution 
represented by the numerical solution. This is mainly caused by the fact that both 
AB- and KdV-approximations retain the initial symmetry in each beat pattern that is 
lost in the actual evolution. Except this, the AB-approximation has higher and more 
accurate amplitude than the KdV-approximation. Observe also that both 
approximations are quite well capable to predict the propagation speed, as is seen 
from the positioning of the beats; this is a consequence of the exact linear dispersion 
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(for both approximations) and the limited influence of the difference in the 2nd-
order wave number corrections. 

 

Figure 5. The solution of AB equation, ( ) ( ) ( ) ( ) ( )33221 ,,,,, fwfw ηηηηηη  represent the 

total, first order, second order, second order free wave, third order and third order 
free wave solution respectively. 

 

Figure 6. The solution of KdV equation, ( ) ( ) ( ) ( ) ( )33221 ,,,,, fwfw ηηηηηη  represent the 

total, first order, second order, second order free wave, third order and third order 
free wave solution respectively. 
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Figure 7. The bi-chromatic signals computed with third order asymptotic of KdV 
(left) and numerical simulation of AB (mid) and third order asymptotic of AB(right) 
at m.100,60,10=x  

4.3. MTA calculations 

The profiles approximated with the 3rd-order calculations do not yet given an 
indication about the quality to predict the global evolution, such as the location of 
the largest wave height in the tank ( )maxx  and how large the amplitude 

amplification is. In order to investigate this further, we will consider the graph of the 
so-called maximal temporal amplitude (MTA), which is defined as 

( )
[ ]

( ),,max
,0

txx
Tt
η=

∈
M  

where ( )tx,η  is the elevation and [ ]T,0  is the observation time interval. The MTA 

will give an abstracted view of the global evolution and can be used to determine the 
position maxx  of maximal wave height in the tank and the ratio of this maximal 

height with the initial amplitude, the so-called Amplitude Amplification (AA). For 
experimental data, that are captured in a few positions only, the MTA cannot be 
determined. We will use the MTA to compare the three model results: the MTA as 
found from the numerical AB-simulation, and from the 3rd-order approximations 
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with AB and KdV. As example we present these results in Figure 8 for the bi-
chromatic wave group with parameters ,05.0 ma =  [ ]s11495.3=ω  and =ν  

[ ].11575.0 s  

First we comment on the general shape of the displayed MTA’s. These plots are 
obtained for a simulation time interval with [ ].400 sT =  From the 3rd-order solution 

it is clear that the short oscillation is due to the 2nd-order contribution. However, the 
oscillation period is different than the period of the 2nd-order solution, because in 
the numerics the contribution of many higher order waves is included. In Figure 9 
we plotted for some cases the MTA of the 3rd-order approximation with and without 
the 2nd-order contributions, in the left and right plot respectively. 

 

Figure 8. MTA curve using numerical calculation of AB (a), third order asymptotic 
of KdV (b) and third order asymptotic of AB (c). 

This leads to the conclusion that if we want to obtain the MTA with 3rd-order 
approximation, we will have 

( )( )
[ ]

( )txx
Tt

,max
,0

3 η=
∈

M  (13) 

[ ]
[ ( ) ( )] ndnd

Tt
ttx 2order2,max

,0
+−−η≈

∈
-order wave height. (14) 
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This has to be taken into account when we want to calculate the MTA with the 3rd-
order approximation in the next subsection. 

We will now comment on the differences between the MTA’s obtained from the 
different approximations. The MTA of 3rd-order approximation with the AB-
equation is closer to the MTA of the numerical calculation than the MTA of 3rd-
order approximation with the KdV-equation. The maximum amplitude for these 
cases are 0.347m, 0.335m, 0.28m for the numerical AB-simulation, the 3rd-order AB 
and 3rd-order KdV approximation respectively; the maximal position is in the range 
of .130120 mm −  

4.4. MTA dependence on wave parameters 

The MTA shows the maximal wave heights over the spatial interval of interest. 
Hence we can find the maximal position and the amplification factor. To get the 
results, we use the MTA(3) for the 3rd order approximations. The 3rd-order 
approximation makes it possible to give an explicit formula for the position of 
maximal wave height (in a given spatial interval). This has been done for the KdV-
approximation in [5].  

 

Figure 9. MTA curve for different parameter ,ν  (a) [ ]s11575.0=ν  (c) 

[ ]s12.0=ν  with second order solution and (b) [ ]s11575.0=ν  (d) [ ]s12.0=ν  

without second order solution for AB (continues line) and KdV (dot line), for 
amplitude [ ]ma 05.0=  and frequency [ ].11495.3 s=ω   
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Using the AB 3th-order approximation, these quantities are given explicitly by 

,max kK
x

−
π≈  (15) 

Where ( ) ( )
2

33 11 ν−ωΩ+ν+ωΩ=
−−

K  and .2
−+ += kkk  

Note that for maxx  we only have to consider the 1st- and 3th-order terms, while 

for the amplitude amplification we added the 2nd-order contribution to the 1st-and 
3th-order terms. From the expressions it is clear that both quantities depend in a 
complicated way on the parameters of the Bi-chromatic, i.e. on the initial amplitude 
a, the carrier frequency ω  and the modulation frequency .ν  

We will now present in a graphical way the dependence of maxx  and the 

amplitude amplification (AA) on the parameters, and compare the analytic results of 
the 3th-order approximation of AB with of the 3th-order approximation of KdV. 
These results are given in Figure 10. The results show that an increase of amplitude, 
carrier-frequency or envelope-frequency decreases the distance of maxx  to the wave 

maker. An increase of amplitude and carrier-frequency or a decrease of envelope-
frequency increases the AA. The effect of the envelope-frequency on the 
amplification is mostly caused by the 3th-order contribution that is of the order 

.
2















ν
aaO  
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Figure 10. The dependence of the position of maximal amplitude (left) and 
Amplitude Amplification (right) on amplitude, frequency of carrier and frequency of 
envelope, for some [ ]sma 1145.3,04 =ω=  and [ ]s1155.0=ν  for AB (line) and 

KdV (dash line) 

5. Conclusions and Remarks 

In this paper we studied the nonlinear deformation of bi-chromatic wave groups. 
The propagation of the wave groups was shown to be well captured by numerical 
simulations with the AB-equation, and we used these simulations to compare with 
results of explicit 3th-order approximations. For these 3th-order approximations we 
used two model equations: the AB-equation that was used for the numerical 
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simulations and a KdV-equation which has exact linear dispersion (just like AB) but 
has as nonlinear terms those of the classical KdV equation. Note that the AB-
equation includes dispersion in the nonlinear terms so that it is exact in second order. 
We argued and showed that the details of the wave group distortion are dominated 

by the resonant 3th-order terms, which are actually of the order ,
2















ν
aaO  where 

ν is the modulation frequency. Since the 3th-order terms in the 3th-order 
approximation are determined by the 1st- and 2nd-order terms, the better nonlinear 
quality of the AB-equation will lead to better results in 2nd, and therefore also in 
3th-order terms when compared to the corresponding KdV terms. This could clearly 
be shown by comparison with the numerical AB-simulation. 

The time-signal at observation positions in the down stream direction is some-
what better for AB 3th-order than the KdV 3th-order approximation. But the 
prediction of the maximal position and amplitude amplification is remarkably well 
predicted by the explicit formulas from the AB 3th-order approximation, as was 
shown in Figure. 8. The somewhat lower values of AA can be understood since 
higher than 3rd-order contributions are needed to achieve a larger wave height. The 
explicit formulas give a simple tool for applications in hydrodynamic laboratories 
where high waves are desired at a pre-determined position in the tank. In this way 
the nonlinear effects in the bi-chromatic wave group can be exploited in a 
deterministic way to produce waves of much higher amplitude than could be 
generated by the wave flap in the absence of nonlinear effects. 
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